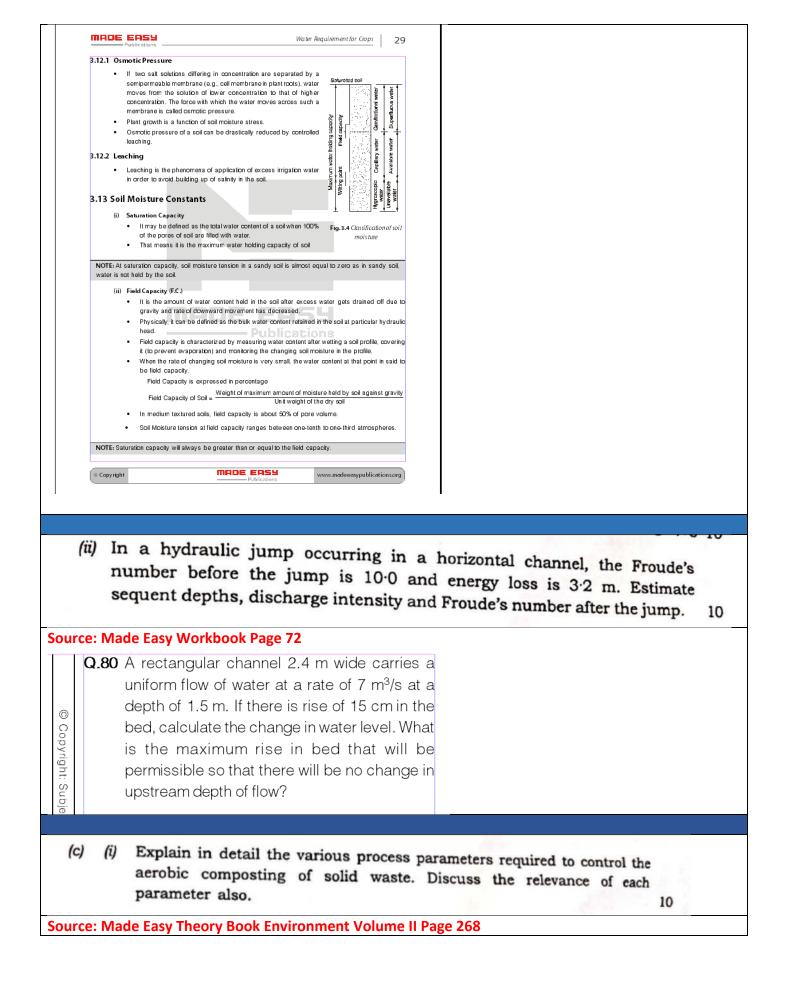

CIVIL ENGINEERING

Mains Paper-2 (2019)

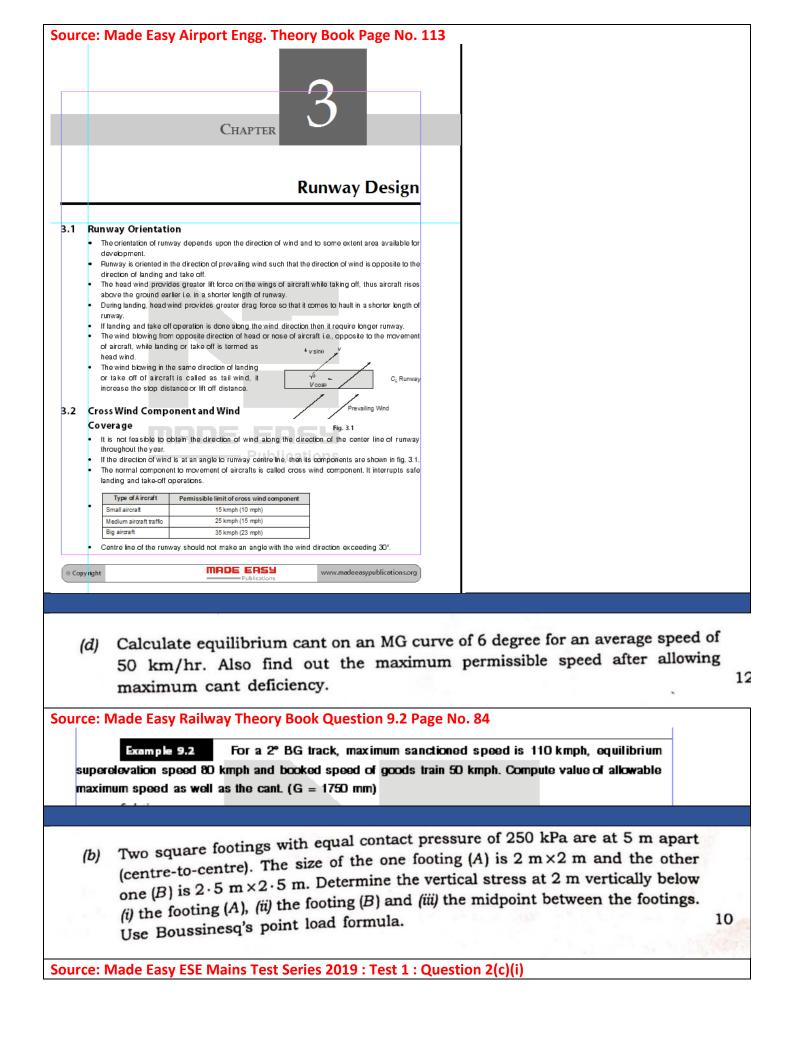
(lift = 0.5gm a no. of grover of 4003 - 244 = 4gmen deares 2 10 \$40ml - 0.5 No. of genera de 011 - 68 = 4 gen er d ca. Co3 a 0.02gm av of th TOtalalkalinity as caces = 14+4+4 酒 0.5×40,49 = 22 gm ea lit. -1000 98 = 22 × 50× 103 mg/1 -NOPHOTOSTAT

· ·

	1 H : 1 V. Calculate Assume Manning's		ed wid	idth lth, d	to d depth	epth of f	rati	o is	0 ∙8.	The	side	e slo		re
Source:	Made Easy FM Workboo	c Page 3	70											
Q.69 A	A trapezoidal channe	l with	side	e slo	pe 2	2								
h	norizontal to 1 vertical is	carryii	ng a	discl	narge	Э								
		1			,									
0	of 25 m ³ /sec. Given, S_0	250	- an D	d Cr	iezy's	5								
C	C = 45. Design the chan	nel.												
(h) 1	Define a contra t													
(b) I	Define a unit hydro	graph	. E	cplai	n tv	vo ł	pasio	as	sum	ptio	ns	mad	e in	the
	derivation of unit h	drogr	aph.	Fol	lowir	ng a	re t	he	ordin	nates	s of	a 4	-hr 1	unit
	hydrograph. Using th	is, der	ive th	ne or	dina	tes	ofa	12-h	r un	it hy	drop	grap	h (do	not
	plot the graph) :												,	
	Time (br)	0	4	8	12	16	20	24	00	1 20	26	1 40		
	Time (hr)	_							28	32	36	40	44	
	Ordinate of 4-hr UH	0	20	80	130	150	130	90	52	27	15	05	0	
	What are the uses a	nd lim	itati	ons	of ur	hit h		~~~~						20
	What are the uses a					me m	yard	grap	n?					20
ource:	ESE Mains Test Series 20	010010100000000000000000000000000000000	7 anc			ne n	yard	gra	on?					20
	ESE Mains Test Series 20	010010100000000000000000000000000000000	7 anc					GINE		G	3			20
MAD	ESE Mains Test Series 203	l 9 Test est No : 7		l Test	: 9	CIV	IL EN	GINE	ERIN		_			20
nad (e)	ESE Mains Test Series 20	L 9 Test Ist No : 7 Merate s	teps to	l Test	: 9 lopau	CIV	IL EN ydrog	GINE ŗraph	ERIN from	a give	n			20
(e)	ESE Mains Test Series 20 E ERSY <i>Ta</i> Define unit hydrograph. Enur flood hydrograph for a catch storm is 470 m ³ /s. The avera	1 9 Test ast No : 7 merate so ment. The age dept	teps to he pea h of ra	deve k of a	9 lopau flood l is 8.0	CIV mithy hydr) cm.	IL EN ydrog ograj Assu	GINE raph ph du me ai	ERIN from e to a n infil	a give 6 hou tratic	n ır n			20
(e)	EERSY Ta Define unit hydrograph. Enur flood hydrograph for a catch storm is 470 m ³ /s. The avera loss of 0.25 cm/hr and a cons	9 Test est No : 7 nerate se ment. T age dept tant bas	teps to he pea h of ra	deve k of a	9 lopau flood l is 8.0	CIV mithy hydr) cm.	IL EN ydrog ograj Assu	GINE raph ph du me ai	ERIN from e to a n infil	a give 6 hou tratic	n ır n			20
(e)	ESE Mains Test Series 20 E ERSY <i>Ta</i> Define unit hydrograph. Enur flood hydrograph for a catch storm is 470 m ³ /s. The avera	9 Test est No : 7 nerate se ment. T age dept tant bas	teps to he pea h of ra	deve k of a	9 lopau flood l is 8.0	CIV mithy hydr) cm.	IL EN ydrog ograj Assu	GINE raph ph du me ai	ERIN from e to a n infil ak dis	a give 6 hou tratic charg	n ur n ;e			20
(e)	ESE Mains Test Series 20 Define unit hydrograph . Enur flood hydrograph for a catch storm is 470 m ³ /s. The avera loss of 0.25 cm/hr and a cons of a 6-hr UH for this catchmer	l 9 Test est No : 7 nerate si ment. Tr age dept tant bas nt.	teps to he pea h of ra e flow	deve deve k of a ainfal of 15	9 flood l is 8.0 m ³ /s.	CIV mithy hydr) cm. Estin	IL EN ydrog ograj Assu nate t	GINE graph ph du me ar he pea	ERING from e to a n infil ak dis [12	a give 6 hou tratic charg mark	n ur n ;e			20
(e)	ESE Mains Test Series 20 E ERS Ta Define unit hydrograph. Enur flood hydrograph for a catch storm is 470 m ³ /s. The avera loss of 0.25 cm/hr and a cons of a 6-hr UH for this catchment Given below are the ordinal	l 9 Test est No : 7 merate s' ment. Tr age dept tant bas nt. tes of a 4	teps to he pea h of ra e flow 4-h un	l Test deve k of a ainfal of 15	: 9 lop a u flood l is 8.0 m ³ /s. lrogra	CIV mithy hydr) cm. Estin	IL EN ydrog ograj Assu nate t	GINE praph ph du me ar he pea	ERING from e to a n infil ak dis [12	a give 6 hou tratic charg mark	n ur n ;e			20
(e)	ESE Mains Test Series 20 Define unit hydrograph. Enur flood hydrograph for a catch storm is 470 m ³ /s. The avera loss of 0.25 cm/hr and a cons of a 6-hr UH for this catchmer Given below are the ordina 12-h unit hydrograph for the	l 9 Test est No : 7 merate si ment. The age dept tant bas nt. tes of a 4	teps to he pea h of ra e flow 4-h un atchmo	deve k of a ainfal of 15 it hyc	9 lop a u flood l is 8.0 m ³ /s. lrogra ing S-o	CIV mithy hydr) cm. Estin ph, d curve	IL EN ydrog ograj Assu nate t erive meth	GINE graph ph du me ar he pea the o	ERING from e to a n infil ak dis [12	a give 6 hou tratic charg mark	n ur n ;e			20
(e)	ESE Mains Test Series 20 Define unit hydrograph. Enur flood hydrograph for a catch storm is 470 m ³ /s. The avera loss of 0.25 cm/hr and a cons of a 6-hr UH for this catchmer Given below are the ordina 12-h unit hydrograph for the <u>Time (hr)</u> 0 4	est No : 7 nerate si ment. The age dept tant bas nt. tes of a 4 same ca 8 12	teps to he pea h of ra e flow 4-h un atchmo	deve k of a ainfal of 15 it hyc ent us 0 24	9 lop a tr flood l is 8.0 m ³ /s. lrogra ing S-0	CIV mithy hydr) cm. Estin oph, d curve	IL EN ydrog ograj Assu nate t erive meth	GINE graph ph du me ar he pea the o the o	ERING from e to a n infil ak dis [12	a give 6 hou tratic charg mark	n ur n ;e			20
(e)	ESE Mains Test Series 20 Define unit hydrograph. Enur flood hydrograph for a catch storm is 470 m ³ /s. The avera loss of 0.25 cm/hr and a cons of a 6-hr UH for this catchmer Given below are the ordina 12-h unit hydrograph for the	est No : 7 nerate si ment. The age dept tant bas nt. tes of a 4 same ca 8 12	teps to he pea h of ra e flow 4-h un atchmo	deve k of a ainfal of 15 it hyc ent us 0 24	9 lop a tr flood l is 8.0 m ³ /s. lrogra ing S-0	CIV mithy hydr) cm. Estin ph, d curve	IL EN ydrog ograj Assu nate t erive meth	GINE graph ph du me ar he pea the o	ERING from e to a n infil ak dis [12 rdina	a give 6 hou tratic charg mark tes of	n ur n ge 5]			20
(e)	ESE Mains Test Series 20 Define unit hydrograph. Enur flood hydrograph for a catch storm is 470 m ³ /s. The avera loss of 0.25 cm/hr and a cons of a 6-hr UH for this catchmer Given below are the ordina 12-h unit hydrograph for the <u>Time (hr)</u> 0 4	est No : 7 nerate si ment. The age dept tant bas nt. tes of a 4 same ca 8 12	teps to he pea h of ra e flow 4-h un atchmo	deve k of a ainfal of 15 it hyc ent us 0 24	9 lop a tr flood l is 8.0 m ³ /s. lrogra ing S-0	CIV mithy hydr) cm. Estin ph, d curve	IL EN ydrog ograj Assu nate t erive meth	GINE graph ph du me ar he pea the o the o	ERING from e to a n infil ak dis [12 rdina	a give 6 hou tratic charg mark	n ur n ge 5]			20
(e)	ESE Mains Test Series 20 Define unit hydrograph. Enur flood hydrograph for a catch storm is 470 m ³ /s. The avera loss of 0.25 cm/hr and a cons of a 6-hr UH for this catchmer Given below are the ordina 12-h unit hydrograph for the <u>Time (hr)</u> 0 4	e same ca	teps to he pea h of ra e flow 4-h un atchmo 16 2 150 13	deve k of a ainfal of 15 it hyc ent us 0 24 0 90	$\frac{9}{1000}$	CIV mithy hydr cm. Estin ph, d curve	IL EN ydrog ograj Assu nate t erive meth 40 5	GINE graph ph du me ar he pea the o the o	ERING from e to a infil ak dis [12 rdina [20	a give 6 hou tratic charg mark tes of mark	n n re s]			20

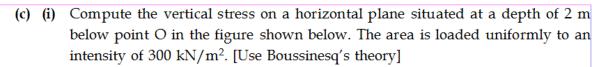

5.14	 The main and primary fu constant rate of supply. The quantity of water req demand against the cons storage capacity of a ball This storage capacity of a 	Reservoir/Distribution Reserv nction of a distribution reservoir is to mee uired to be stored in the reservoir for equa tant supply is known as the balancing rese ancing reservoir. balancing reservoirs is worked out with he ethod or by analytical tabular solution.	et the fluctuating demand with a alising or balancing this variable prvoir or balancing storage or the
www.	madee a sypublication storg	Publications	© Copyright
(c) (i)	How will you estimate	the total storage capacity of a distr with suitable sketches and form	ribution reservoir? ulae. 15
(ii)		sound pressure level from the	
Source: RII Questio 75 dB?		r level results from combining the follo	wing three levels : 68 dB, 79 dB and
www.ma	adeeasypublications.org	Publications	© Copyright
Auctors of di not simple the Di 1008,3001 Di 1008,30000000000000000000000000000000000	Here in sound present levels with the maximum enclose and is given by above under the $\frac{1}{10^{10} + 10^{10} + 10^{10} + 10^{10}} = \frac{1}{10^{10} + 10^{10}} = \frac{1}{10^{1$	er oa. zolog f Laug Arment ese volue s follows Dr pressue moder *	

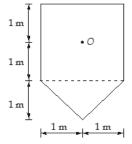
Estimate the hydraulic gradient in a 2.2 m diameter smooth concrete pipe carrying a discharge of 3.4 cumecs at 20 °C temperature by using (i) Darcyз. (a) Weisbach formula, (ii) Manning's formula and (iii) Hazen-Williams formula. The kinematic viscosity of water at 20 °C = 1.004×10^{-6} m²/sec, Hazen-Williams coefficient of hydraulic capacity of the smooth pipe = 130 and Manning's 20 coefficient = 0.013. Source: Class Notes


Q) Water is to be supplied in water supply inchance to be derigned for rowing population of whakh. The stanage reservain I skil away from celly & lass of head to is Vieluated the refly is 16 m. calculated the wire of repaly main weikach founda as well as haven fournula welling I daily semand of 200 st (cop/ day assuming max. E half of Andaily supply is to be purlised in Assulue coefficient Justian Jaupilse . as0,0128 hazen cullian roustant asito Yatal Q= 4×105 × 200 ×10 = 0.926 m3 (BLC) ~= Cpr0.85x(R) ×5 0-63 0.54 86400 enplying und Rus 0,63 1:3 0.926 x24 = 1.389 m3/bec 50.86x P 0.54 Or (1.280) × 40.012 x 800 20 g × 05 2000 16 = D=1,04W D=1.80 For W = 2.25 8 deleter= in with 300 mm F.B. Esthuate mixed replicitante laving Restudging underval in years tunch who in me of my of sookeaple with to bob the peticalatian field rall ne M (cap/dogt wask waking Arrune wald unkk und. Eludoe puoductiai waley douder law at 20% Retout atthe 101. 04 m3/cab/year (2)

(b) A wastewater treatment plant consists of primary treatment clarifier followed by an activated sludge treatment unit. The primary and secondary sludge are mixed, thickened in a gravity thickener and sent to further treatment. Wastewater, treatment plant and sludge characteristics are as follows : • Influent SS = 220 mg/L; primary clarifier diameter = 25 m Influent BOD = 250 mg/L; aerator volume = 3000 m³ • Effluent BOD = 30 mg/L; MLSS in aerator = 3000 mg/L • Flow = 20000 m³/day; solids in thickener supernatant = negligible • Primary sludge = 5% solids; secondary sludge = 0.75% solids and thickened sludge = 4% solids • Efficiency of primary clarifier for SS and BOD removal are 58% and 32% respectively Biomass conversion factor in aerator = 0.35 Determine-(i) solids loading in kg/day to the sludge disposal facilities; 3 [P.T.O. 55:300 XZH-S-CVLE/62 Scanned with CamScanner (ii) $\frac{F}{M}$ ratio in aerator; (iii) percent volume reduction by the thickener. Source: Class Notes -(10)) + Flow = 50,000 m3/day · Raw winte wate 3 0 Supported solid conc. n. is tormafil efficiency of PST . 0 13 35 % & 75 % w.r.l. BOD. & S.S removal, hasporticly e. . 138 0 excor. studge, s.s. KER = 0.06/day Primary & secondary 0 13 concentration is 40 & 10kg /m3. peration equipment 0 0 . transfer capacity is 1.8kg O2 1K.W. 1kr. The shudgeage can C 0 (B) 0 . be adapted as 6.5 . Retermine, 0 . . 10 e. 0 (i) Acration tank volume D (ii) Hass & valume of eclass sludge waated e 0 30 C recirculation radio 8 10 c (iii) Sludge 0 pump capacity 3 e (iiv) . 32 D C . D (4) -Or required 0 0 (nu) - capacity of aerator D 6 0 treat D Seway Jotal chilly generated C (mil). 0 D C L + Ker = M . D . . 30 . . 30 Q wXu + KGR = 1 0 P-16.25 30 0 VX 308-25 32 0-35× 0-0423 50,000 e 0 30 0.0 1 D 0/400 453 6.5 n 90 0 DoS 100 33 200 BODIPST Assume C Gosi 33 6 23 35-4 0 90. > 0-65 50= 162.5 27 of SST. S=162.5x0.1 = 16.25 V= 8548-7803

(c)	Explain geometric similarity, kinematic similarity and dynamic similarity. Two homologous pumps are to run at the same speed of 600 r.p.m. Pump A has an impeller of 50 cm diameter and discharges 0.4 m^3 /sec of water under a head of 50 m. Determine the size of pump B and its net head if it is to discharge 0.3 m^3 /sec.	2
		20
Source	e: Made Easy FM Theory Book Page No. 497	
resp	Example 18.5 A one-fifth scale model of a pump was tested in a laboratory at 1000 r.p.m. head developed and the power input at the best efficiency point were found to be 8 m and 30 kW bectively. If the prototype pump has to work against a head of 25 m, determine its working speed, power required to drive it and the ratio of the flow rates handled by the two pumps.'	
Co	Copyright MADE EASY Publications www.madeeasypublications.org	
4.	regime theory of stable channels. Design a stable channel for carrying a discharge of 30 m ³ /sec using Lacey's method assuming a silt factor equal to 1.0.	20
Source	e: Made Easy ESE Mains Test Series 2019 Test 9	
4	ESE 2019 : MAINS TEST SERIES MADE ERSY	
Q.4	(a) (i) The slope of channel in an alluvium is $S = \frac{1}{5000}$; Lacey's silt factor = 0.9 and	
	channel side slope = $\frac{1}{2}$: 1 (<i>H</i> : <i>V</i>). Find the channel section dimensions and maximum discharge which can be allowed to flow in it.	
_		
(b) Source	 (i) Define field capacity, permanent wilting point and average moisture content. Explain how these will be useful in deciding the frequency of irrigation. (A schematic diagram showing less and more frequent irrigation is to be drawn for clarity) 3+4+3=10 (ii) In a bydraulic increase in the second second	




	 saturated up to the ground surface. obtained as 20·3 kN/m³. To stabilit boiling), it was decided to drive stee encircle the excavation. Determine the a factor of safety of 1·5 against san G_s = 2·7 and unit weight of water, Made Easy ESE Mains Test Series 2019 : Test (a) (i) Draw plasticity chart and explain its to (ii) An excavation is made in a soil whose soil solids = 2.6. A 1.5 m thick layer of head of 2 m. Find out what factor of safety of 2 is needed against to 	The saturated unit weight of the sand was ze the bottom of the excavation (prevent el sheet piles to act as cutoff walls that ne total length of sheet pile wall to provide d boiling. Assume specific gravity of soil, $\gamma_w = 9 \cdot 81 \text{ kN/m}^3$.	12
urce	 saturated up to the ground surface. obtained as 20.3 kN/m³. To stabilition boiling), it was decided to drive steen circle the excavation. Determine that a factor of safety of 1.5 against san G_s = 2.7 and unit weight of water, Made Easy ESE Mains Test Series 2019 : Test (a) (i) Draw plasticity chart and explain its to (ii) An excavation is made in a soil whose soil solids = 2.6. A 1.5 m thick layer of 	The saturated unit weight of the sand was ze the bottom of the excavation (prevent el sheet piles to act as cutoff walls that ne total length of sheet pile wall to provide d boiling. Assume specific gravity of soil, $\gamma_w = 9 \cdot 81 \text{ kN/m}^3$. et 15 Question 8(a) (ii) use. porosity is 30% and the specific gravity of this soil is subjected to an upward seepage	12
urce	 saturated up to the ground surface. obtained as 20.3 kN/m³. To stabilition boiling), it was decided to drive steen circle the excavation. Determine the a factor of safety of 1.5 against san G_s = 2.7 and unit weight of water, : Made Easy ESE Mains Test Series 2019 : Test (a) (i) Draw plasticity chart and explain its to the second seco	The saturated unit weight of the sand was ze the bottom of the excavation (prevent el sheet piles to act as cutoff walls that ne total length of sheet pile wall to provide d boiling. Assume specific gravity of soil, $\gamma_w = 9 \cdot 81 \text{ kN/m}^3$. St 15 Question 8(a) (ii) use.	12
	saturated up to the ground surface. obtained as 20.3 kN/m ³ . To stabili boiling), it was decided to drive ste encircle the excavation. Determine the a factor of safety of 1.5 against san $G_s = 2.7$ and unit weight of water,	The saturated unit weight of the sand was ze the bottom of the excavation (prevent el sheet piles to act as cutoff walls that ne total length of sheet pile wall to provide d boiling. Assume specific gravity of soil, $\gamma_w = 9.81 \text{ kN/m}^3$.	12
/ (a	saturated up to the ground surface. obtained as 20.3 kN/m ³ . To stabili boiling), it was decided to drive ste encircle the excavation. Determine the a factor of safety of 1.5 against san	The saturated unit weight of the sand was ze the bottom of the excavation (prevent el sheet piles to act as cutoff walls that ne total length of sheet pile wall to provide d boiling. Assume specific gravity of soil,	
/ (a	saturated up to the ground surface. obtained as 20.3 kN/m ³ . To stabili boiling), it was decided to drive ste	The saturated unit weight of the sand was ze the bottom of the excavation (prevent el sheet piles to act as cutoff walls that	
/ (a	saturated up to the ground surface. obtained as 20.3 kN/m ³ . To stabili	The saturated unit weight of the sand was ze the bottom of the excavation (prevent	
/ (a	saturated up to the ground surface.	The saturated unit weight of the sand was	
/ 10	9 A pit of 0.4 III deep is to be even	alog in a mile said suglatin completely	
		vated in a fine sand stratum completely	
	SECTION	DN—B	17
www.ma	deeasypublications.org Publications		
•	 bagging, storage, shipping and in some case direct marketing. The principal design consideration associated with the biological decomposition of prepared solid wastes are presented in table below: 		
	preparation step. Several techniques have been developed to accomplish the decomposition step. Once the solid wastes have been converted to a humus, they are ready for the third step, product preparing and marketing. This step include line grinding, blending with various additives, granulation, because activation and in come one direct marketing.		
	 Product preparation and marketing Receiving, sorting, separation, size reduction and moisture and nutrient addition are part of the 		
•	 Most composting operation involve three basic steps Preparation of the solid wastes. Decomposition of the soil wastes 		
	decomposition, because excessive moisture will make it difficult to maintain aerobic conditions, while deficient moisture inhabits biological life. Amoisture content of about 55% should be established, so that aerobic biological activity may proceed at an optimum rate.		
	original organic material of up to 50% are achieved under ideal conditions. The finally produced compost usually, has earthy smell and a dark brown colour. • Moisture content of the compost mass should, however be controlled to ensure optimum aerobic		
	stage. • The entire composting, thus gets completed in about 3-4 months time. Volume reductions of the		
	60°C, but if the temperature exceeds 60°C, decomposition slows down. Complete stabilisation occurs after the compact is allowed to cure for another 2 to 8 weeks. During the active early decomposition phase, the thermophilic bacteria are more active during the curing		
	thermophilic bacteria take over and continue the decomposition. During this phase, the temperature further rises about 60°C which has to be maintained for at least 3 days in order to destroy pathogenic bacteria. This temperature control is crucial, because optimal decomposition occurs between 55 and		
•	antinomycetes. Initially, the process starts with the mesophilic bacteria, which oxidises the organic matter (in the refuse) to carbon dioxide and liberate heat. The temperature rise about 45°C and at this point, the		
•	 Basically, composting is considered to be an aerobic process, because it involves piling up of refuse and its regular turning, either manually or by mechanical devices, so as to ensure sufficient supply of air and oxygen during its decomposition by bacteria, fungiand other microorganisms, like 		
•	 and bacterial conversion of the organic solid wastes is known as composting. Decomposition of the organic solid wastes may be accomplished either aerobically or anaerobically depending on the availability of oxygen. 		
	wastes and are subjected to bactorial decomposition, the end product remaining after dissimilatory and assimilatory bacterial activity is humus or compost. The entire process involving both separation		
•	bolh. • The final end product is a manure, called the compact or humus.		
•	 This decomposition can be affected either under aerobic conditions or under anaerobic condition or 		

4 | ESE 2019 : MAINS TEST SERIES

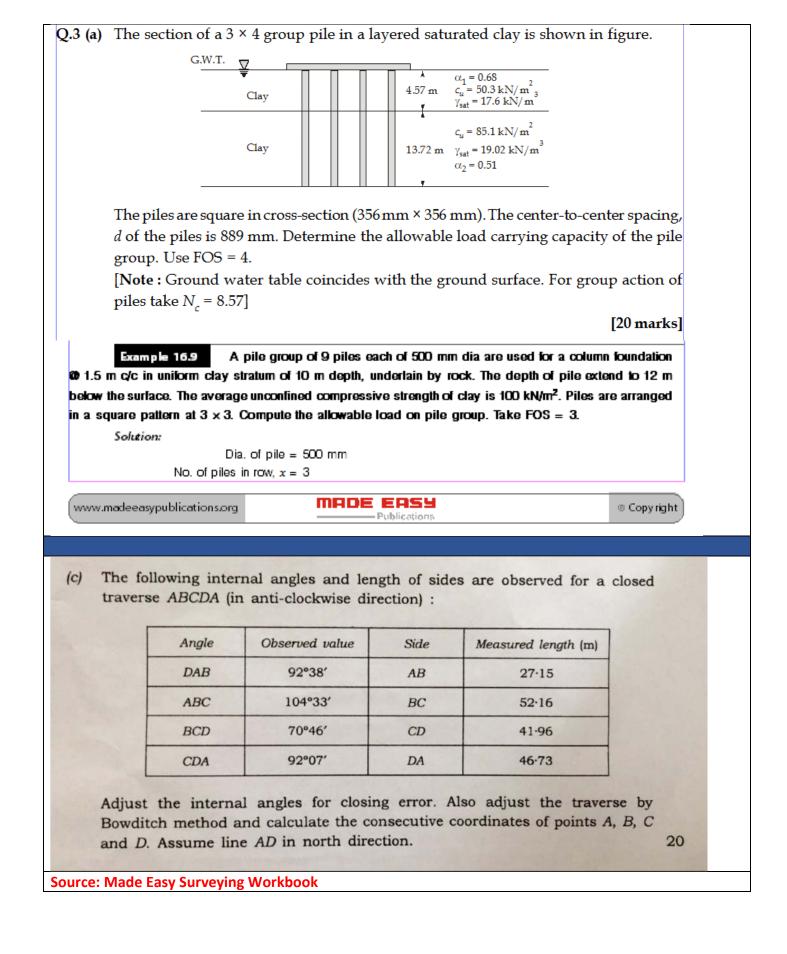
MADE EASY

(d) Write down the construction steps for Water Bound Macadam road. Also compare WBM construction with WMM construction. 20

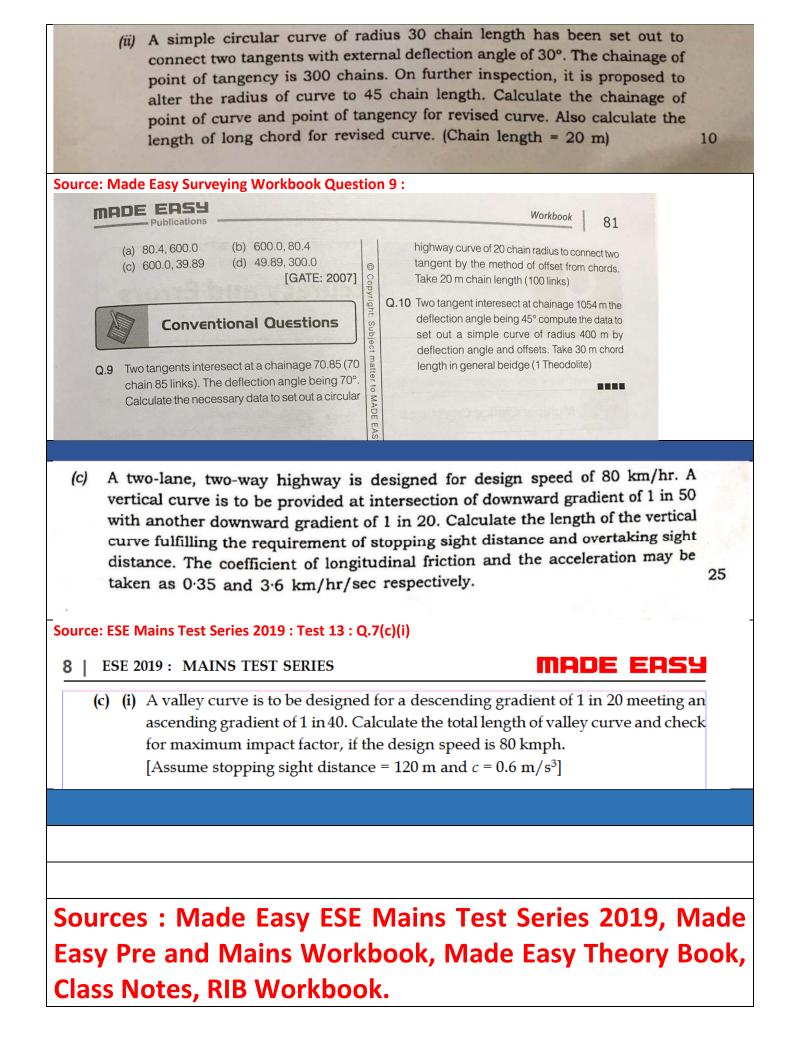
Source: Made Easy Theory Book Page No. 218

The construction of WBM roads may be divided into following steps:

- (i) Preparation of found ation for receiving the WBM course: The foundation layer i.e. subgrade, subbase or base course is prepared to required grade and camber. On existing road surfaces, the depressions and potholes are filled and corrugations are removed by scarifying and reshaping the surface to the required grade and camber.
- (ii) Provision of Lateral Confinement: It may be done by constructing the shoulders to advance to a thickness equal to that of compacted WBMIayer.
- (iii) **Spreading of Coarse Aggregate:** The coarse aggregates are spread uniformly to proper profile to even thickness upon the prepared foundation.
- (iv) Rolling: Rolling is started from the edges and then gradually shifted towards the centreline of the road.
- (v) Application of screenings: After the coarse aggregates are rolled adequately, the dry screenings are applied gradually over the surface to fill the interstices in three or more applications.
- (vi) Sprinkling and Grouting: After screeching, the surface is sprinkled with water, swept and rolled.


Publications

(vii)Application of Binding Material


(viii) Setting and Drying

(b) A pile group consists of four friction piles in cohesive soil. The unit weight and unconfined compressive strength of the soil are respectively 20·2 kN/m ³ and 200 kPa. The diameter of each pile is 300 mm, length is 12·0 m and centre-to-centre spacing between the piles is 750 mm. Assuming an adhesion factor of 0·6, determine (i) load capacity of the group based on the individual pile failure, (ii) load capacity of the group based on the block failure and (iii) design load capacity of the group. Assume a factor of safety of 2·0 for individual pile failure and 3 for block failure. Source: Made Easy ESE Mains Test Series 2019 : Test 1: Question 3(a) and Made Easy Soil Theorem.	20

Source: Made Easy ESE Mains Test Series 2019 : Test 1: Question 3(a) and Made Easy Soil Theory Example 16.9

Conventional Ouestions Q.11 A closed traverse has following length and bearing. Find out the closing error and correct the traverse for closing error by (a) Bowditch method (b) Transit method	
CD 200 220° DA 180 320°	
8. (a) (i) What is spectral reflectance cur Explain any four applications of	ve (spectral signature) in remote sensing? of remote sensing in civil engineering. 10
Source: Made Easy Surveying Theory Book Page 28 282 283 283 283 283 284 285 285 285 285 285 285 285 285 285 285	4
(vii) Mineral exploration (viii) Coal fire mapping (k) Oil field detection	tch an idealized remote sensing system
Q.6 (a) Explain with the help of a neat ske	[20 marks]

