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8.1 Introduction
Assumption:
(i) The material is homogenous, isotropic and elastic in which Hooke’s law is valid.
(i) The shear stress is constant along the width but very along the depth.

8.2 Shear Stress Distribution in Beams
Let T be the shear stress in a layer at a distance y from N.A where a particular section is subjected
toS.F=V
VAy

T

V = SF(Shear force) at the section where shear stress is to be found out

Ay = Moment of area of section above the level at which shear stress is to be found out
I = Moment of inertia of complete section about NA
b = Width of the section at the level where shear stress is to be found out

9""!— NOTE [
\) Shear force per unit length of beam is called shear flow. (g)
VAy
q 7 T

8.3 Shear Stress Distribution in Rectangular Section
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From above equation, it is clear that variation of shear stress is parabolic.

Also,

From above equation:

At

At y = 0 (i.e. at neutral axis)

T= Trax
. V&3
M pof 42
3
Trnax:E'Tan

Trnax = 1 '5Tavg

Let at a distance y’ from N.A where

Tyw=71
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Shear Stress Distribution in
Rectangular Section

Tmax

T=Tqyg

a . .
—— distance from neutral axis.
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60 kN. The corresponding maximum shear stress in the
beam?

(a) 150 mm (b) 225 mm

Ans. (b)
Given

' I Example-8.1 A rectangular beam of width 100 mm is subjected to maximum shear force of

cross-section is 4 N/mm?2, What is the depth of

(c) 200 mm (d) 100 mm

T o = 4 N/mm?

Trax = 10X Tavg
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3
4 N _ 15x 60x10°N
mm?2 100mm x d(mm)
= d=225mm

- EI Example-8.2 If a beam of rectangular cross-section is subjected to a vertical
force S, then how much shear force will be carried by the upper one third of the section?

v 8V v
(a) zero (b) > (c) > (d) 3
Ans. (b)
S.F resisted by small strips, dF = Ir.(bo’y) dy=
S.F resisted by upper one third portion :
y
% Zev (o
F= J.T-(bd)/)= fb—-(z—yz)bdy N
y d,
6 6
_ v d_z(ﬁ_ﬁ)_l @ _a
Tl 4\2 6) 318 216
_ov[a_ 2ed
T d®l12 3x216

1 26
F {12 648}

7V

F=27
. S.F resisted by t “ ion = -~
- S. y top % portion =

shear

8.4 Shear Stress Distribution in Circular Sections

b=EF=2JR?—)?

_ %(Rz— 2)3/2
2 /
Vg(Rz 2)32 4v X(Rz_yz)
T_(TCF;“) N 3nR*
X -y
4
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Aty =+R
=0
Also, variation of shear stress is parabolic.
Aty = 0 (i.e. at NA)
v 4

=—1
nR® 3 ¢

T 3nR?

4y 4y 4
T=T,, = = (Rz)_ 5

Tmax = 3 Tavg

Let at a distance y’ from NA (Neutral axis) Where.

Tog = T
vV _ 4V 5 o
R 3nR* (F*-v7)
4\/ 2 ,2 _
oY= (Ff’ -y ) =1
4R — 4y = 3R
Rg — 4y/2

y? =R/

Shear Stress Distribution

1. Tmax = %'Tavg

2. 7t.0ccuraty=0ie. at NA

3. T,g0CCUraty = % from NA.

NOTE g

For Hollow circular section,

(Parabolic)

R, = Internal radius

R, = Outer radius.
_4(RE+RR,+R;

3 R? + R o

For thin circular tube (R, = R,)

4( 3R?
Tmax = 3| 2R2 ) T

max

_——
| Shear Stress distribution

8.5 Shear Stress Distribution in Triangular Section
Let T be the shear stress at a distance y from vertex.
EF = b’

_ 1.,3\2, 2y
Ay = (5‘”)(5 ‘?)
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From above equation, it is clear that variation is parabolic

Also, Aty=0;1t=0
y=h;1=0
for T to be maximum
a_y
ay
h-2y=0
y=h2
. 12v[h2 th v_3 VvV _3_
max 31 AT AT 5 = 5 ‘tavg
bh* ' 2 4 bh 271, 2
2
Tmax=1'5 Tavg
Lo levien ant) _12v(en’-4n’
NAT PR 3 9 ) bk 9
_AV o, AV
T 3bh T 371
3 bh 3 ébh
4

Shear Stress distribution

Tt =151

at y = h/2 from vertex)

avg (

max
TNA = % Tavg

Distance between NAand 7 location = %
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maximum shear force in the beam = 3/7
4

i ©

(7,6, )at junction

B _100 _

(Tﬁenge)a‘[ juncton b 20 -
(TWeb) atjunction = 5 x 12 = 60 MPa

=§ Tavg
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2h= B2 = h= B—f
Tonax OCCUr at %from NA
B2 B2 _J2 B

= = X —
2x4 2x4 2

i

:W (KN/m)
I im

d =200 mm

b =100 mm
(S.F = WKkN)

d = 200
Ty = 1.9 N/mm2

(Wx1)x10°

3
19 = 5% 00% 200

400x100x1.5
= ————————— =20kN/m
w 3x10° /



	01 Properties of Metal-RSSB
	02. Simple Stress Strain-RSSB
	03. SF & BM-RSSB
	04. Deflection-RSSB
	05. Centroid & MOI-RSSB
	06. Principle Stress-RSSB
	07. Bending stress-RSSB
	08. Shear Stress-RSSB
	09. Torsion-RSSB
	10. Column-RSSB
	11. Theory of Springs-RSSB
	12 Dams & Retaining Walls-RSSB



