



Test Centres: Delhi, Noida, Hyderabad, Bhopal, Jaipur, Lucknow, Bhubaneswar, Indore, Pune, Kolkata, Patna

# ESE 2020 : Prelims Exam CLASSROOM TEST SERIES

GENERAL STUDIES & ENGG. APTITUDE Test 1

Section A : Reasoning Aptitude Section B : Engineering Mathematics

| 1.  | (c) | 11. | (c) | 21. | (c) | 31. | (a) | 41. | (b) |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 2.  | (d) | 12. | (b) | 22. | (d) | 32. | (c) | 42. | (a) |
| 3.  | (a) | 13. | (c) | 23. | (a) | 33. | (b) | 43. | (d) |
| 4.  | (b) | 14. | (b) | 24. | (b) | 34. | (b) | 44. | (b) |
| 5.  | (d) | 15. | (d) | 25. | (d) | 35. | (a) | 45. | (d) |
| 6.  | (c) | 16. | (a) | 26. | (c) | 36. | (d) | 46. | (d) |
| 7.  | (d) | 17. | (b) | 27. | (b) | 37. | (a) | 47. | (b) |
| 8.  | (c) | 18. | (d) | 28. | (c) | 38. | (c) | 48. | (d) |
| 9.  | (b) | 19. | (a) | 29. | (b) | 39. | (b) | 49. | (a) |
| 10. | (c) | 20. | (d) | 30. | (b) | 40. | (c) | 50. | (a) |



#### DETAILED EXPLANATIONS

#### 1. (c)

Nalni is the daughter of the only son of Gopi's grandfather. Hence, it's clear that Nalni is the sister of Gopi.

2. (d)

Let for class A: boys = x and girls = ythen for class B: boys = x - 1 and girls = y - 2

| <u>x</u> | _ | 3 | L   | (x - 1)            |   | 4 |
|----------|---|---|-----|--------------------|---|---|
| y        | = | 4 | and | $\overline{(y-2)}$ | = | 5 |

Solving, we get y = 12

3. (a)



To find: In  $\triangle ABC$  and  $\triangle EFC$ 

|                   | $\angle ACB = \angle ECF$ (common)     |         |
|-------------------|----------------------------------------|---------|
|                   | $\angle ABC = \angle EFC = 90^{\circ}$ |         |
| $\Rightarrow$     | $\Delta ABC \simeq \Delta EFC$         |         |
| $\Rightarrow$     | $\frac{x}{2} = \frac{5-d}{5}$          | eq. (i) |
| Similarly,        | $\Delta BCD \simeq \Delta BFE$         |         |
| $\Rightarrow$     | $\frac{x}{3} = \frac{d}{5}$            | eq.(ii) |
| A 1 1· (·) 1 (··) |                                        |         |

Adding eqs. (i) and (ii), we get

 $\Rightarrow \qquad \frac{x}{2} + \frac{x}{3} = \frac{5-d}{5} + \frac{d}{5}$  $\Rightarrow \qquad \frac{3x+2x}{6} = \frac{5}{5}$  $\Rightarrow \qquad 5x = 6 \times 1 = 6$  $\Rightarrow \qquad x = \frac{6}{5} = 1.2 \text{ m}$ 

### 4. (b)

Therefore, *A* is sitting in between *B* and *C*.

5. (d)

Here, the concept is of successive division

i.e. the number is first divided by 5 and it leaves remainder 2 and quotient is let x,

Therefore we have number = 5x + 2and then the quotient *x* is divided by 7 and the remainder is 3

So, we have *x* in the form of x = 7y + 3

And then the quotient y is divided by 8 and the remainder is 4

So, we have *y* in the form of y = 8z + 4

putting this value of x and y in (1) above, we get

number = 5(7(8z + 4) + 3) + 2  $\Rightarrow number = 5(56z + 31) + 2$  number = 280z + 157

When this number will be divided by 8, we will get remainder = 5 and quotient = 35z + 19When this quotient will be divided by 7, we will get remainder = 5 and quotient = 5z + 2When this quotient will be divided by 5, we will get remainder = 2

6. (c)

| B - 3 = E                                                                    | (i)   |
|------------------------------------------------------------------------------|-------|
| B + 3 = D                                                                    | (ii)  |
| A + B = D + E + 10                                                           | (iii) |
| B = C + 2                                                                    | (iv)  |
| A + B + C + D + E = 133                                                      | (v)   |
| From (i) and (ii), we have : $2B = D + E$                                    | (vi)  |
| From (iii) and (vi), we have : $A = B + 10$                                  | (vii) |
| Using (iv), (vi) and (vii) in (v), we get:                                   |       |
| $(B + 10) + B + (B - 2) + 2B = 133 \Rightarrow 5B = 125 \Rightarrow B = 25.$ |       |
|                                                                              |       |

### 7. (d)



None of the two follows.

#### 8. (c)

Distance travelled when the ball touches the floor  $3^{rd}$  time,  $h + 0.6h + 0.6h + 0.6 \times 0.6h + 0.6 \times 0.6h = 292$ 

 $h + 2 \times 0.6 \times h + 2 \times 0.36 \times h = 292$ h(1 + 1.2 + 0.72) = 292 $\Rightarrow \qquad 2.92h = 292$  $\Rightarrow \qquad h = 100 \text{ cm}$ 

©Copyright: MADE EASY

...(1)



### 9. (b)

10

Let total number of members be 100, Then, number of members owning only 2 cars = 20 Number of members owning 3 cars = 40% of 80 = 32Number of members owning only 1 car = 100 - (20 + 32) = 48Thus, 48% of the total members own one car each.

10. (c)



$$AB = AC = 3 \text{ cm and } BD = \frac{1}{2}CD$$

3

AE is median.

Given:

To find:

|               | BD + CD = 3                       |
|---------------|-----------------------------------|
| $\Rightarrow$ | BD + 2BD = 3BD = 3                |
| $\Rightarrow$ | $BD = \frac{3}{3} = 1 \text{ cm}$ |

Also, since *AE* is median

$$BE = CE = \frac{1}{2} \text{ cm}$$

$$\Rightarrow \qquad DE = BE - DE = \frac{3}{2} - 1 = \frac{1}{2} \text{ cm}$$
Also,
$$AE = \frac{\sqrt{3}}{2}a = \frac{3\sqrt{3}}{2} \text{ cm}$$
in  $\Delta ADE$ 

$$\Rightarrow \qquad (AD)^2 = (AE)^2 + (DE)^2$$

AD = ?

$$\Rightarrow \qquad (AD)^2 = \left(\frac{3\sqrt{3}}{2}\right)^2 + \left(\frac{1}{2}\right)^2$$
$$\Rightarrow \qquad (AD)^2 = \frac{27}{4} + \frac{1}{4} = \frac{28}{4}$$

$$\Rightarrow$$
 AD =  $\sqrt{7}$  cm

11. (c)

Here the common faces with 4 dots are in same positions. Hence 2 will be opposite to 5.

#### MADE EBS

#### 12. (b)

Minute hand does a relative gain of  $5\frac{1}{2}^{\circ}$  over hour hand in 1 (each) minute.

So, in two minutes the relative gain =  $2 \times 5\frac{1}{2}^{\circ} = 11^{\circ}$ .

### **Alternative Solution:**

Angle covered by the hour hand in 12 hours =  $360^{\circ}$ 

In 1 hour = 
$$\frac{360^{\circ}}{12} = 30^{\circ}$$
  
and in 1 minute =  $\frac{30^{\circ}}{60} = \frac{1^{\circ}}{2}$ 

Similarly, angle covered by minute hand in 1 hour =  $360^{\circ}$ 

In 1 minute = 
$$\frac{360^\circ}{60} = 6^\circ$$

Every minute, the angle between the two hands changes by =  $6 - \frac{1}{2} = \frac{11^{\circ}}{2}$ 

From 7:45 A.M. to 7:47 A.M., i.e. in 2 minutes the angle between the two hands will change by

$$= 2 \times \frac{11}{2} = 11^{\circ}$$

#### 13. (c)

The alphabetical order = CCHJL Number of words starting with C = 4! = 24Number of words starting with H =  $\frac{4!}{2} = 12$ Number of words starting with J =  $\frac{4!}{2} = 12$ Total words till now = 24 + 12 + 12 = 48First word starting with L (49<sup>th</sup> in dictionary) = LCCHJ Therefore, the  $50^{\text{th}}$  word = LCCJH

14. (b)

> Volume of tank =  $150 \times 120 \times 100 = 1800000 \text{ cm}^3$ Volume of water in the tank =  $1281600 \text{ cm}^3$ Volume to be filled in the tank =  $1800000 - 1281600 = 518400 \text{ cm}^3$ Let the number of bricks to be placed in the tank = xVolume of x bricks =  $x \times 20 \times 6 \times 4 = 480x$  cm<sup>3</sup> Each brick absorbs  $\left(\frac{1}{10}\right)^{\text{th}}$  of its volume in water x bricks will absorb =  $\frac{480x}{10} = 48x \text{ cm}^3$



518400 + 48x = 480x*:*.. 480x - 48x = 432x = 518400 $x = \frac{518400}{432} = 1200$ 15. (d) Α D Е В С Original position of the ladder = AC = 25ft Base = BC = 7ftIn  $\triangle ABC$ , using Pythagoras theorem  $(AB)^2 = (AC)^2 - (BC)^2$  $(AB)^2 = (25)^2 - (7)^2$  $\Rightarrow$  $AB = \sqrt{625 - 49} = \sqrt{576}$  $\Rightarrow$ AB = 24 ft  $\Rightarrow$ After drawing out the base, the new position of ladder = ED = 25 ft AD = x and CE = 2xand To find : CE = ?In  $\Delta DBE$ DB = (24 - x) and BE = (7 + 2x) $(DB)^2 + (BE)^2 = (ED)^2$  $(24 - x)^2 + (7 + 2x)^2 = (25)^2$  $(576 - 48x + x^2) + (49 + 28x + 4x^2) = 625$  $625 - 20x + 5x^2 = 625$  $5x^2 = 20x$  $x = \frac{20}{5} = 4$  $CE = 2 \times 4 = 8 \text{ ft}$ 

None of the options include 8 in the interval.

## MADE ERSY

### 16. (a)

Let's go step by step:

First operation: 
$$3L - 1L = \frac{6}{3}L$$
 of wine left, total 4L;

Second operation:  $\frac{6}{3}L - \left(\frac{6/3}{4}\right) = \frac{6}{3} - \frac{6}{12} = \frac{18}{12} = \frac{6}{4}L$  of wine left, total 5L;

Third operation:  $\frac{6}{4}L - \left(\frac{6/4}{5}\right) = \frac{6}{4} - \frac{6}{20} = \frac{24}{20} = \frac{6}{5}L$  of wine left, total 6L;

Fourth operation:  $\frac{6}{5}L - \left(\frac{6/5}{6}\right) = \frac{6}{5} - \frac{6}{30} = \frac{30}{30} = \frac{6}{6}L$  of wine left, total 7L;

At this point it's already possible to see the pattern:  $x = \frac{6}{n+2}$ 

$$\Rightarrow \qquad n = 19$$

$$x = \frac{6}{(19+2)} = \frac{6}{21} = \frac{2}{7}L$$

#### 17. (b)

 $\begin{aligned} |a-b| + |b-c| - |c-a| \\ \text{We need to keep the value of } |c-a| \text{ minimum.} \\ \text{Let's take } c = 18, a = 19 \\ \text{And } b \text{ as } 1 \\ & |a-b| + |b-c| - |c-a| = |19-1| + |1-18| - |18-19| = 18 + 17 - 1 = 34 \end{aligned}$ 

#### 18. (d)

*a* = Sum of an arithmetic sequence with first term, 15 and last term, 35 and common difference 2.

Number of odd numbers from 15 to 35,  $n = \frac{(35-15)}{2} + 1 = 11$ 

$$a = \frac{11}{2}(15 + 35) = 275$$

b = number of even integers from 16 to 34 inclusive =  $\frac{(34-16)}{2} + 1 = 10$ 

Therefore, a - b = 265

#### 19. (a)

If these four lines are parallel, then we'll have 0 vertices.

If no two of the four are parallel, then each distinct pair of lines will give a vertex, thus total of  ${}^{4}C_{2}$  = 6 vertices.

MADE

#### 20. (d)

14

The relative speed of the two trains is 30 + 40 = 70 miles per hour. Therefore 1 hour before they meet, they must be 70 miles apart (in the final 1 hour they will cover 70 miles to meet).

In a regular hexagon three diagonals pass through the centre.

*G* is the centre making the total number of points = 7.

To form a triangle, we need 3 points at a time.

Therefore, total number of possible triangles =  ${}^{7}C_{3} = 35$ 

But since three diagonals pass through the centre, G will be collinear in three cases.

Therefore total number of triangles that can be formed using vertices from amongst these 7 points = 35 - 3 = 32.

#### 22. (d)

Any number ending in 7 when raised to a power will have the following pattern 7,9,3,1 as the units digit and any number ending in 2 when raised to a power will have the following pattern 2, 4, 8, 6 as the units digit.

Now 97<sup>275</sup> means we divide 275 by 4 and compare it against the pattern 275<sup>th</sup> power will have 3 as the units digit.

32<sup>44</sup> means we divide 44 by 4 and compare it against the pattern 44<sup>th</sup> power will have 6 as the units digit.

Thus we have 3 - 6. The trick is that you have to imagine the normal subtraction and get 1 as the carry over thus it is actually 13 - 6 = 7.

#### 23. (a)

|                  | (x+1)(x+9) + 8 =                     | 0            |
|------------------|--------------------------------------|--------------|
|                  | $x^2 + 10x + 17 =$                   | 0            |
| The roots of the | equation are <i>a</i> and <i>b</i> , |              |
| ···              | a + b =                              | - 10         |
|                  | ab =                                 | 17           |
| Now,             | (x+a)(x+b) - 8 =                     | 0            |
| $\Rightarrow$    | $x^2 + (a+b)x + ab - 8 =$            | 0            |
| $\Rightarrow$    | $x^2 - 10x + 9 =$                    | 0            |
| $\Rightarrow$    | (x - 1)(x - 9) =                     | 0            |
| Therefore, roots | of $(x + a)(x + b) - 8 = 0$          | are 1 and 9. |

#### 24. (b)

The plane cuts the cone at a height h/3 from the base as shown below.



Let *R* be the radius of the base of the cone. Then, the volume of the original cone is  $V = \pi R^2 h/3$ If we look at the figure, AO'B' and AOB, we can see similar triangles.

We know  $AO' = \frac{2h}{3}$  and AO = h

Applying properties of similar triangles

$$\frac{O'B'}{OB} = \frac{AO'}{AO} = \frac{2h/3}{h} = \frac{2}{3}$$
$$OB = R$$
$$O'B' = \frac{2}{3}OB = \frac{2}{3}R$$

The height and the radius of the smaller cone are therefore,  $\frac{2h}{3}$  and  $\frac{2R}{3}$  respectively.

So its volume =  $\frac{1}{3}\pi \left(\frac{2R}{3}\right)^2 \frac{2h}{3} = \frac{8V}{27}$ 

Volume of the frustum = Total volume - volume of smaller cone

$$= \left(V - \frac{8V}{27}\right) = \frac{19V}{27}$$

Ratio of volume of smaller cone and frustum is =  $\frac{8V}{27} : \frac{19V}{27} = 8 : 19$ Therefore required ratio is 8 : 19.



### 25. (d)

Possibilities where M is ahead of N

$$= 4! + 3 \times 3! + 2 \times 3! + 3!$$
$$= 24 + 18 + 12 + 6 = 60$$

#### Alternative solution:

Arrangement of runners in  $1^{st}$  to  $5^{th}$  position = 5! = 120 *M* can either be ahead or behind *N*.

Hence possibilities where *M* is ahead of  $N = \frac{1}{2} \times 120 = 60$ 

#### 26. (c)

Given:  

$$A = \begin{bmatrix} \alpha & \beta \\ \gamma & -\alpha \end{bmatrix}$$

$$A^{2} = \mathbf{I}$$

By Cayley Hamilton theorem

 $\Rightarrow$ 

$$\begin{array}{rl} \lambda^2 &=& 1\\ \lambda &=& \pm 1 \text{ are eigen values}\\ \left|A\right| &=& -1\\ -\alpha^2 -\beta\gamma &=& -1\\ 1-\alpha^2 -\beta\gamma &=& 0 \end{array}$$

Alternative:

Given: 
$$A = \begin{bmatrix} \alpha & \beta \\ \gamma & -\alpha \end{bmatrix}$$

 $\begin{bmatrix} \alpha^2 + \beta \gamma & 0 \\ 0 & \beta \gamma + \alpha^2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ 

 $\alpha^2 + \beta \gamma = 1$  $1 - \alpha^2 - \beta \gamma = 0$ 

*.*..

$$A^{2} = A \cdot A = \begin{bmatrix} \alpha & \beta \\ \gamma & -\alpha \end{bmatrix} \begin{bmatrix} \alpha & \beta \\ \gamma & -\alpha \end{bmatrix} = \begin{bmatrix} \alpha^{2} + \beta\gamma & 0 \\ 0 & \beta\gamma + \alpha^{2} \end{bmatrix}$$
$$A^{2} = I$$

Given that

(b) Given,

27.

$$\begin{array}{rll} 4x_4 + 13x_5 &= 46 & \dots(1) \\ 2x_1 + 5x_2 + 5x_3 + 2x_4 + 10x_5 &= 161 & \dots(2) \\ 2x_3 + 5x_4 + 3x_5 &= 61 & \dots(3) \\ 4x_4 + 5x_5 &= 30 & \dots(4) \\ 2x_1 + 3x_2 + 2x_3 + 1x_4 + 5x_5 &= 81 & \dots(5) \end{array}$$

| Solving (1) and (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} x_5 \\ x_4 \end{array}$                | = ;           | 2<br>5                                                                                       |                       |                       |                       |                         |                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------|----------------------------------------------------------------------------------------------|-----------------------|-----------------------|-----------------------|-------------------------|-----------------------------|
| Putting in (3) we get                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ĩ                                                        |               |                                                                                              |                       |                       |                       |                         |                             |
| $2x_3 +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25 + 6                                                   | =             | 61                                                                                           |                       |                       |                       |                         |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <i>x</i> <sub>3</sub>                                    | = '           | 15                                                                                           |                       |                       |                       |                         |                             |
| Alternative:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                          |               |                                                                                              |                       |                       |                       |                         |                             |
| The matrix form of the equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | on 1s                                                    |               |                                                                                              |                       |                       |                       |                         |                             |
| Rewriting it as below                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [A   B]                                                  | =             | 0<br>2<br>0<br>0<br>2                                                                        | 0<br>5<br>0<br>0<br>3 | 0<br>5<br>2<br>0<br>2 | 4<br>2<br>5<br>4<br>1 | 13<br>10<br>3<br>5<br>5 | 46<br>161<br>61<br>30<br>81 |
| incontaining it up below                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                          |               | Г.                                                                                           | _                     | _                     |                       |                         | 7                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                          |               | 2                                                                                            | 5                     | 5                     | 2                     | 10                      | 161                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{bmatrix} A & B \end{bmatrix}$                    | _             | 2                                                                                            | 3                     | 2                     | 1                     | 2                       | 61                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                          |               | 0                                                                                            | 0                     | 2<br>0                | 3<br>4                | 13                      | 46                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                          |               | 0                                                                                            | 0                     | 0                     | 4                     | 5                       | 30                          |
| Applying,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $R_2$ -                                                  | $\rightarrow$ | $R_1 -$                                                                                      | $R_{2}$               | an                    | d R                   | $_{5} \rightarrow $     | $R_{4} - R_{5}$             |
| $\begin{vmatrix} 2 & 5 & 5 & 2 & 10 \\ 0 & 2 & 3 & 1 & 5 \\ 0 & 0 & 2 & 5 & 3 \\ 0 & 0 & 0 & 4 & 13 \\ 0 & 0 & 0 & 4 & 13 \\ 0 & 0 & 0 & 4 & 13 \\ 0 & 2 & 3 & 1 & 5 \\ 0 & 0 & 2 & 5 & 3 \\ 0 & 0 & 0 & 4 & 13 \\ 0 & 0 & 0 & 4 & 13 \\ 0 & 0 & 0 & 0 & 8 \end{vmatrix}$ Now, we get and $4x_4$ Similarly, $2x_3 + 5x_2x_3 + 5x_3x_3 + 5x_$ | $ \begin{array}{c} 161\\ 80\\ 61\\ 46\\ 16 \end{array} $ |               | $\begin{bmatrix} 16 \\ 80 \\ 61 \\ 46 \\ 16 \\ 2 \\ 46 \\ 5 \\ 61 \\ 61 \\ 15 \end{bmatrix}$ |                       |                       |                       |                         |                             |

Γ.

#### 28. (c)

- $\therefore$  One of the eigen value is 0,
- Determinant of matrix is equal to 0. *:*.
- $B_{11} B_{22} B_{12} B_{21} = 0$ So,

#### 29. (b)

Here,  

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & 2 & 2 \end{bmatrix} \text{ and } B = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} A \mid B \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \mid 2 \\ 0 & 1 & 1 \mid -1 \\ 0 & 2 & 2 \mid 0 \end{bmatrix}$$
Applying,  

$$R_3 \to R_3 - 2R_2$$

$$\begin{bmatrix} A \mid B \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \mid 2 \\ 0 & 1 & 1 \mid -1 \\ 0 & 0 & 0 \mid 2 \end{bmatrix}$$

$$\therefore$$

$$\operatorname{Rank}[A] = 2 \text{ and } \operatorname{rank}[A \mid B] = 3$$

*.*..

Since rank (A) < rank (A | B), the given system of equations is inconsistent, and hence there is no solution.

#### 30. (b)

Statements 1 and 3 are correct.

- For the orthogonal martix |A| = +1 or -1.
- For a  $n \times n$  matrix, inverse exists only if rank = n.

#### 31. (a)

Given,

$$\frac{d^2y}{dx^2} + \frac{6dy}{dx} + 9y = 5e^{3x}$$

$$(D^2 + 6D + 9)y = 5e^{3x}$$
Auxiliary equation is  $m^2 + 6m + 9 = 0$ 

$$(m + 3)^2 = 0$$

$$m = -3, -3$$

Complementary function = 
$$(c_1 + c_2 x)e^{-3x}$$

Particular integral = 
$$\frac{1}{D^2 + 6D + 9} 5e^{3x} = \frac{5e^{3x}}{(3)^2 + 6(3) + 9} = \frac{5e^{3x}}{36}$$

The complete solution is,

$$y = (c_1 + c_2 x)e^{-3x} + \frac{5e^{3x}}{36}$$

#### 32. (c)

Given equation:  $\sin x \frac{dy}{dx} + 2y = \tan^3 \frac{x}{2}$   $\Rightarrow \qquad \frac{dy}{dx} + \frac{2}{\sin x}y = \frac{\tan^3 \frac{x}{2}}{\sin x}$ This is linear form of  $\frac{dy}{dx} + Py = Q$  $\therefore \qquad P = \frac{2}{\sin x}$ Integrating factor  $= e^{\int Pdx} = e^{\int \frac{2}{\sin x} dx}$   $= e^{2\int \csc x dx}$   $= e^{2\ln \tan \frac{x}{2}} = \tan^2 \frac{x}{2}$ 

 $\frac{dy}{dt} + \frac{x}{dt} = 0$ 

33. (b)

Given

$$dx \quad y$$

$$\frac{dy}{dx} = -\frac{x}{y}$$

$$\int y dy = -\int x dx$$

$$\frac{y^2}{2} = -\frac{x^2}{2} + c$$

$$x^2 + y^2 = 2c$$
Represents family of circles.

#### 34. (b)

If *z* is function of *x* alone, the solution will be  $z = A\sin x + B\cos x$ , where *A* and *B* are constants. Since *z* is a function of *x* and *y*, *A* and *B* can be arbitrary functions of *y*. Hence the solution of the given equation is

 $z = f(y)\sin x + \phi(y)\cos x$  $\frac{\partial z}{\partial x} = f(y)\cos x - \phi(y)\sin x$ When  $x = 0; z = e^{y}$  $\therefore \qquad \phi(y) = e^{y}$ When  $x = 0, \frac{\partial z}{\partial x} = 1$ 



.:.

f(y) = 1

Hence the desired solution is,

 $z = \sin x + e^y \cos x.$ 

Alternate solution:

$$\frac{\partial^2 z}{\partial x^2} + z = 0$$
  

$$m^2 + 1 = 0$$
  

$$m = \pm i$$
  

$$z = e^0 [A\cos x + B\sin x]$$
  

$$z(0) = A + 0$$
  

$$e^y = A$$
  

$$\frac{\partial z}{\partial x} = -A\sin x + B\cos x$$
  
At  $x = 0$   

$$\frac{\partial z}{\partial x} = 1$$
  

$$B = 1$$
  

$$z = e^y \cos x + \sin x$$

35. (a)

Given,

$$\frac{(\cos 3\theta + i\sin 3\theta)^4 (\cos 4\theta + i\sin 4\theta)^{-5}}{(\cos 4\theta + i\sin 4\theta)^3 (\cos 5\theta + i\sin 5\theta)^{-4}} = \frac{(\cos 12\theta + i\sin 12\theta)(\cos(-20\theta) + i\sin(-20\theta))}{(\cos 12\theta + i\sin 12\theta)(\cos(-20\theta) + i\sin(-20\theta))}$$
$$= \frac{(\cos \theta + i\sin \theta)^{12} (\cos \theta + i\sin \theta)^{-20}}{(\cos \theta + i\sin \theta)^{12} (\cos \theta + i\sin \theta)^{-20}} = 1$$

36. (d)

$$f(z) = ze^{1/z^{2}} = z \left\{ 1 + \frac{1}{1!}z^{-2} + \frac{1}{2!}z^{-4} + \frac{1}{3!}z^{-6} + \dots \right\}$$
$$= z + z^{-1} + \frac{z^{-3}}{2} + \frac{z^{-5}}{6} + \dots \infty$$

Since, there are infinite number of terms in the negative powers of *z*, therefore z = 0 is an essential singularity of f(z).

37. (a)

i.e.

The poles of 
$$f(z) = \frac{z-3}{z^2+2z+5}$$
 are given by  $z^2 + 2z + 5 = 0$   
 $z = -1 \pm 2i$ 

Here only the pole, z = -1 - 2i lies inside the circle c : |z+1+i| = 2.



Therefore, f(z) is analytic within *c* except at this pole.

Residue 
$$f(-1 - 2i) = \lim_{z \to -1 - 2i} \frac{(z + 1 + 2i)(z - 3)}{z^2 + 2z + 5}$$
  
$$= \lim_{z \to -1 - 2i} \frac{z - 3}{z + 1 - 2i} = \frac{-4 - 2i}{-4i} = \frac{1}{2} - i$$

Hence by Residue theorem,

$$\int_{c} f(z) dz = 2\pi i \operatorname{Res} f(-1 - 2i) = 2\pi i \left(\frac{1}{2} - i\right) = \pi (2 + i)$$

38. (c)

Given,  $\lim_{x\to 0} \frac{\log x}{\cot x}$ ;  $\frac{\infty}{\infty}$  Form Applying L' Hospital's rule.

$$\lim_{x \to 0} \frac{1/x}{-\csc^2 x} = -\lim_{x \to 0} \frac{\sin^2 x}{x} ; \frac{0}{0} \text{ form}$$

Again applying L' Hospital's rule.

$$= -\lim_{x \to 0} \frac{2\sin x \cos x}{1} = 0$$

39. (b)

Given,

 $\int_{0}^{a} \frac{x^7}{\sqrt{a^2 - x^2}} dx$ 

Put

$$x = a\sin\theta$$
$$dx = a\cos\theta d\theta$$

Changing limits:

when 
$$x = 0$$
,  $\theta = 0$ , where  $x = a$ ,  $\theta = \frac{\pi}{2}$ 

$$\therefore \qquad \int_{0}^{\pi/2} \frac{a^{7} \sin^{7} \theta}{a \cos \theta} a \cos \theta d\theta = a^{7} \int_{0}^{\pi/2} \sin^{7} \theta d\theta$$
$$= \frac{a^{7} (n-1)(n-3)....2}{n(n-2)....3}$$
$$= a^{7} \frac{6 \times 4 \times 2}{7 \times 5 \times 3} = \frac{16}{35} a^{7}$$
NOTE: • When *n* is odd, 
$$\int_{0}^{\pi/2} \sin^{n} x dx = \frac{(n-1)(n-3)(n-5)....2}{n(n-2)(n-4)....3}$$
• When *n* is even, 
$$\int_{0}^{\pi/2} \sin^{n} x dx = \frac{(n-1)(n-3)(n-5)....1}{n(n-2)(n-4)....2} \frac{\pi}{2}$$

40. (c)



、 、 

Given, parabola is,  $x^2 = 8y$ and the straight line is, x - 2y + 8 = 0

The required area 
$$POQ = \begin{pmatrix} \text{area bounded by straight line } \& \\ x-\text{axis from } x = -4 \text{ to } x = 8 \end{pmatrix} - \begin{pmatrix} \text{area bounded by parabola } \& \\ x-\text{axis from } x = -4 \text{ to } x = 8 \end{pmatrix}$$
$$= \int_{-4}^{8} \frac{x+8}{2} dx - \int_{-4}^{8} \frac{x^2}{8} dx$$
$$= \frac{1}{2} \left| \frac{x^2}{2} + 8x \right|_{-4}^{8} - \frac{1}{8} \left| \frac{x^3}{3} \right|_{-4}^{8}$$
$$= \frac{1}{2} \left| (32+64) - (-24) \right| - \frac{1}{24} (512+64)$$
$$= \frac{1}{2} [96+24] - \frac{1}{24} (576) = 36 \text{ square unit}$$

### 41. (b)

f(x) = 0 is the root of the solution. Clearly the line, f(x) = 0 intersects at 4 distinct points in 0 < x < 6.

### 42. (a)

By Newton-Raphson method,

$$x_{1} = x_{0} - \frac{f(x_{0})}{f'(x_{0})}$$

$$f(x) = x^{4} - 3x + 1$$

$$f'(x) = 4x^{3} - 3$$
Given,
$$x_{0} = 0$$
Therefore,
$$f(x_{0}) = 0^{4} - 3 \times 0 + 1 = 1$$

$$f'(x_{0}) = 4 \times 0^{3} - 3 = -3$$
Hence,
$$x_{1} = 0 - \frac{1}{-3} = \frac{1}{3}$$

#### 43. (d)

Bisection, Regula-falsi, Secant and Newton -Raphson methods are used to solve non-linear algebraic and transcendental equations.

### 44. (b)

Laplace transform of 
$$\cosh(bt) = \frac{s}{s^2 - b^2}$$

45. (d)

The Fourier coefficient 
$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} x \sin nx dx = \frac{2}{\pi} \int_{0}^{\pi} x \sin nx dx$$

( $x \sin nx$  is an even function on  $[-\pi, \pi]$ )

$$= \frac{2}{\pi} \left[ -x \left( \frac{\cos nx}{n} \right) + \left( \frac{\sin nx}{n^2} \right) \right]_0^{\pi}$$
$$= \frac{2}{\pi} \left[ \frac{-\pi \cos n\pi}{n} \right] = \frac{2}{n} (-1)^{n+1} \qquad \text{Put } n = 3$$
$$b_3 = \frac{2}{3} (-1)^4 = \frac{2}{3}$$

#### 46. (d)

Taylor series expansion of a function f(x) about x = 0 is given by

$$f(x) = f(0) + \frac{x}{1!}f'(0) + \frac{x^2}{2!}f''(0) + \frac{x^3}{3!}f'''(0) + \dots$$

Coefficient of 
$$x^2 = \frac{f''(0)}{2!} = \frac{f''(0)}{2}$$

 $f(x) = \cos^2 x$ 

Given:

$$f''(x) = -\sin(2x)$$
  
$$f''(x) = -2\cos(2x)$$
  
$$f''(0) = -2\cos(0) = -2$$

Therefore coefficient of 
$$x^2 = \frac{f''(0)}{2} = \frac{-2}{2} = -1$$

47. (b)

The probability that *A* can solve the problem =  $\frac{1}{2}$ .

The probability that *A* cannot solve the problem.

$$= 1 - \frac{1}{2} = \frac{1}{2}$$

Similarly the probability that *B* and *C* cannot solve the problem are  $\left(1-\frac{3}{4}\right)$  and  $\left(1-\frac{1}{4}\right)$ . The probability that *A*, *B* and *C* cannot solve the problem =  $\left(1-\frac{1}{2}\right) \times \left(1-\frac{3}{4}\right) \times \left(1-\frac{1}{4}\right) = \frac{3}{32}$ The probability that the problem will be solved is =  $1-\frac{3}{32} = \frac{29}{32}$ 

48. (d)

Here there are three types of families. **Case I**: For, zero child family. Probability of a family having no child (boys) = 0.2 **Case II**: For one child family

| Boy | Girl |
|-----|------|
| 0   | 1    |
| 1   | 0    |

In this case probability of a family having no boy =  $0.3 \times 0.5 = 0.15$ 

Case III:

| Boy | Girl |
|-----|------|
| 0   | 2    |
| 1   | 1    |
| 2   | 0    |

In this case probability of a family having no boy =  $0.5 \times \frac{1}{3} = 0.167$ Considering all three cases,

Probability of a family having no boy = 0.2 + 0.15 + 0.167 = 0.517

### 49. (a)

 $p = 1\% = 0.01, n = 100, m = np = 100 \times 0.01 = 1$ 

$$P(r) = \frac{e^{-m} \cdot (m)^r}{r!} = \frac{e^{-1} (1)^r}{r!} = \frac{e^{-1}}{r!}$$

*P*(4 or more faulty condensers)

$$= P(4) + P(5) + \dots P(100)$$
  
= 1 - [P(0) + P(1) + P(2) + P(3)]  
= 1 -  $\left[\frac{e^{-1}}{0!} + \frac{e^{-1}}{1!} + \frac{e^{-1}}{2!} + \frac{e^{-1}}{3!}\right]$   
= 1 -  $e^{-1}\left[1 + 1 + \frac{1}{2} + \frac{1}{6}\right] = 1 - \frac{8}{3}e^{-1}$ 

50. (a)

Given,

$$f(x) = 3x^{3} - 7x^{2} + 5x + 6$$

$$f'(x) = 9x^{2} - 14x + 5$$

$$f''(x) = 18x - 14$$

$$f'(x) = 0$$

$$9x^{2} - 14x + 5 = 0$$

$$x = 1, 0.55$$
For  $x = 1, f''(1) = 18 - 14 = 4 > 0$  (local minima)  
For  $x = 0.55$   

$$f''(0.55) = -4.1 < 0$$
 (local maxima)  
Minimum { $f(0), f(1), f(2)$ }  
Minimum { $6, 7, 12$ } = 6