OPSC 2019

Odisha Public Service Commission
Assistant Engineer Examination

Civil Engineering

Fluid Mechanics and Open Channel Flow

Well Illustrated Theory with Solved Examples and Practice Questions
Fluid Mechanics and Open Channel Flow

Contents

<table>
<thead>
<tr>
<th>UNIT</th>
<th>TOPIC</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Fluid Properties</td>
<td>1-19</td>
</tr>
<tr>
<td>2.</td>
<td>Fluid Statics</td>
<td>20-66</td>
</tr>
<tr>
<td>3.</td>
<td>Fluid Kinematics</td>
<td>67-83</td>
</tr>
<tr>
<td>4.</td>
<td>Fluid Dynamics</td>
<td>84-103</td>
</tr>
<tr>
<td>5.</td>
<td>Fluid Through Pipes</td>
<td>104-117</td>
</tr>
<tr>
<td>6.</td>
<td>Flow Measurements</td>
<td>118-125</td>
</tr>
<tr>
<td>7.</td>
<td>Laminar Flow</td>
<td>126-134</td>
</tr>
<tr>
<td>8.</td>
<td>Turbulent Flow</td>
<td>135-142</td>
</tr>
<tr>
<td>9.</td>
<td>Boundary Layer Theory</td>
<td>143-150</td>
</tr>
<tr>
<td>10.</td>
<td>Dimensional Analysis</td>
<td>151-161</td>
</tr>
<tr>
<td>11.</td>
<td>Forces on Submerged Bodies</td>
<td>162-167</td>
</tr>
<tr>
<td>12.</td>
<td>Open Channel Flow</td>
<td>168-210</td>
</tr>
</tbody>
</table>

©©©
1.1 Fluid Mechanics

- Fluid mechanics is the branch of engineering science which involves the study of fluids and forces on them.
- In fluid mechanics we study the fluid behaviour at rest and in motion.
 (i) Study of fluid at rest \(\rightarrow\) fluid statics.
 (ii) Study of fluid in motion when forces responsible for motion are not considered \(\rightarrow\) fluid kinematics.
 (iii) Study of fluid in motion considering the forces responsible for motion \(\rightarrow\) fluid dynamics.
- Fluid mechanics is a branch of continuum mechanics, a subject which models matter without using the information that it is made out of atoms, that is, it models matter from a macroscopic view point rather than from microscopic.

1.2 Fluid

- A substance in liquid or gaseous phase is referred to as fluid, if they are capable of deforming continuously under the action of shear stress, however small the shear stress may be.
- For a static fluid there is no shear force.
- Since there is no shear force in static fluid hence the Mohr's circle is a point.

\[\text{NOTE: In solids stress is proportional to strain but in fluid stress is proportional to strain rate.}\]

1.2.1 Types of Fluid

1.2.1.1 Ideal Fluid (Perfect Fluid)

- Non-viscous, friction less and incompressible.
- Does not offer shear resistance against flow.
- Bulk modulus is infinite
- Used in mathematical analysis and flow problems.
- No such fluid exist in practical situation.

1.2.1.2 Real Fluid

- Possess the properties such as viscosity, surface tension and compressibility.
- Offers resistance against flow.
1.3 Fluid Continuous and Continuum Concept

- In a fluid system, the intermolecular spacing between the fluid particles is treated as negligible and the entire fluid mass system is assumed as continuous distribution of mass, which is known as continuum.
- The continuous deformation of fluid under the action of shear stress causes a flow. Figure below shows a shear stress (τ) is applied at any location in a fluid, the element 011’ which is initially at rest, will move to 022’, then to 033’ and to 044’ and soon.

- It is a kind of idealization of the properties of the matter for flow analysis.
- Any matter is composed of several molecules continue concept assumes a continuous distribution of mass within the matter with no empty space or voids.
- **Mean free path:** Statistical average distance, which molecules of the same fluid travel between collisions.
- Mean free path is large in comparison to some characteristics length, gas cannot be treated as continuous medium and instead it is analysed by “molecular theory”.
- To describe the degree of departure from continuum, a non-dimensional number known as Knudsen number \(K_n \) is used

\[
K_n = \frac{\lambda}{L} = \frac{\text{Mean free path}}{\text{Characteristics length of flow}}
\]

- If \(K_n > 0.01 \), the concept of continuum does not hold good.
- Fluid can be treated as continuous when \(K_n < 0.01 \), This holds good for fluid mechanics.

1.4 Properties of Fluids

(i) **Mass density (ρ):** It is the mass of the matter occupied in unit volume at a standard temperature and pressure. It is denoted by ‘ρ’.

\[
ρ = \frac{m}{V} \text{ (kg/m}^3\text{)}
\]

<table>
<thead>
<tr>
<th>Matter</th>
<th>Mass density, P (kg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>1.2</td>
</tr>
<tr>
<td>Water</td>
<td>1000</td>
</tr>
<tr>
<td>Mercury</td>
<td>13600</td>
</tr>
<tr>
<td>Steel</td>
<td>7850</td>
</tr>
<tr>
<td>Wood</td>
<td>600</td>
</tr>
</tbody>
</table>
(ii) **Specific weight (γ, W or ρg):** Weight of the matter per unit volume

\[W = \gamma = \frac{W}{V} = \frac{mg}{V} = \rho g \cdot \frac{N}{m^3} \]

- It is not absolute quantity and varies from place to place.
- It is also known as weight density.

<table>
<thead>
<tr>
<th>Matter</th>
<th>Specific weight; γ = ρg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>11.77 N/m³</td>
</tr>
<tr>
<td>Water</td>
<td>9.81 kN/m³</td>
</tr>
</tbody>
</table>

(iii) **Specific volume (V_s):**
- Volume occupied by unit mass of fluid.

\[V_s = \frac{1}{\rho} (m^3/kg) \]

- It is reciprocal of mass density.

(iv) **Specific gravity (S) or relative density:**
- It is the ratio of specific weight (or mass density) of a fluid to the specific weight (or mass density) of a standard fluid at a specified temperature.

(Usually water at 4°C)

\[S = \frac{\rho}{\rho_{water}} = \frac{\gamma}{\gamma_{water}} \]

- Units: No units

<table>
<thead>
<tr>
<th>Matter</th>
<th>Specific gravity (S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>0.0012</td>
</tr>
<tr>
<td>Water</td>
<td>1.0</td>
</tr>
<tr>
<td>Wood</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Example 1.1 Three litres of petrol weighs 23.7 N. Calculate the mass density, specific weight, specific volume and specific gravity of petrol.

Solution:

Mass density of petrol

\[\rho_p = \frac{\text{Mass}}{\text{Volume}} = \frac{23.7}{3.0} = 0.805 \text{ kg/litres} = 805 \text{ kg/m}^3 \]

Mass density of water \((\rho_w) = 1000 \text{ kg/m}^3\)

Specific gravity of petrol,

\[S = \frac{\rho_p}{\rho_w} = \frac{805}{1000} = 0.805 \]

Specific weight of petrol,

\((\gamma) = \rho g = 805 \times \frac{9.81}{1000} \text{ kN/m}^3 = 7.9 \text{ kN/m}^3 \)

Specific volume of petrol,

\[V_s = \frac{1}{\rho_p} = \frac{1}{805} = 1.242 \times 10^{-3} \text{ m}^3/\text{kg} \]
1.5 Viscosity

- It is a measure of resistance of fluid to deformation. It is due to cohesion and molecular momentum exchange between fluid layers and as flow occurs, these effects appears as shearing stresses between the moving layers.
- Suppose one layer of fluid is moving with respect to the other layer by a velocity $= du$ and vertical gap between two layers be dy.

- Upper layer which is moving faster tries to draw the lower slowly moving layer along with it. Similarly, as a reaction to this, the lower layer tries to retard the upper one. Thus there exists a shear between the two layers as shown below.

- In time dt, the top layer will move with respect to the bottom layer by a distance $ds = du \cdot dt$.

Hence,

$$\frac{ds}{dy} = d\theta = \text{shear strain}$$

$$\frac{du \cdot dt}{dy} = d\theta$$

$$\Rightarrow \quad \frac{d\theta}{dt} = \frac{du}{dy}$$ \quad \text{...(i)}$$

\Rightarrow Rate of change of shear strain $\left(\frac{d\theta}{dt} \right)$ = Velocity gradient $\left(\frac{du}{dy} \right)$

- On the basis of relation between the applied shear stresses and the flow or rate of deformation, fluids can be categorized as Newtonian and Non-Newtonian fluid.
- **Newtonian fluids**: Fluid which obeys Newton’s law of viscosity are known as Newtonian fluid.
 Newton’s law of viscosity: The fluid for which rate of deformation is linearly proportional to shear stress.

Thus, for Newtonian fluid
\[
\tau = \frac{d\theta}{dt}
\]

\(\tau\) = Shear stress opposing the movement of fluid

\[
\therefore \quad \tau = \frac{du}{dy} \quad (\text{from equation (i))}
\]

\[
\therefore \quad \tau = \mu \cdot \frac{du}{dy}
\]

\(\mu\) = Absolute viscosity, ‘or’ coefficient of viscosity ‘or’ dynamic viscosity

- Water, air and gasoline are Newtonian under normal conditions.

Dimensions and Units:

Dynamic Viscosity (\(\mu\)):

- **SI system:** Pa·sec, or \(\frac{N}{m^2} \cdot \frac{sec}{m^2}\) or \(\frac{kg}{m \cdot sec}\).

- **CGS system:**

\[
1 \text{ poise} = \frac{Dyne \cdot sec}{cm^2} \quad \left\{ \frac{Dyne = \frac{gm \cdot cm}{sec^2}}{sec^2} \right\}
\]

\[
\therefore \quad 1 \text{ poise} = \frac{gm}{cm \cdot sec}
\]

Conversion:

\[
1 \text{ poise} = \frac{1}{10} \text{ Pa·sec}
\]

- **Dimensions of dynamic viscosity:** \([ML^{-1} T^{-1}]\)

\[
(\mu)_{\text{water}} = 10^{-3} \frac{N \cdot sec}{m^2} = 1 \text{ centipoise}
\]

\[
(\mu)_{\text{air}} = 1.81 \times 10^{-5} \frac{N \cdot sec}{m^2}
\]

(Both at 20° and at standard atmospheric pressure)

NOTE: Water is nearly 55 times viscous than air.

Kinematic Viscosity (\(v\)):

\[
v = \frac{\text{Dynamic viscosity}}{\text{Mass density}} = \frac{\mu}{\rho}
\]

Units:

- **SI system** - \(m^2/\text{sec}\)
- **CGS system** - \(cm^2/\text{sec}\) or stoke

\[
1 \text{ stoke} = cm^2/\text{sec} = 10^{-4} m^2/\text{sec}
\]

- **Dimension:** \([L^2 T^{-1}]\)

At 20°C and at standard atmospheric pressure

\[
v_{\text{water}} = 1 \times 10^{-6} m^2/\text{sec}
\]

\[
v_{\text{air}} = 15 \times 10^{-6} m^2/\text{sec}
\]

NOTE: Kinematic viscosity of air is about is times greater than the corresponding value of water.
Variation of Viscosity with Temperature:
- Increase in temperature causes a decrease in the viscosity of a liquid whereas viscosity of gases increases with temperature growth.

NOTE: In gases, molecular momentum increases and cohesion is negligible.

Example 1.2
A plate 0.05 mm distant from a fixed plate moves at 1.2 m/sec and requires a shear stress of 2.2 N/m² to maintain this velocity. Find the viscosity of the fluid between the plates.

Solution:
Let \(\mu \) be the viscosity of fluid between the plates.

Given, \(V = 1.2 \text{ m/sec} \)
\(y = 0.05 \text{ mm} = 0.05 \times 10^{-3} \text{ m} \)

Shear stress \((\tau) = 2.2 \text{ N/m}^2 \). To find \((\mu) = ? \)

By Newton’s law of viscosity, we know that

\[
\tau = \mu \frac{V}{y} = \mu \times \frac{1.2}{0.05 \times 10^{-3}}
\]

\[
2.2 = \mu \times \frac{1.2}{0.05 \times 10^{-3}}
\]

\[
\mu = \frac{2.2 \times 0.05 \times 10^{-3}}{1.2} = 9.16 \times 10^{-5} \text{ N-sec/m}^2
\]

Non-Newtonian Fluids
- These do not follow Newton’s law of viscosity. The relation between shear stress and velocity gradient is

\[
\tau = A \left(\frac{du}{dy} \right)^n + B
\]

where \(A \) and \(B \) are constants depending upon type of fluid and condition of flow.

- The study of Non-Newtonian fluid is known as Rheology.
 (i) For Dilatant Fluids: \(n > 1 \) and \(B = 0 \),
 Ex. Butter, Quick sand, Rice starch, Sugar in H₂O
 (ii) For Bingham Plastic Fluids: \(n = 1 \) and \(B \neq 0 \)
 Ex. Sewage sludge, Drilling mud, Tooth paste, Gel.
 These fluids always have certain minimum shear stress before they yield.
 (iii) For Pseudoplastic Fluids: \(n < 1 \) and \(B = 0 \)
 Ex. Paper pulp, Rubber solution, Lipsticks, Paints, Blood, Polymeric solutions, milk, etc.
 (iv) For Thixotropic Fluids: \(n < 1 \) and \(B \neq 0 \)
 Viscosity increases with time.
 Ex. Printers ink and Enamels.
 (v) For Rheopectic Fluids: \(n > 1 \) and \(B \neq 0 \)
 Viscosity decreases with time.
 Ex. Gypsum solution in water and Bentonite solution.
Example 1.3 The Rheological diagram depicting the relation between shear stress and strain rate for different types of fluids is shown in figure below.

![Rheological Diagram]

The most suitable relation for flow of toothpaste being squeezed out of the tube is given by the curve:

(a) P (b) Q
(c) R (d) S

Solution: (a)

Example 1.4 If the shear stress 'τ' and shear strain rate \((du/\text{dy}) \) relationship of a material is plotted with \(\tau \) on the y-axis and \(du/\text{dy} \) on the x-axis, the behaviour of an ideal fluid is exhibited by:

(a) a straight line passing through the origin and inclined to the x-axis
(b) the positive x-axis
(c) the positive y-axis
(d) a curved line passing through the origin

Solution: (b)

Example 1.5 An oil of kinematic viscosity having \(1.25 \times 10^{-4} \text{ m}^2/\text{sec} \) and a specific gravity of 0.80. What is its dynamic (absolute) viscosity in kg/m-sec?

(a) 0.08 (b) 0.10
(c) 0.125 (d) 1.0
Solution: (b)

Given,

\[v = 1.25 \times 10^{-4} \text{ m}^2/\text{sec} \]
\[S = 0.8 \]
\[\rho = 0.8 \times \rho_w = 0.8 \times 1000 = 800 \text{ kg/m}^3 \]

\[v = \frac{\mu}{\rho} \]

\[1.25 \times 10^{-4} = \frac{\mu}{800} \]
\[\mu = 1.25 \times 10^{-4} \times 800 \]
\[\mu = 0.10 \text{ kg/m-sec} \]

Example-1.6
The space between two parallel plates kept 3 mm apart is filled with an oil of dynamic viscosity 0.2 poise. The shear stresses on the fixed plate, if the upper one is moving with a velocity of 90 m/min is ________.

(a) 50 N/m²
(b) 10 N/m²
(c) 15 N/m²
(d) 30 N/m²

Solution: (b)

Given,

\[y = 3 \text{ mm} = 3 \times 10^{-3} \text{ m} \]
\[\mu_{\text{oil}} = 0.2 \text{ poise} = 0.02 \text{ N-sec/m}^2 \]

\[V = 90 \text{ m/min} = \frac{90}{60} = 1.5 \text{ m/sec} \]

By Newton's law of viscosity

\[\tau = \mu \cdot \frac{V}{y} = 0.02 \times \frac{1.5}{3 \times 10^{-3}} \]
\[\tau = 10 \text{ N/m}^2 \]

Example-1.7
Classify the substances for which \(\frac{du}{dy} \) and \(\tau \) variation are as given below:

(a)
<table>
<thead>
<tr>
<th>(\frac{du}{dy}) (rad/sec)</th>
<th>0</th>
<th>1</th>
<th>3</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tau) (kPa)</td>
<td>15</td>
<td>20</td>
<td>30</td>
<td>20</td>
</tr>
</tbody>
</table>

(b)
<table>
<thead>
<tr>
<th>(\frac{du}{dy}) (rad/sec)</th>
<th>0.5</th>
<th>1.1</th>
<th>1.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tau) (kPa)</td>
<td>2</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

Solution: (b)

We know that general relationship of \(\tau \) and \(\frac{du}{dy} \) is given as:

\[\tau = A \left(\frac{du}{dy} \right)^n + B \]

At

\[\frac{du}{dy} = 0; \tau = B \]
\[
\frac{d\tau}{d\left(\frac{du}{dy}\right)} = A \cdot n \left(\frac{du}{dy}\right)^{n-1}
\]

Thus, slope of \(\tau - \frac{du}{dy}\) curve will increase with increase in \(\frac{du}{dy}\) if \(n > 1\) and will decreases if \(n < 1\).

If \(n = 1\), slope of \(\tau - \frac{du}{dy}\) curve will be constant.

Thus,

(a)

<table>
<thead>
<tr>
<th>(\frac{du}{dy})</th>
<th>0</th>
<th>1</th>
<th>3</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tau)</td>
<td>15</td>
<td>20</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>(\frac{d\tau}{d\left(\frac{du}{dy}\right)})</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>2</td>
</tr>
</tbody>
</table>

\[\Rightarrow \frac{du}{dy} = 0; \tau = 15\]

\[\Rightarrow B = 15 \neq 0\]

Slope of \(\tau - \frac{du}{dy}\) curve is constant \(\Rightarrow (n = 1)\)

\[\therefore\] The fluid must be ideal plastic or Bingham plastic.

(b)

<table>
<thead>
<tr>
<th>(\frac{du}{dy})</th>
<th>0</th>
<th>0.5</th>
<th>1.1</th>
<th>1.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tau)</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>(\frac{d\tau}{d\left(\frac{du}{dy}\right)})</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0.7</td>
</tr>
</tbody>
</table>

\[A + \frac{du}{dy} = 0; \tau = 0\]

\[\Rightarrow B = 0\]

\[\Rightarrow\) Slope of \(\tau - \frac{du}{dy}\) curve is decreasing \(\Rightarrow (n < 1)\)

\[\therefore\] The fluid must be pseudoplastic.

1.6 Surface Tension

- The property of the liquid surface film to exert tension is called the surface tension.
- Surface tension is a measure of liquid tendency to take a spherical shape, caused by the mutual attraction of the liquid molecules.
- **Cohesion**: Force of attraction between the molecules of the same liquid.
- **Adhesion**: Force of attraction between the molecules of different liquids (or) between the liquid molecules and solid boundary containing the liquid.
• Cohesion enables a liquid to resist very small tensile stress while adhesion enables a liquid to adhere to another body.
• Surface tension is due to cohesion between particles at the surface of liquid.
• A liquid forms an interface with a second interface behaves like a membrane under tension.
• Surface tension is the force exerted by the free surface of the liquid per unit length.
 Units: Newton per metre (N/m)
 Dimension: \([MT^{-2}]\)
• The surface energy per unit area of interface is called surface tension.
• It is also expressed as work done per unit surface area.
 \[\sigma = \frac{W (or) \ E}{A} \text{ J/m}^2 \]
• As temperature increases \(\rightarrow\) surface tension decreases (because cohesion decreases).
• A ‘tensiometer’ and ‘stalagmometer’ are the experimental instruments used to measure the surface tension of liquid.
• Due to surface tension, pressure changes occurs across a curved interface.

Increase of pressure of inside and outside are:
(i) Liquid droplet:
\[\Delta P = \frac{4\sigma}{d} \]
where,
\[d = \text{diameter of droplet} \]
(ii) Soap bubble:
\[\Delta P = \frac{8\sigma}{d} \]
where,
\[d = \text{diameter of bubble} \]
(iii) Liquid jet:
\[\Delta P = \frac{2\sigma}{d} \]
where,
\[d = \text{diameter of jet} \]

NOTE: Air bubble raise in a liquid treated as air droplet, \(\Delta P = 4\sigma/d\).

Example-1.8
What is the pressure within a 1 mm diameter spherical droplet of water relative to the droplet of water relative to the atmospheric pressure outside? Assume surface tension for pure water to be 0.073 N/m.

Solution:
For spherical liquid drop.
\[\Delta P = \frac{4\sigma}{d} \]
Where, \(\Delta P = \text{difference between the pressure inside and outside the drop} \)
\[\Delta P = \frac{4\sigma}{d} = \frac{4 \times 0.073}{1 \times 10^{-3}} \]
\[\Delta P = 292 \text{ N/m}^2 \]
Example 1.9

A 20 mm diameter soap bubble has an internal pressure of 27.576 N/m\(^2\) greater than the outside atmospheric pressure, then the surface tension of soap air bubble is in (N/m) ________.

Solution:
The soap bubble has two surfaces with the air the thinner and the outer and almost the same radius since, the soap film is very thin,

\[
\Delta P = \frac{8\sigma}{d}
\]

\[
27.576 = \frac{8 \times \sigma}{20 \times 10^{-3}}
\]

\[
\sigma = 0.0689 \text{ N/m}
\]

Example 1.10

A small circular jet of water of 2 mm diameter issues forms an opening. What is the pressure difference between inside and outside of the jet? (Take surface tension of water = 0.0735 N/m)

Solution:

\[
\Delta P = \frac{2\sigma}{d} = \frac{2 \times 0.0735}{2 \times 10^{-3}}
\]

\[
\Delta P = 73.5 \text{ N/m}^2
\]

Example 1.11

Air is introduced through a nozzle into a tank of water to form a stream of bubbles. If the process requires 2.5 mm diameter air bubbles to be formed, the air pressure at the nozzle must exceed that of surrounding water, \([\sigma_{\text{water}} = 0.0735 \text{ N/m}]\) is (Posed) is ________.

Solution:

\[
\Delta P = \frac{4\sigma}{d} = \frac{4 \times 0.0735}{2.5 \times 10^{-3}} = 117.6 \text{ N/m}^2
\]

Example 1.12

The diameter of droplet is 0.075 mm. What is the intensity of the pressure (N/cm\(^2\)) developed in the droplet by surface tension of 0.000075 N/mm?

(a) 0.4
(b) 0.6
(c) 0.8
(d) 1

Solution: (a)
For air water interface \(
\sigma = 0.073 \text{ N/m}
\)
For water glass interface, contact angle \(\theta \simeq 0\)
For air mercury interface, \(\sigma = 0.480 \text{ N/m}\)
For mercury glass interface contact angle, \(\theta \simeq 130^\circ\)

1.7 Capillary

- The phenomenon of rise or fall of a liquid surface relative to the adjacent general level of liquid in small diameter tubes. The rise of liquid surface is designated as capillary rise and lowering is called capillary depression.
Capillarity is due to both cohesion and adhesion.

Capillary rise: For a liquid in contact with the surface, if adhesion predominates cohesion than the liquid will wet the surface with which it is in contact and tend to rise at the point of contact.

The free surface of the fluid will be concave upward and the contact angle (θ) will be less than 90°.

Example: Immersion of a glass tube in water.

Capillary fall: If for any liquid, in contact with a surface, Cohesion predominates the liquid will not wet the surface and the liquid surface will be depressed at the point of contact.

The liquid surface will be concave downward and the angle of contact θ will be greater than 90°.

Such a phenomenon of rise or fall of liquid surface relative to the adjacent general level of liquid is known as capillarity.

\[
h = \frac{4\sigma \cos \theta}{\gamma} \cdot d
\]

- \(h \) = Capillary height (rise/fall)
- \(\sigma \) = Surface tension (N/m)
- \(d \) = Diameter of tube (m)
- \(\gamma \) = Specific weight of the liquid (N/m³)
- \(\theta \) = Angle of contact between liquid and boundary
- \(\theta = 0^\circ \) (water and glass) = 130° (mercury and glass)

Assumptions in deriving the above equation:

(a) The meniscus of the curved liquid surface is a section of sphere.

(b) The liquid and tube surfaces are extremely clean.

NOTE

- With increase in diameter of the tube, capillary rise decreases. For tube of diameter more than 6 mm (radius > 3 mm) the capillary rise is negligible.
- At 20°C for water,

\[
h = \frac{0.30}{d} \text{ m}
\]

where \(d \) = diameter of the tube (in cms)

Note: If an annular tube, is immersed in a liquid, with outer radius \(r_o \) and inner radius \(r_i \), then capillary rise is given by

\[
h = \frac{4\sigma \cos \theta}{2(r_o - r_i)S_{yw}} = \frac{2\sigma \cos \theta}{(r_o - r_i)S_{yw}} = \frac{2\sigma \cos \theta}{(r_o - r_i) \cdot \gamma}
\]
- If a tube of radius ‘r’ is inserted in mercury (specific gravity, S_1) above which a liquid of (specific gravity, S_2) lies, then the capillary depression ‘h’ is given by

$$ h = \frac{2\sigma \cos \theta}{r \gamma_w (S_1 - S_2)} $$

- If two vertical plates ‘t’ distances apart are held partially immersed in a liquid of surface tension ‘σ’ and specific gravity ‘S’. Then capillary rise or depression ‘h’ is given by

$$ h = \frac{2\sigma \cos \theta}{S \gamma_w t} $$

Example-1.13 What diameter of glass tube is required if the capillary effects of the tap water not to exceed capillary rise 10 mm? [$\sigma = 0.072$ N/m]

(a) 3 mm
(b) 4 mm
(c) 2 mm
(d) 5 mm

Solution: (a)

$$ h = \frac{4\sigma \cos \theta}{\rho g D} $$

\(10 \times 10^{-3} = \frac{4 \times 0.072 \times 1}{1000 \times 9.81 \times D}\)

\(D = 0.003 \text{ m} = 3 \text{ mm}\)

Example-1.14 If the capillary rise of water in a 1 mm diameter tube is 3 cm, the height of capillary rise of water in a 0.2 mm diameter tube (in cm) will be:

(a) 1.5
(b) 7.5
(c) 15
(d) 75

Solution: (c)

We know that capillary rise for water

$$ h = \frac{0.3}{d} \text{ cm} $$

... (i)

Given,

\(d_1 = 1 \text{ mm} = \frac{1}{10} \text{ cm} \); \(h_1 = 3 \text{ cm}\)

\(d_2 = 0.2 \text{ mm} = \frac{0.2}{10} \text{ cm} = \frac{2}{100} \text{ cm} \); \(h_2 = ?\)

From equation (i)

\(h \propto \frac{1}{d}\)

\(h_1 d_1 = h_2 d_2\)

\(3 \times \frac{1}{10} = h_2 \times \frac{2}{100}\)

\(h_2 = \frac{3 \times 100}{2 \times 10} = 15 \text{ cm}\)

\(h_2 = 15 \text{ cm}\)
Compressibility

- It refers to change in volume (density) due to change in pressure.
- The compressibility coefficient is inversely proportional to bulk modulus of elasticity (K),

$$K = \frac{dP}{-dV} = \frac{dP}{V} \rho$$

Compressibility Coefficient, $\beta = \frac{1}{K}$

- In compressible fluids the velocity of sound is given by

$$C = \sqrt{\frac{K}{\rho}} = \text{Velocity of sound in fluid}$$

$K =$ Bulk modulus of fluid

$r =$ Density of fluid

- The compressibility of water is considered in the case of water hammer problems. Due to the sudden closure of values in pipelines, a high pressure waves is generated giving rise to huge increase of pressure.

Example-1.15 In penstock pipe of a hydro power plant the water velocity is 4 m/sec. The Bulk modulus of water is 2 GPa and specific gravity of water is 1.05. Determine the velocity of pressure wave (in m/sec) when the control valve is suddenly operated.

Solution:

Given,

- $V = 4$ m/sec; $S = 1.05$
- $K = 2 \times 10^8$ N/m2
- $\rho = 1.05 \times 1000 = 1050$ kg/m3
- $C =$ Velocity of sound wave in water

$$C = \sqrt{\frac{K}{\rho}} = \sqrt{\frac{2 \times 10^9}{1050}} = 1380 \text{ m/sec}$$

1.8 Cavitation and Vapour Pressure

- In a closed vessel at a constant temperature, the liquid molecules break away from the liquid surface and enter the air space in vapour state.
- When the air above the liquid surface is saturated with liquid vapour molecules then pressure exerted on liquid surface is called vapour pressure.
- Vapour pressure is the pressure at which a liquid boils and is in equilibrium with its own vapour.
- The water vapour forms bubbles at locations (such as the tip regions of impellers of turbine or suction sides of pumps) where pressure drops below atmosphere.
- The vapour bubbles (called cavitation bubbles since they form “cavities” in the liquid) collapse as they swept away from the low pressure regions, generates highly destructive pressure waves.
- Cavitation occurs in a flow system, dissolved gases (vapour bubbles) carried into a region of high pressure and their subsequent collapse gives rises to high pressure, which leads to noise, vibrations and erosion.
- Cavitation observed in: (i) Turbine runners exit, (ii) Pump suction pipes and impellers, (iii) Hydraulic structure like sluice gates and spillways, (iv) Syphons pipes.
Q.1 A fluid is defined as a substance that
(a) has same shear stress at all points
(b) can deform indefinitely under the action of
 the smallest shear force also
(c) has the small shear stress in all directions
(d) is practically incompressible

Q.2 If 5.66 m³ of oil weighs 4675 kg, then its mass
density, specific weight and specific gravity respectively are
(a) 841.87 kg/m³; 826.26 kg/m³; 0.842
(b) 8.26 kg/m³; 841 kg/m³; 8.42
(c) 841.87 kg/m³; 841 kg/m³; 8.42
(d) None of these

Q.3 Viscosity is a property that manifests
(a) at fluid-solid boundaries only
(b) between two adjacent fluid layer in relative
 motion
(c) in uniform incompressible flows
(d) only in turbulent flow

Q.4 Dynamic viscosity has following units?
 (i) \(\frac{kg \cdot m}{sec} \) (ii) \(\frac{kg}{m \cdot sec} \)
 (iii) \(\frac{N \cdot S}{m^2} \) (iv) Poise
 (v) \(\frac{Dyne \cdot sec}{cm^2} \)
(a) (i) and (iii)
(b) (i), (iii) and (iv)
(c) (ii), (iii), (iv) and (v)
(d) (i), (iii), (iv) and (v)

Q.5 At room temperature, the dynamic and kinematic
viscosity of water:
(a) are both greater than that of air
(b) are both less than that of air
(c) are respectively greater than and less than
 that of air
(d) are respectively less than and greater that of
 air

Q.6 With increase in temperature the viscosity of air
and water varies as
(a) ‘viscosity’ of air increases and viscosity of
 water decreases
(b) viscosity of air increases and viscosity of
 water increases
(c) viscosity of air decreases and viscosity of
 water decreases
(d) viscosity of air decreases and viscosity of
 water increases

Q.7 If the dynamic viscosity of a liquid is 0.012 poise
 and its R.D (relative density) is 0.79, its kinematic
 viscosity in stove is
(a) 0.015 (b) 0.1
(c) 1.5 (d) 15

Q.8 The velocity gradient is 1000/sec. The viscosity
 is \(1.2 \times 10^{-4} \) N-s/m². The shear stress is _______.
(a) 0.12 N/m²
(b) \(1.2 \times 10^{-7} \) N/m²
(c) 12 N/m²
(d) \(1.2 \times 10^{-5} \) N/m²

Q.9 Two parallel plates, one moving at 4 m/sec and
 the other one fixed, are separated by a 5 mm
 thick layer of oil having specific gravity 0.80
 and kinematic viscosity \(1.25 \times 10^{-4} \) m²/sec. What
 is the shear stress in the oil?
(a) 80 Pa (b) 100 Pa
(c) 125 Pa (d) 135 Pa

Q.10 The space between two parallel plates kept 3 mm
 apart is filled with an oil of dynamic viscosity
 0.2 poise. The shear stress on the fixed plate, if
 the upper plate is moving with 2 m/sec is _______

Q.11 Viscosity of a fluid with specific gravity 1.3 is
 measured to be 0.0034 N-sec/m². Its kinematic
 viscosity (in m²/sec) is _______
 (a) \(2.6 \times 10^{-6} \) (b) \(4.4 \times 10^{-6} \)
 (c) \(5.8 \times 10^{-6} \) (d) \(7.2 \times 10^{-6} \)
Q.12 Match the following:
1. Newtonian
2. Bingham plastic/ideal plastic
3. Ideal fluid
4. Dilatant
5. Pseudoplastic

![Graph with curves and points labeled A to E with corresponding values 4 2 1 3 5, 3 5 1 4 2, 3 4 1 5 2, 3 5 1 4 2]

Q.13 Match the following:

List-I
A. Glycerine
B. Concentrated sugar solution
C. Ketchup
D. Kerosene

List-II
1. Thixotropic
2. Newtonian
3. Dilatant
4. Rheopoeitic

Codes:
(a) 2 3 1 2
(b) 4 3 1 2
(c) 2 1 3 2
(d) 3 1 2 4

Q.14 The shear stress is expressed by:
\[\tau = \mu \left(\frac{d\upsilon}{dy} \right)^n \]
Then the \(n \)-values for Newtonian and non-Newtonian fluids will be respectively.
(a) \(n = 1 \) and \(n < 1 \)
(b) \(n > 1 \) and \(n < 1 \)
(c) \(n > 1 \) and \(n \neq 1 \)
(d) \(n < 1 \) and \(n > 1 \)

Q.15 A small circular jet of mercury 0.1 mm in diameter issue form an opening. What is the pressure difference between inside and outside of the jet? (Surface tension of mercury is 0.514 N/m)
(a) 41 kPa
(b) 21.5 kPa
(c) 10.28 kPa
(d) 5.14 kPa

Q.16 The shape of water droplet over leaf is spherical because of
(a) Adhesion
(b) Density
(c) Surface tension
(d) Dynamic viscosity

Q.17 Match the following:

List-I
A. Rise of sap in a tree
B. Surface tension
C. Capillary rise
D. Shape of droplets of water on leaves after rain

List-II
1. Capillarity
2. Cohesion and adhesion
3. Surface tension
4. Cohesion

Codes:
(a) 2 4 3 1
(b) 1 2 2 3
(c) 1 4 2 3
(d) 4 1 3 2

Q.18 If a glass tube is dipped in water then the expression of height of rise of liquid upper meniscus will be:
(a) \(\frac{4\rho d}{\sigma} \)
(b) \(\left(\frac{4\sigma}{\rho g d} \right)^{\frac{d}{2}} \)
(c) \(\frac{4\sigma \cos \theta}{2\rho d} \)
(d) \(\frac{4\sigma \cos \theta}{(\rho g \cdot d)} \)

Q.19 Capillary rise is 15 mm in a 3 mm diameter tube immersed in a liquid vertically. If another 4 mm diameter tube is immersed in the same liquid, then the capillary rise would be (in mm)
(a) 11.25
(b) 20.00
(c) 8.44
(d) 26.67

Q.20 What is vapour pressure?
(a) Pressure exerted by atmosphere on liquid surface
(b) Total external pressure on liquid surface
(c) Total pressure exerted by vapour in system
(d) Total pressure exerted by water vapour only at equilibrium
Q.21 If the volume of a liquid weighing 3000 kg is 4 m³, 0.75 is its
(a) specific mass
(b) specific weight
(c) specific volume
(d) specific gravity

Q.22 Water flows over the fixed surface causing the viscous velocity (in m/sec) variation along y direction is given by
\[u = 2y - 2y^3 + y^4 \]
water dynamic viscosity \(\mu = 1 \) cp. The shear stress at 10 mm from the surface is ________.
(a) 0.05 N/m²
(b) 0.99 N/m²
(c) 0.004 N/m²
(d) 0.002 N/m²

Q.23 A liquid of density \(\rho \) and dynamic viscosity \(\mu \) flows steadily down an inclined plane in a thin sheet of constant thickness ‘t’. Neglecting air friction, the shear stress on the bottom surface due to the liquid flow is (where \(\theta \) is the angle, the plane makes with the horizontal):
(a) \(\rho g t \sin \theta \)
(b) \(\rho g t \cdot \cos \theta \)
(c) \(\mu \cdot \frac{g}{t} \)
(d) \(\rho g t \)

Q.24 An increase in pressure of a liquid from 7.5 MPa to 15 MPa results in to 0.2% decrease in its volume. The coefficient of compressibility of the liquid (in m²/N) is ________.
(a) \(0.267 \times 10^{-9} \)
(b) \(2.67 \times 10^{-9} \)
(c) \(1 \times 10^{-9} \)
(d) None of these

Q.25 Assuming that sap in trees has the same characteristics as water and that it rises purely due to capillary phenomenon, what will be the average diameter of capillary tubes in a tree if the sap is carried to a height of 10 m? (Take surface tension of water = 0.0735 N/m)
(a) 0.003 mm
(b) 0.03 mm
(c) 0.3 mm
(d) 0.006 mm

Q.26 Match the pairs:

<table>
<thead>
<tr>
<th>List-I</th>
<th>List-II</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Droplet formation</td>
<td>1. Zero viscosity</td>
</tr>
<tr>
<td>B. Weight</td>
<td>2. Constant viscosity</td>
</tr>
<tr>
<td>C. Ideal fluid</td>
<td>3. Gravity acceleration</td>
</tr>
<tr>
<td>D. Newtonian fluid</td>
<td>4. Surface tension</td>
</tr>
</tbody>
</table>

Codes:
A B C D
(a) 2 3 4 1
(b) 3 4 2 1
(c) 2 4 3 1
(d) 2 3 4 1

Q.27 The properties of cohesion and adhesion in addition to surface tension result in ________.
(a) Compressibility
(b) Capillarity
(c) Viscosity
(d) Density

Q.28 Cavitation is caused due to
(a) High pressure
(b) Low pressure
(c) High pressure
(d) High temperature

Q.29 Match list-I with list-II and select the correct answer using the codes given below the lists:

List-I (Description)
A. Property which explains the spherical shape of the drop of a liquid.
B. Property which explain the phenomenon of cavitation in a fluid flow.
C. Property which explains the rise of sap in a tree.
D. Property which explains the flow of a jet of oil in an unbroken stream.

List-II (Property)
1. Viscosity
2. Surface tension
3. Vapour pressure
4. Capillarity

Codes:
A B C D
(a) 1 2 4 5
(b) 2 4 5 1
(c) 4 2 5 1
(d) 1 2 3 4

Q.30 A liquid compressed in a cylinder has a volume of 0.04 m³ at 50 kgf/cm² and a volume of 0.039 m³ at 150 kgf/cm². The bulk modulus of elasticity of liquid is ________.
(a) 400 kgf/cm²
(b) 40 x 10⁶ kgf/cm²
(c) 40 x 10⁵ kgf/cm²
(d) 4000 kgf/cm²
2. (a)
Given,
\[V = 5.66 \text{ m}^3 \]
\[m = 4675 \text{ kg} \]
To find
(i) mass density (\(\rho \))
(ii) specific weight (\(\gamma \))
(iii) Specific gravity (\(S \))

\[\rho = \frac{4675}{5.66} = 841.87 \text{ kg/m}^3 \]
\[\gamma = \frac{841.87 \times 9.81}{1000} = 8.26 \text{ kN/m}^3 \]
\[S = \frac{841.87}{1000} = 0.842 \]

7. (a)
Given, dynamic viscosity (\(\mu \)) = 0.012 poise
\[\mu = 0.012 \times \frac{10}{10} \text{ N-s/m}^2 \]
\[= 12 \times 10^{-4} \text{ N-s/m}^2 \]
Relative density or specific gravity \(S \) = 0.79
\[\therefore \text{Density of liquid (} \rho \text{)} = 0.79 \times 1000 = 790 \text{ kg/m}^3 \]
To find kinematic viscosity (\(\nu \)) = ?
\[\nu = \frac{\mu}{\rho} = \frac{12 \times 10^{-4}}{790} \]
\[= 1.51 \times 10^{-6} \text{ m}^2/\text{sec} \]
\[= 1.51 \times 10^{-6} \times 10^4 \text{ cm}^2/\text{sec} \]
\[= 1.51 \times 10^{-2} \text{ cm}^2/\text{sec} \]
Now, 1 stoke = 1 cm²/sec
\[\nu = 1.51 \times 10^{-2} \text{ stokes} \]
\[= 0.015 \text{ stoke} \]

8. (a)
\[\tau = \mu \frac{du}{dy} \]
\[= 1.2 \times 10^{-4} \times (1000) = 0.12 \text{ N/m}^2 \]

9. (a)
\[V = 4 \text{ m/sec} \]
\[y = 5 \text{ mm} \]
\[S = 0.8; \nu = 1.25 \times 10^{-4} \text{ m}^2/\text{sec} \]
\[\tau = \mu \frac{V}{y} \]
\[\nu = \frac{\mu}{\rho} \]
\[\therefore \mu = 1.25 \times 10^{-4} \times (0.8 \times 1000) \]
\[= 0.1 \text{ N-s/m}^2 \]
\[\therefore \tau = 0.1 \times \frac{4}{5 \times 10^{-3}} = 80 \text{ N/m}^2 \]
\[\tau = 80 \text{ Pa} \]

11. (a)
Given, specific gravity (\(S \)) = 1.3
Dynamic viscosity, (\(\mu \)) = 0.0034 N-s/m²
\[\therefore \text{Kinematic viscosity} \]
\[\nu = \frac{\mu}{\rho} = \frac{0.0034}{1.3 \times 1000} \]
\[= 2.6 \times 10^{-6} \text{ m}^2/\text{sec} \]

15. (c)
Given,
\[d = 0.1 \text{ mm} = 0.1 \times 10^{-3} \text{ m} \]
\[\sigma = 0.514 \text{ N/m} \]
\[\Delta P = \frac{2\sigma}{d} = \frac{2 \times 0.514}{0.1 \times 10^{-3}} = 10.28 \text{ KPa} \]

18. (b)
Height of capillary rise
\[h = \frac{4\sigma \cos \theta}{(\rho g)d} \]