

UPSC ESE 2019

Main Exam Detailed Solutions

Mechanical Engineering

PAPER-I

EXAM DATE : 30-06-2019 | 09:00 AM to 12:00 PM

MADE EASY has taken due care in making solutions. If you find any discrepency/ error/typo or want to contest the solution given by us, kindly send your suggested answer with detailed explanations at info@madeeasy.in

Corporate Office : 44-A/1, Kalu Sarai, Near Hauz khas metro station, New Delhi-110016

011-45124612, 9958995830

www.madeeasy.in

Mechanical Engineering Paper-I Analysis ESE 2019 Main Examination

SI.	Subjects	Total Marks
1.	Thermodynamics	64
2.	Refrigeration and Air conditioning	84
3.	Heat Transfer	32
4.	IC Engine	32
5.	Fluid Mechanics	52
6.	Turbo Machinery	124
7.	Power Plant Engineering	60
8.	Renewable Sources of Energy	32
	Total	480

Scroll down for detailed solutions

Interview Skills Enrichment Programme for ESE 2019 by MADE EASY Interview Experts

Improve your Interview skills before ESE Main 2019 result and have an edge over others

Weekend batches starting from 13th July, 2019

(Classes will be held on 13th, 14th, 20th, 21st, 27th & 28th July, 2019)

Total 6 Classes Fees ₹1000/- only

Venue (Classes, Counseling & Admission) :

Hundred Million, IGNOU Main Road, Near Saket Metro Station, Saidulajab Ext., New Delhi-30 **Class Timing :** 8.30 AM to 12.30 Noon

Ph: 8800782323 • www.madeeasy.in

Section A

Q.1 (a) A main pipe divides into two parallel pipes which again form as one pipe. The length and diameter of the first parallel pipe are 1000 m and 0.8 m respectively, while the length and diameter of the second parallel pipe are 1000 m and 0.6 m respectively. Find the rate of flow in each parallel pipe, if total flow in the main is 2.5 m³/sec. The coefficient of friction for each parallel pipe is same and equal to 0.005.

[12 Marks]

Solution:

ESE 2019 | Main Examination Mechanical Engineering | Paper-I

Q.1 (b) A reversible engine works between three thermal reservoirs, *A*, *B* and *C*. The engine absorbs an equal amount of heat from the thermal reservoirs *A* and *B* kept at temperatures T_A and T_B respectively, and rejects heat to the thermal reservoir *C* kept at temperature T_{C} . The efficiency of the engine is α times the efficiency of the reversible engine, which works between the two reservoirs *A* and *C*.

954

India's Best Institute for IES, GATE & PSUs

Prove that :
$$\frac{T_A}{T_B} = (2\alpha - 1) + 2(1 - \alpha)\frac{T_A}{T_C}$$

[12 Marks]

Solution:

ESE 2019 | Main Examination Mechanical Engineering | Paper-I

dry evaporators in preventing the slugging of the compressors since it does not allow the liquid refrigerant to enter the compressor. The schematic diagram of the valve is given as below:

It consists of a feeler bulb that is attached to the evaporator exit tube so that it senses the temperature at the exit of evaporator. The feeler bulb and the narrow tube contains some fluid that is called power fluid. The power fluid may be same as the refrigerant or it may be different. In case if it is different from the refrigerant then the TEV is called TEV with cross charge. Let P_p is the pressure of power fluid, P_e is the saturation pressure corresponding to evaporator exit temperature and evaporator temperature is T_e then the purpose of TEV is to maintain a temperature ($T_e + \Delta T_s$) at evaporator exit where ΔT_s is the degree of superheat. Feeler bulb senses the temperature ($T_e + \Delta T_s$) and its pressure P_p is saturation pressure at this temperature. So force exerted on the top area A_b of bellows:

$$f_p = P_p A_b \qquad \dots (i)$$

Force exerted by evaporator pressure from bottom side of bellows:

This is called external equalizer if the evaporator is large and has significant pressure drop otherwise it is known as TEV with internal equalizer.

The difference of forces F_p and F_e is exerted on the top of the middle which controls the opening of orifice and is equal to spring force F_s i.e.

$$F_{s} = (P_{p} - P_{e})A_{b}$$
$$\Delta T_{s} \propto (P_{p} - P_{e})A_{b}$$

F

Also

As the compressor starts, P_e decreases so a positive spring force is applied on middle which opens the orifice and refrigerant flow starts.

When the cooling load increases, the refrigerant evaporates at a faster rate in evaporator than the compressor can suck. As a result, the saturation pressure (p_0) correspond to the temperature at the exit end of the evaporator and the degree of superheat in evaporator increases. The increase in superheat causes the valve to open more and to allow more refrigerant to enter the evaporator. At the same time, the increase in suction pressure (p_0) also enables the compressor to deliver increased refrigerating capacity.

$$r\frac{\partial T}{\partial r} = -\frac{q_o}{k_f} \left[\frac{r^2}{2} - \frac{r^4}{4R^2} \right] + C$$
$$\frac{\partial T}{\partial r} = -\frac{q_o}{k_f} \left[\frac{r}{2} - \frac{r^3}{4R^2} \right] + \frac{C}{r}$$
$$r = 0, \ \frac{\partial T}{\partial r} = 0, \ C = 0$$
$$\frac{\partial T}{\partial r} = -\frac{q_o}{k_f} \left[\frac{r}{2} - \frac{r^3}{4R^2} \right]$$

at

$$q_{f}'' = -\frac{k_{f} \partial T}{\partial r}$$

$$q_{f}'' = -k_{f} \left\{ -\frac{q_{o}}{k_{f}} \left\{ \frac{r}{2} - \frac{r^{3}}{4R^{2}} \right\} \right\}$$

$$q_{f}'' = q_{o} \left\{ \frac{r}{2} - \frac{r^{3}}{4R^{2}} \right\}$$

$$r = R$$

At

$$q_{f,R}'' = q_o \left\{ \frac{R}{2} - \frac{R^3}{4R^2} \right\} = \frac{q_o R}{4}$$

Cladding:

Energy conservation:

0; $\dot{E}_{st} = 0$

(Heat conducted from outer surface of rod) = (Heat conducted through cladding) $q_{f,R}" \times 2\pi RL = q_C" \times 2\pi rL$

Where, q_{C}'' is heat flux through cladding at radius 'r'

$$\frac{q_o \times R}{4} \times \frac{R}{r} = q_c''$$
$$q_c'' = \frac{q_o R^2}{4r}$$

MADE EASY Source _

 \Rightarrow

Theory Book (2019 Edition): HMT (Page 46)

End of Solution

- Q.1 (e) Compare compression ignition engine with spark ignition engine so far as the following points are concerned:
 - (i) Working cycle
 - (ii) Method of ignition
 - (iii) Method of fuel supply

[12 Marks]

Corporate Office: 44-A/1, Kalu Sarai, New Delhi-110016 🛛 info@madeeasy.in 💽 www.madeeasy.in

Targeted INTERVIEW GUIDANCE Program for **ESE 2019**

MADE EASY will provide targeted and exclusive **ESE Interview Guidance Program** immediately after the ESE 2019 Mains result, under the personal guidance of Mr. B. Singh (Ex. IES) CMD, MADE EASY Group.

Salient Features of the Program

- Personality Development & HR Sessions
- Tips to face interview
- Discussion on DAF & personal profile
- One to One discussion to deal with personal profile related questions
- Discussion on Hobbies, Interests, Degree Project, Extra & Co-curricular Activities etc.
- Technical sessions
- General Awareness and Current Affairs sessions
- Discussion on Previous interview questions
- Mock interview with real time UPSC interview environment
- Video recording of Mock Interviews and feedback analysis

Address: Hundred Million IGNOU main Road Saket, Saidulajab Extension, New Delhi-110030 Ph: 8800782323 | Web: www.madeeasy.in

ESE 2019 **Main Examination** EA ADE India's Best Institute for IES. GATE & PSUs Mechanical Engineering | Paper-I V = 50.929 m/sLet θ = angle of inclination, $V_x = V \cos\theta$ m/s For horizontal motion, $a_{\rm r} = 0 \, {\rm m/s^2}$ $x = V_r t$ $x = (V \cos \theta) t$ л. ...(i) where t is time to reach window $V_y = V \sin \theta$ $a_y = -g \text{ m/s}^2$ $y = (V\sin\theta)t - \frac{1}{2}gt^2$...(ii) ... $y = x \tan \theta - \frac{gx^2}{2V^2} \sec^2 \theta$ equation of Trajectory From equation (i) and (ii), Substituting y = 30 - 2 = 28 m $28 = x \tan \theta - \frac{9.81}{2 \times (50.929)^2} x^2 \sec^2 \theta$ $28 = x \tan \theta - (1.891 \times 10^{-3})x^2 \sec^2 \theta$ $x \tan \theta - (1.891 \times 10^{-3})x^2 \sec^2 \theta - 28 = 0$...(iii) or The maximum value of x is obtained by differentiating above equation with respect to θ and putting $\frac{dx}{d\theta} = 0$. Differentiating equation (iii) $x \sec^2 \theta + \tan \theta \left(\frac{dx}{d\theta}\right) - (1.891 \times 10^{-3}) \times \left(x^2 \times 2 \sec^2 \theta \tan \theta + 2x \sec^2 \theta \frac{dx}{d\theta}\right) = 0$ Putting $\frac{dx}{d\theta} = 0$ $x \sec^2 \theta - (1.891 \times 10^{-3})x^2 \times 2 \sec^2 \theta \tan \theta = 0$ $1 - 3.782 \times 10^{-3} x \tan \theta = 0$ $x = \frac{264.41}{\tan \theta}$ or ...(iv) Substituting in equation (iii), $264.41 - \left[(1.891 \times 10^{-3}) \frac{(264.41)^2}{\tan^2 \theta} \sec^2 \theta \right] - 28 = 0$ $264.41 - \frac{132.204}{\sin^2 \theta} - 28 = 0$ $236.41 - \frac{132.204}{\sin^2 \theta} = 0$ $\sin\theta = 0.7478$ $\theta = 48.4^{\circ}$ $x = \frac{264.41}{\tan(48.4^\circ)} = 234.754 \,\mathrm{m}$ From equation (iv), Maximum horizontal distance = 234.754 m

0			
Ass (i)	Sumption: Specific heat is ir :: Rigid takes, so Now, for reversib	ndependent of temperature. $V_f = V_i$ le process:	
	Entropy change $(\Delta S)_1 + (\Delta S)_2$	of universe = 0 $D_2 + (\Delta S)_3 = 0$	
		$(\Delta S)_3 = mc_V \ln\left(\frac{T_{f3}}{T_{i3}}\right) + mR \ln\left(\frac{V_f}{V_i}\right)$	
		$(\Delta S)_3 = mc_V \ln\left(\frac{1500}{1000}\right)$	
	Now,	$(\Delta S)_3 = mc_v \ln(1.5)$ $(\Delta S)_2 = 0$	{cyclic devic
		$(\Delta S)_{1} = mc_{V} \ln\left(\frac{I_{f1}}{T_{i1}}\right) + mR \ln\left(\frac{V_{f}}{V_{i}}\right)$	
	From equation (i)	$(\Delta S)_1 = mc_v \ln\left(\frac{T_{f_1}}{1000}\right)$	
	$mc_v \ln(1.5) + mc_v$	$\ln\left(\frac{T_{f1}}{1000}\right) = 0$	
	In(1.	$5 \times \frac{T_{f1}}{1000} = 0$	
	1	$.5 \times \frac{T_{f1}}{1000} = 1$	
	now,	$P_{i}V_{i} = m_{i}RT_{i}$ $P_{i}V_{i} = m_{i}RT_{i}$	
	now divide equat	ion (i) and (ii), P = T	(
		$\frac{r_i}{P_f} = \frac{r_i}{T_f}$	(
	For tank (1),	$\frac{300}{P_{f_1}} = \frac{1000}{666.67}$	
	For tank (3), from	equation (iv),	
		$\frac{500}{P_{f_3}} = \frac{1000}{1500}$	
	Now, for work inp specific heat at c	P _{f1} = 750 kPa put to the pump, constant volume,	
		$c_{v} = \frac{R}{\gamma - 1} = \frac{8.314}{28(1.4 - 1)}$	$\{\gamma = 1$
		$C_v = 0.742 \text{ kJ/kgK}$	

$$\begin{split} \theta &= \int_{0}^{\delta} \left[2\left(\frac{y}{\delta}\right) - 4\left(\frac{y}{\delta}\right)^{2} + 2\left(\frac{y}{\delta}\right)^{3} - \left(\frac{y}{\delta}\right)^{2} + 2\left(\frac{y}{\delta}\right)^{3} - \left(\frac{y}{\delta}\right)^{4} \right] dy \\ \theta &= \int_{0}^{\delta} \left[2\left(\frac{y}{\delta}\right) - 5\left(\frac{y}{\delta}\right)^{2} + 4\left(\frac{y}{\delta}\right)^{3} - \left(\frac{y}{\delta}\right)^{4} \right] dy \\ \theta &= \frac{2}{\delta} \left(\frac{y}{2}\right)^{2} - \frac{5}{\delta^{2}} \left(\frac{y^{3}}{3}\right) + \frac{4}{\delta^{3}} \left(\frac{y^{4}}{4}\right) - \frac{1}{\delta^{4}} \left(\frac{y^{5}}{5}\right)_{0}^{\delta} \\ &= \delta - \frac{5}{3}\delta + \delta - \frac{1}{5}\delta = \frac{2}{15}\delta \\ \theta &= \frac{2\delta}{15} \qquad \dots (ii) \\ \tau_{w} &= \mu \frac{dU}{dy}\Big|_{y=0} = \mu \times U_{w} \left[\frac{2}{\delta} - \frac{2y}{\delta^{2}}\right]_{y=0} \\ \tau_{w} &= \frac{2\mu U_{w}}{\delta} \qquad \dots (iii) \\ \frac{\tau_{w}}{\rho U_{w}^{2}} &= \frac{\partial\theta}{\partial x} \\ \frac{2\mu U_{w}}{\delta} \times \frac{1}{\rho U_{w}^{2}} = \frac{\partial}{\partial x} \left(\frac{2}{15}\delta\right) \\ &= \frac{15\mu}{\rho U_{w}^{2}} \partial x \end{split}$$

Integrating above equation

So,

$$\frac{\delta^2}{2} = \frac{15\mu x}{\rho U_{\infty}} + C$$

Boundary condition, at x = 0, $\delta = 0 \Rightarrow C = 0$

$$\delta^{2} = \frac{30\,\mu x}{\rho U_{\infty}}$$
$$\delta = \sqrt{30} \sqrt{\frac{\mu x}{\rho U_{\infty}}}$$
$$\delta = 5.48 \sqrt{\frac{\mu x}{\rho U_{\infty}}}$$

Corporate Office: 44-A/1, Kalu Sarai, New Delhi-110016 😡 info@madeeasy.in 🕢 www.madeeasy.in

Page

MADE EASY India's Best Institute for	ESE 2019 Main Examination Mechanical Engineering Paper-I
or	$\delta = \frac{5.48x}{\sqrt{\text{Re}_x}}$ $U_{\infty} = 2 \text{ m/s}$
(i)	$\delta_{A} = 5.48 \sqrt{\frac{\mu x}{\rho U_{\infty}}} = 5.48 \sqrt{\frac{\nu x}{U_{\infty}}}$
(ii) The rate of gr	$= 5.48 \times \sqrt{\frac{1.02 \times 10^{-6} \times 0.1}{2}} = 1.2375 \times 10^{-3} \text{ m}$ where one of the boundary layer,
	$\frac{d\delta}{dx} = \left(\sqrt{\frac{v}{U_{\infty}}}\right) \frac{d}{dx} (\sqrt{x})$ $d\delta = 1 \sqrt{v}$
	$\overline{dx} = \frac{1}{2} \sqrt{\frac{1}{U_{\infty} x}}$ $\frac{d\delta}{dt} = \frac{1}{2} \times \sqrt{\frac{1.02 \times 10^{-6}}{100}} = 1.1291 \times 10^{-3}$
(iii)	$dx 2 \forall 2 \times 0.1$ $C_{f_x} = \frac{\tau_{wx}}{\frac{1}{2}\rho U_{\infty}^2}$
	$C_{f_x} = \frac{2\mu U_{\infty}}{\delta} \times \frac{1}{\frac{1}{2}\rho U_{\infty}^2}$
	$C_{f_x} = \frac{4\mu}{\rho U_{\infty} \delta} = \frac{4\mu}{\rho U_{\infty}} \times \frac{1}{5.48} \sqrt{\frac{U_{\infty}}{v_x}}$
	$C_{f_x} = 0.73 \sqrt{\frac{v}{U_{\infty}x}}$
Hence,	$C_{f_x} \propto \frac{1}{\sqrt{x}}$
Drag coefficient,	$C_{D} = \frac{1}{L} \int_{0}^{L} C_{f_{x}} dx = \frac{1}{L} \int_{0}^{L} \frac{C}{\sqrt{x}} dx = \frac{2}{L} C \sqrt{L}$
	$C_D = 2\left(\frac{2}{\sqrt{L}}\right) = 2 \times (C_{f_L})$
	$C_D = 2 \times 0.73 \times \sqrt{\frac{v}{U_{\infty}L}}$
	$C_D = 1.46 \times \sqrt{\frac{1.02 \times 10^{-6}}{2 \times 0.3}} = 1.9036 \times 10^{-3}$

An opportunity for

MADE EASY Ex- Students

who dare to dream big and make their mark

in the prestigious Civil Services

Old Rajinder Nagar Centre (Delhi) Ph : 011-49858612, 8800338066 Saket Centre (Delhi) Ph : 011-45124642, 8800776445 info@nextias.comwww.nextias.com

Q.3 (a) A four-stroke cycle gasoline engine has six single-acting cylinders of 8 cm bore and 10 cm stroke. The engine is coupled to a brake having a torque radius of 40 cm. At 320 rpm, with all cylinders operating, the net brake load is 350 N. When each cylinder in turn is rendered inoperative, the average net brake load produced at the same speed by the remaining 5 cylinders is 250 N. Estimate the indicated mean effective pressure of the engine. With all cylinders operating, the fuel consumption is 0.33 kg/min; calorific value of fuel is 43 MJ/kg; the cooling water flow rate and temperature rise is 70 kg/min and 10°C respectively. On test, the engine is enclosed in a thermally and acoustically insulated box through which the output drive, water, fuel, air and exhaust connections pass. Ventilating air blown up through the box at the rate of 15 kg/min enters at 17°C and leaves at 62°C. Draw up a heat balance of the engine stating the items as a percentage of the heat input

[20 Marks]

Solution: Given: 4-stroke engine, Number of cylinders (k) = 6D = 8 cmBore, L = 10 cmStroke, N = 3200 rpmSpeed, Net brake load, W = 350 N Fuel consumption, $\dot{m}_{f} = 0.33$ kg/min Calorific value, CV = 43 MJ/kgAverage brake load by 5 cylinder = 250 N Brake radius, r = 40 cm $BP = \frac{2\pi NT}{60} = \frac{2\pi N(Wr)}{60}$ Brake power, $BP = \frac{2\pi \times 3200 \times 350 \times 0.4}{60} = 46914.45 \text{ W}$ 60 BP = 46.914 kWBrake power when 1 cylinder is in operative. $(BP)' = \frac{2\pi NT'}{60} = \frac{2\pi NW'r}{60}$ $(BP)' = \frac{2\pi \times 3200 \times 250 \times 0.4}{60}$ (BP)' = 33.51 kWIndicated power $IP = 6 \times (BP - BP')$ $IP = 6 \times (46.914 - 33.51) = 80.424 \text{ kW}$ $IP = P_{mep} \times \frac{LAN \times k}{60 \times 2}$ We know, $80.424 \times 10^3 = P_{\rm mep} \times 0.1 \times \frac{\pi}{4} \times (0.08)^2 \times \frac{3200 \times 6}{120}$ $P_{\rm mep} = 9.99 \text{ bar} \approx 10 \text{ bar}$ Heat balance conditions Heat added, (i) HA/min = $\dot{m}_f \times CV = 0.33 \times 43000 = 14191 \text{ kJ/min}$ (ii) Brake power (equivalent) $BP_{eq} = BP \times 60 = 46.914 \times 60 = 2814.84 \text{ kJ/min}$ Heat carried away by cooling water (iii) $q_w = \dot{m}_w \times 4.18 \times (\Delta T) = 70 \times 4.18 \times 10 = 2926 \text{ kJ/min}$ Heat carried away by ventilation air, (iv) $q_{air} = \dot{m}_a \times c_{p_a} (T_2 - T_1) = 15 \times 1.005 \times (62 - 17)$ = 678.375 kJ/min (v) Unaccounted losses [friction, radiation, other loses] $q_{\rm unc} = 14190 - (2814.84 + 2926 + 678.375)$ = 7770.785 kJ/min

Q.3 (b) A simple saturation refrigeration cycle uses R134a as refrigerant. The refrigeration system operates at 40°C condenser temperature and -16°C evaporation temperature respectively.

> If a liquid vapour heat exchanger is installed in the above simple saturation refrigeration cycle, find the COP and power per ton of refrigeration. The outlet vapour of heat exchanger is 15°C temperature.

Saturation table of R134a THERMODYNAMICS PROPERTIES OF R134a*					
Temp. Pressure Density Volume Enthalpy	Entropy Specific Heat				
(°C) MPa (kg/m ³) (m ³ /kg) (kJ/kg)	c_p/c_v kJ/(kg-K) $c_p, kJ/(kg-K)$				
Liquid Vapour Liquid Vapo	ur Liquid Vapour Liquid Vapour Vapour				
-103.30* 0.00039 1591.1 35.4960 71.46 334.	94 0.4126 1.9639 1.184 0.585 1.164				
-100.00 0.00056 1582.4 25.1930 75.36 336.	85 0.4354 1.9456 1.184 0.593 1.162				
-90.00 0.00152 1555.8 9.7698 87.23 342.	76 0.5020 1.8972 1.189 0.617 1.156				
-80.00 0.00367 1529.0 4.2682 99.16 348.	83 0.5654 1.8580 1.198 0.642 1.151				
-70.00 0.00798 1501.9 2.0590 111.20 355.	02 0.6262 1.8264 1.210 0.667 1.148				
-60.00 0.01591 1474.3 1.0790 123.36 361.	31 0.6846 1.8010 1.223 0.692 1.146				
-50.00 0.02945 1446.3 0.60620 135.67 367.	65 0.7410 1.7806 1.238 0.720 1.146				
-40.00 0.05121 1417.7 0.36108 148.14 374.	00 0.7956 1.7643 1.255 0.749 1.148				
-30.00 0.08438 1388.4 0.22594 160.79 380.	32 0.8486 1.7515 1.273 0.781 1.152				
-28.00 0.09270 1382.4 0.20680 163.34 381.	57 0.8591 1.7492 1.277 0.788 1.153				
-26.07 ^a 0.10133 1376.7 0.19018 165.81 382.	78 0.8690 1.7472 1.281 0.794 1.154				
-26.00 0.10167 1376.5 0.18958 165.90 382.	82 0.8694 1.7471 1.281 0.794 1.154				
-24.00 0.11130 1370.4 0.17407 168.47 384.	07 0.8798 1.7451 1.285 0.801 1.155				
-22.00 0.12165 1364.4 0.16006 171.05 385.	32 0.8900 1.7432 1.289 0.809 1.156				
-20.00 0.13273 1358.3 0.14739 173.64 386.	55 0.9002 1.7413 1.293 0.816 1.158				
-18.00 0.14460 1352.1 0.13592 176.23 387.	79 0.9104 1.7396 1.297 0.823 1.159				
<u>[-16.00</u> 0.15728 1345.9 0.12551 178.83 389.	02 0.9205 1.7379 1.302 0.831 1.161				
-14.00 0.17082 1339.7 0.11605 181.44 390.	24 0.9306 1.7363 1.306 0.838 1.163				
-12.00 0.18524 1333.4 0.10744 184.07 391.	46 0.9407 1.7348 1.311 0.846 1.165				
-10.00 0.20060 1327.1 0.09959 186.70 392.	66 0.9506 1.7334 1.316 0.854 1.167				
-8.00 0.21693 1320.8 0.09242 189.34 393.	87 0.9606 1.7320 1.320 0.863 1.169				
-6.00 0.23428 1314.3 0.08587 191.99 395.	06 0.9705 1.7307 1.325 0.871 1.171				
-4.00 0.25268 1307.9 0.07987 194.65 396.	25 0.9804 1.7294 1.330 0.880 1.174				
-2.00 0.27217 1301.4 0.07436 197.32 397.	43 0.9902 - 1.7282 1.336 0.888 1.176				
0.00 0.29280 1294.8 0.06931 200.00 398.	60 1.0000 1.7271 1.341 0.897 1.179				
2.00 0.31462 1288.1 0.06466 202.69 399.	77 1.0098 1.7260 1.347 0.906 1.182				
4.00 0.33766 1281.4 0.06039 205.40 400.	92 1.0195 1.7250 1.352 0.916 1.185				
6.00 0.36198 1274.7 0.05644 208.11 402.	06 1.0292 1.7240 1.358 0.925 1.189				
8.00 0.38761 1267.9 0.05280 210.84 403.	20 1.0388 1.7230 1.364 0.935 1.192				
10.00 0.41461 1261.0 0.04944 213.58 404.	32 1.0485 1.7221 1.370 0.945 1.196				
12.00 0.44301 1254.0 0.04633 216.33 405.	43 1.0581 1.7212 1.377 0.956 1.200				
14.00 0.47288 1246.9 0.04345 219.09 406.	53 1.0677 1.7204 1.383 0.967 1.204				
16.00 0.50425 1239.8 0.04078 221.87 407.	61 1.0772 1.7196 1.390 0.978 1.209				
18.00 0.53718 1232.6 0.03830 224.66 408.	69 1.0867 1.7188 1.397 0.989 1.214				
20.00 0.57171 1225.3 0.03600 227.47 409.	75 1.0962 1.7180 1.405 1.001 1.219				
22.00 0.60789 1218.0 0.03385 230.29 410.	79 1.1057 1.7173 1.413 1.013 1.224				
24.00 0.64578 1210.5 0.03186 233.12 411.	82 1.1152 1.7166 1.421 1.025 1.230				
26.00 0.68543 1202.9 0.03000 235.97 412.	84 1.1246 1.7159 1.429 1.038 1.236				
28.00 0.72688 1195.2 0.02826 238.84 413.4	84 1.1341 1.7152 1.437 1.052 1.243				
30.00 0.77020 1187.5 0.02664 241.72 414.	82 1.1435 1.7145 1.446 1.065 1.249				

Corporate Office: 44-A/1, Kalu Sarai, New Delhi-110016 🛛 info@madeeasy.in 💽 www.madeeasy.in

ESE 2019 | Main Examination Mechanical Engineering | Paper-I

Temp. Pressu (°C) Mpa	Pressure	Pressure Density Mpa kg/m ³ Liquid	Volume m ³ /kg	Enthalpy kJ/kg		Entropy		Specific Heat		cpler
	Мра		Vapour	Liquid	Vapour	Liquid	Vapour	Liquid	Vapour	Vapour
32.00	0.81543	1179.6	0.02513	244.62	415.78	1,1529	1.7138	1.456	1.080	1.257
34.00	0.86263	1171.6	0.02371	247.54	416.72	1.1623	1.7131	1.466	1.095	1.265
36.00	0.91185	1163.4	0.02238	250.48	417.65	1,1717	1.7124	1.476	1.111	1.273
38.00	0.96315	1155.1	0.02113	253.43	418.55	1.1811	1.7118	1.487	1.127	1.282
40.00	1.0166	1146.7	0.01997	256.41	419.43	1.1905	1.7111	1.498	1.145	1.292
42.00	1.0722	1138.2	0.01887	259.41	420.28	1.1999	1,7103	1.510	1.163	1.303
44.00	1.1301	1129.5	0.01784	262.43	421.11	1.2092	1,7096	1.523	1.182	1.314
46.00	1.1903	1120.6	0.01687	265.47	421.92	1.2186	1.7089	1.537	1.202	1.326
48.00	1.2529	1111.5	0.01595	268.53	422.69	1.2280	1.7081	1.551	1.223	1.339
50.00	1.3179	1102.3	0.01509	271.62	423.44	1.2375	1.7072	1.566	1.246	1.354
52.00	1.3854	1092.9	0.01428	274.74	424.15	1.2469	1.7064	1.582	1.270	1.369
54.00	1.4555	1083.2	0.01351	277.89	424.83	1.2563	1.7055	1.600	1.296	1.386
56.00	1.5282	1073.4	0.01278	281.06	425.47	1.2658	1.7045	1.618	1.324	1.405
58.00	1.6036	1063.2	0.01209	284.27	426.07	1.2753	1.7035	1.638	1.354	1.425
60.00	1.6818	1052.9	0.01144	287.50	426.63	1.2848	1.7024	1.660	1.387	1.448
62.00	1.7628	1042.2	0.01083	290.78	427.14	1.2944	1.7013	1.684	1.422	1.473
64.00	1.8467	1031.2	0.01024	294.09	427.61	1.3040	1.7000	1.710	1.461	1.50
66.00	1.9337	1020.0	0.00969	297.44	428.02	1.3137	1.6987	1.738	1.504	1.532
68.00	2.0237	1008.3	0.00916	300.84	428.36	1.3234	1.6972	1.769	1.552	1.567
70.00	2.1168	996.2	0.00865	304.28	428.65	1.3332	1.6956	1.804	1.605	1.607
72.00	2.2132	983.8	0.00817	307.78	428.86	1.3430	1.6939	1.843	1.665	1.653
74.00	2.3130	970.8	0.00771	311.33	429.00	1.3530	1.6920	1.887	1.734	1.70
76.00	2.4161	957.3	0.00727	314.94	429.04	1.3631	1.6899	1.938	1.812	1.766
78.00	2.5228	943.1	0.00685	318.63	428.98	1.3733	1.6876	1.996	1.904	1.838
80.00	2.6332	928.2	0.00645	322.39	428,81	1.3836	1.6850	2.065	2.012	1.924
85.00	2.9258	887.2	0,00550	332.22	427.76	1.4104	1.6771	2.306	2.397	2.232
90.00	3.2442	837.8	0.00461	342.93	425.42	1.4390	1.6662	2.756	3.121	2.820
95.00	3.5912	772.7	0.00374	355.25	420.67	1.4715	1.6492	3.938	5.020	4.369
100.00	3.9724	651.2	0.00268	373.30	407.68	1.5188	1.6109	17.59	25.35	20.81
101 06 ^c	4.0593	511.9	0.00195	389.64	389.64	1.5621	1.5621	50	00	

^aTriple point ^bNBP ^cCritical point

*Ashrae Handbook Fundamentals, 2005.

[20 Marks]

Solution:

Properties

T _{sat} (°C)	h _f (kJ/kg)	<i>h_g</i> (kJ/kg)	s _f (kJ/kgK)	s _g (kJ/kgK)	c _{pv} (kJ/kgK)	c _{pl} (kJ/kgK)
-16	178.83	389.02	0.9205	1.7379	0.831	-
40	256.41	419.43	1.1905	1.7111	1.145	1.498

Corporate Office: 44-A/1, Kalu Sarai, New Delhi-110016 🖂 info@madeeasy.in 🕢 www.madeeasy.in

s

Now,

Heat exchange in process 1 - 2 = Heat exchange in process 5 - 6

$$c_{p_V}(T_2 - T_1) = c_{pl}(T_5 - T_6)$$

0.831[15 - (-16)] = 1.498(40 - T_6)
$$T_6 = 22.803^{\circ}C$$

Now, enthalpy at (2),

(

$$h_2 = h_g + c_p(T_2 - T_1) = 389.02 + 0.831(15 + 16)$$

= 414.781 kJ/kg

Now for enthalpy at (3), isentropic process 2 - 3,

$$s_{2} = s_{3}$$

$$s_{g} + c_{pv_{1}} \ln\left(\frac{T_{2}}{T_{1}}\right) = s_{g} + c_{pv_{4}} \ln\left(\frac{T_{3}}{T_{4}}\right)$$

$$1.7379 + 0.831 \ln\left(\frac{288}{257}\right) = 1.7111 + 1.145 \ln\left(\frac{T_{3}}{313}\right)$$

$$T_{3} = 348.02 \text{ K}$$

Now, enthalpy at (3),

 $\begin{aligned} h_3 &= h_g + c_{pv4}(T_3 - T_4) \\ h_3 &= 419.43 + 1.145(348.02 - 313) = 459.528 \text{ kJ/kg} \end{aligned}$

Now enthalpy at (6),

$$h_{6} = h_{f} + c_{pl}(T_{5} - T_{6}) = 256.41 - 1.498(40 - 22.803)$$

$$h_{6} = 230.649 \text{ kJ/kg}$$

$$COP = \frac{h_{1} - h_{7}}{h_{3} - h_{2}} = \frac{389.02 - 230.649}{459.528 - 414.781} = 3.539$$

$$or TCP = \frac{\dot{m}(h_{3} - h_{2})}{3.5} = \frac{3.5}{3.5}$$

Now,

Power/TR =
$$\frac{1}{\dot{m}(h_1 - h_7)/3.5} = \frac{1}{3.539}$$

Power per ton of refrigeration,

$$\frac{P}{TR} = 0.989 \text{ kW/TR}$$

MADE EASY Source _

- ESE 2019 Mains Test Series: Similar to Q.8(a) from Test-2
- MADE EASY Classnotes

ESE 2020 Prelims Exam Online **Test Series**

Early Start • Extra Edge

Test series is live Stream : CE, ME, EE, E&T

Total **34 Tests** Newly Designed 2206 Qs

Fee: **Rs. 1300 + GST** Rs. 900 + GSTThis offer is valid

till 15th July, 2019

Admission Open

Register online at : www.madeeasy.in

$\frac{h_{c}}{121}$	$\frac{101.03}{.44 - 101.03} = \frac{25 - 24.08}{28.96 - 24.08}$
	he = 104.877 kJ/kg
Similarly for entropy	S ₀ ,
<i>S</i> 0	-0.3545 = $\frac{25 - 24.08}{25 - 24.08}$
0.42	26 - 0.3545 28.96 - 24.08
	$s_0 = 0.3673 \text{ kJ/kgK}$
Now,	$\Psi_1 = (632.435 - 104.877) - 298[1.8422 - 0.3673]$
	$\Psi_1 = 88.0378 \text{ kJ/kg}$
or	$\Psi_1 = 88.0378 \times 10 \text{ kJ/s}$
	$\Psi_1 = 880.378 \text{ kW}$
Now, availability of v	vapour at exit,
	$\Psi_2 = (h_2 - h_0) - T_0(s_2 - s_0)$
	= (2706.63 - 104.877) - 298(7.1271 - 0.3673)
	= 587.3326 kJ/kg
or	$\Psi_2 = 0.5802 \times 587.3326$ kJ/s = 340.77 kW
Similarly availability	of liquid at exit,
	$\Psi_3 = (h_3 - h_0) - T_0(s_3 - s_0)$
	= (504.68 - 104.877) - 298(1.5300 - 0.3673)
	= 53.3184 kJ/kg
or	$\Psi_2 = 9.4198 \times 53.3184 \text{ kJ/s}$
	= 502.2486 kW
Now,	Irreversibility = $\Psi_1 - \Psi_2 - \Psi_2$
	= 880.378 - 340.77 - 502.2486 = 37.3594 kW

MADE EASY Source

ADE

D = 0.02 m

$$Re_{D} = \frac{\rho VD}{\mu} = \frac{0.8345 \times 20 \times 0.02}{2.3825 \times 10^{-5}}$$
$$= 14010.493 > 4000$$

So, flow is turbulent,

Now,

MADE EASY

$$r = \frac{0.3164}{\text{Re}_{\text{D}}^{1/4}} = \frac{0.3164}{(14010.493)^{1/4}} = 0.02908$$

By Reynolds-Colburn Analogy,

$$St \cdot \Pr^{2/3} = \frac{f'}{2} = \frac{f}{2 \times 4}$$

where, f' = Darcy's friction coefficient, f = friction factor

$$\frac{h}{\rho V c_{\rho}} \Pr^{2/3} = \frac{f}{8}$$

$$\frac{h}{0.8345 \times 20 \times 1015} \times 0.703^{2/3} = \frac{0.02908}{8}$$

h = 77 8906 W/m² J

'n

Mass flow-rate of air,

$$\rho_{T} = \rho AV = 0.8345 \times \frac{\pi}{4} \times 0.02^{2} \times 20$$

= 5.2433 × 10⁻³ kg/s

$$\theta_1 = 200 - 20 = 180^{\circ}C$$

 $\theta_2 = 200 - 180 = 20^{\circ}C$

Logrithmic mean temperature difference,

Energy balance, $\dot{m} c_p (T_e - T_i) = h(\pi DL) \theta_m$ $\Rightarrow 5.2433 \times 10^{-3} \times 1015 \times (180 - 20) = 77.8906 \times (\pi \times 0.02 \times L) \times 72.819$

Q.4 (c) A single-cylinder, single-acting reciprocating compressor using R12 as refrigerant has a bore 80 mm and stroke 60 mm. The compressor runs at 1450 rpm. If the condensing temperature is 40°C, find the performance characteristics of the compressor when the suction temperature is -10°C. Specific heat of vapour at 40°C is 0.759 kJ/kg K.

aturation	Saturation		S			1.17		V	apour Su	perheat	ted
Temp.	Pressure		Satur	atea Liq	juta an	a vapour		B	y 20	By	40°C
t	р	Vf	Ug	hf	hg	81	Sg	h	s	h	8
(°C)	(bar)	(kJ/kg)	(m ³ /kg)	(kJ/kg)	(kJ/k)	(kJ/kg-K)	(kJ/kg-K)	(kJ/kg)	(kJ/kg-K)	(kJ/kg)	(kJ/kg-K)
-40	0.6417	0.66	0.2421	0	169.0	0	0.7274	180.8	0.7737	192.4	0.8178
-35	0.8069	0.67	0.1950	4.4	171.9	0.0187	0.7220	183.3	0.7681	195.1	0.8120
-30	1.0038	0.67	0.1595	8.9	174.2	0.0371	0.7171	185.8	0.7631	197.8	0.8068
-25	1.2368	0.68	0.1313	13.3	176.5	0.0552	0.7127	188.3	0.7586	200.4	0.8021
-20	1.5089	0.69	0.1089	17.8	178.7	0.0731	0.7088	190.8	0.7546	203.1	0.7979
-15	1.8256	0.69	0.0911	22.3	181.0	0.0906	0.7052	193.2	0.7510	205.7	0.7942
-10	2.1912	0.70	0.0767	26.9	183.2	0.1080	0.7020	195.7	0.7477	208.3	0.7909
-5	2.610	0.71	0.0650	31.4	185.4	0.1251	0.6991	198.1	0.7449	210.9	0.7879
0	3.086	0.72	0.0554	36.1	187.5	0.1420	0.6966	200.5	0.7423	213.5	0.7853
5	3.626	0.72	0.0475	40.7	189.7	0.1587	0.6942	202.9	0.7401	216.1	0.7830
10	4.233	0.73	0.0409	45.4	191.7	0.1752	0.6921	205.2	0.7381	218.6	0.7810
15	4.914	0.74	0.0354	50.1	193.8	0.1915	0.6902	207.5	0.7363	221.2	0.7792
20	5.673	0.75	0.0308	54.9	195.8	0.2078	0.6885	209.8	0.7348	223.7	0.7777
25	6.516	0.76	0.0269	59.7	197.7	0.2239	0.6869	212.1	0.7334	226.1	0.7763
30	7.450	0.77	0.0235	64.6	199.6	0.2399	0.6854	214.3	0.7321	228.6	0.7751
35	8.477	0.79	0.0206	69.5	201.5	0.2559	0.6839	216.4	0.7310	231.0	0.7741
40	9.607	0.80	0.0182	74.6	203.2	0.2718	0.6825	218.5	0.7300	233.4	0.7732
45	10.843	0.81	0.0160	79.7	204.9	0.2877	0.6812	220.6	0.7291	235.7	0.7724
50	12.193	0.83	0.0142	84.9	206.5	0.3037	0.6797	222.6	0.7282	238.0	0.7718
60	15.259	0.86	0.0111	95.7	209.3	0.3358	0.6777	226.4	0.7265	242.4	0.7706
70	18.859	0.90	0.0087	107.1	211.5	0.3686	0.6738	230.2	0.7240	246.2	0.7650

Assume the simple cycle of operation and no clearance. THERMODYNAMICS PROPERTIES OF R12*

[20 Marks]

$$s_{2} = (s_{g})_{@40^{\circ}C} + c_{pv} \ln\left(\frac{T_{2}}{313}\right)$$

$$0.702 = 0.6825 + 0.759 \ln\left(\frac{T_{2}}{313}\right)$$

$$T_{2} = 321.14 \text{ K} \quad \text{Compressor discharge temperature}$$

$$h_{2} = h_{g@40^{\circ}} + c_{pv}(T_{2} - 313)$$

$$h_{2} = 203.2 + 0.759 \times (321.14 - 313)$$

$$= 209.37 \text{ kJ/kg}$$

Since, clearance ratio is zero, So $\eta_v = 100\%$

Mass flow rate,

$$\eta_{\nu} = \frac{mv_1}{\frac{\pi}{4}D^2LN}$$
$$\dot{m} = \frac{\eta_{\nu}}{v_1} \left(\frac{\pi}{4}D^2LN\right)$$

mu

where $v_1 = v_{\alpha@-10^{\circ}C} = 0.0767 \text{ m}^3/\text{kg}$

$$\dot{m} = \frac{1}{0.0767} \times \left(\frac{\pi}{4} \times 0.08^2 \times 0.06 \times 1450\right) = 5.7 \text{ kg/min}$$

Power input to compressor,

$$P = \dot{m}(h_2 - h_1) = 5.7 \times (209.37 - 183.2)$$

= 149.169 kJ/min
= 2 486 kW

or

compressor as a function of evaporator pressure

Generally refrigeration systems operate on the left-hand side of this curve. But just after starting, the compressor passes through the power peak. The compressor motors are, therefore, oversized to enable them to take the peak load during pull-down. The starting current is more than the running current.

The effect of the discharge pressure can similarly be analysed. At constant suction pressure, an increase in the discharge pressure will cause a reduction in the volumetric efficiency due to higher compression ratio. The mass of refrigerant circulated will thus be reduced. At the same time the specific work will increase. But there is a continuous increase in the power consumption and power per ton. The capacity will be decreased due to decrease in the mass flow and slight decrease in the refrigerating effect.

End of Solution

Section B

Q.5 (a) A single-cylinder, single-acting, square reciprocating pump has piston diameter and stroke length of 300 mm. The pump is placed such that the vertical distance between the center-line of the pump and sump level is 5 m. The water is being delivered at a height of 22 m above the centerline of the pump. The suction and delivery pipes are 8 m and 28 m long respectively, and diameter of both the pipes is 150 mm. If the pump is running at 30 rpm and coefficient of friction for suction and delivery pipes is 0.005, estimate the theoretical power required to drive the pump (kW).

[12 Marks]

Solution:

Suction heat of pump,	$h_s = 5 \text{ m}$
Delivery heat of pump,	$h_{d} = 22 \text{ m}$
Length of suction pump,	$l_{s} = 8 \text{ m}$
Length of delivery pipe,	$l_{d} = 28 \text{ m}$
Diameter of suction pipe,	d _s = 150 mm
Diameter of delivery pipe,	$d_{d} = 150 \text{ mm}$
	N = 30 rpm
Stroke length,	L = 300 mm = 0.3 m
Piston diameter,	D = 300 mm = 0.3 m
Pistion area,	$A = \frac{\pi}{4} \times 0.3^2 = 0.07068 \mathrm{m}^2$
Theoretical discharge,	$Q = \frac{ALN}{60} = \frac{0.07068 \times 0.3 \times 30}{60} = 0.010603 \text{ m}^3/\text{s}$
Maximum velocity in sucti	on pipe,
	$V_{s, \max} = \frac{A}{a_s} \times \omega \times r$
	$= \frac{0.07068}{\frac{\pi}{4} \times 0.15^2} \times \left(\frac{2\pi \times 30}{60}\right) \times 0.15 = 1.8848 \text{ m/s}$
	$h_{fs, \max} = \frac{f I_s V_{s\max}^2}{d_s \times 2g} = \frac{(4 \times 0.005) \times 8 \times 1.8848^2}{0.15 \times 2 \times 9.81}$ = 0.1931 m

Since, $d_s = d_d$ Maximum velocity in delivery pipe, $V_{d, \max} = V_{s, \max} = 1.8848$ m/s C > 2 (4 × 0.00 $h_{fd, \max} = \frac{fl_d V_{d \max}^2}{d_d \times 2g} = \frac{(4 \times 0.005) \times 28 \times 1.8848^2}{0.15 \times 2 \times 9.81} = 0.6758 \text{ m}$

Theoretical power required,

$$P = \rho g Q \left[h_s + h_d + \frac{2}{3} h_{fs,max} + \frac{2}{3} h_{fd,max} \right]$$

Corporate Office: 44-A/1, Kalu Sarai, New Delhi-110016 🖂 info@madeeasy.in

Corporate Office: 44-A/1, Kalu Sarai, New Delhi-110016 🖂 info@madeeasy.in 🕢 www.madeeasy.in

Substituting

Page 39

in equation (ii)

absorber temperature $T_A = T_K$. Then the energy balance of the system, $Q_0 + W_P + Q_h = Q_C + Q_A$

ESE 2020 PRELIMS Classroom test series

Stream : CE, ME, EE, E&T

> Paper-I: 13 Tests GS & Engineering Aptitude

> Paper-II: 13 Tests Engineering Discipline

Total **26 Tests**

Admission Open from 10th July, 2019

Register online at : www.madeeasy.in

The pump work $W_P = -\int v dP$ is very small compared to compressor work in the vapour compression system, as the specific volume v of the liquid is extremely small compared to that of the vapour $(v_f << v_g)$. The energy consumption of the system is mainly in the generator in the form of heat supplied Q_b .

In the vapour-absorption system, the function of the compressor is accomplished in a three step process by the use of the absorber, pump and generator. Functions of these devices are given below:

- (i) **Absorber:** Absorption of the refrigerant vapour by its weak or poor solution in a suitable absorbent or adsorbent, forming strong or rich solution of refrigerant in absorbent/adsorbent.
- (ii) **Pump:** Pumping of the rich solution raising its pressure to the condenser pressure.
- (iii) **Generator:** Distillation of the vapour from the rich solution leaving the poor solution for recycling.

MADE EASY Source _

ESE 2019 Mains Test Series: Exactly same as Q.6c(i) Test-1

MADE EASY Classnotes

VAPOUR ABSORPTION REPAIREPATIONSYSTEM :-

*)The contrastor which is and in VCRS is replaced with absorber, pump and generator.
*) solar absorbtion refligeration System is working on the principle of VARS.
*) waste heat can be effectively utilized to VARS
*) waste heat can be effectively utilized to VARS
*) The cop of VARS system is tow. Generally lies b/w o as to 0.5"
*) WARS system to a heat operated orbit and turns on Low grade mergy.
*) Heat Rejection proves in condinator and obserber.
*) WARS system to less now in compare to VERS.
*) WARS system to generally preferred in Remoted Location and where the cost of dedited in Remoted Location

*) The commonly used A Refligment pair is () Amonia water () Amonia water: - In this Amonia is used as a Reflige -tant and water is use as a absorber

In order to remove the water particles from the ammonia vapour analyzer and rectifier ascemble, is used. Here water is removed in two stages. The complete elemination of water particles occurs in rectifier and it produces dry.

End of Solution

Corporate Office: 44-A/1, Kalu Sarai, New Delhi-110016 🛛 info@madeeasy.in 🕢 www.madeeasy.in

Q.5 (e) How do fuel cells work? Explain the principle with the help of a sketch.

[12 Marks]

Solution:

Fuel Cell:

A fuel cell is an electrochemical device which converts chemical energy of the fuel into electricity without undergoing combustion cycles. Unlike conventional combustion route i.e. fuel \rightarrow heat \rightarrow work \rightarrow electricity, fuel cell directly convert fuel to electricity. Hence, efficiency of fuel cells is not limited by Carnot cycle or Second Law of Thermodynamics. Theoretically, a fuel cell may be 100% efficient.

Although fuel cell has two electrodes separated by an electrolyte similar to batteries yet they are different than batteries. In fuel cell, continuous supply of fuel is required to produce electricity and there is no as such charging and discharging like in the case of batteries. Fuel cells mainly consist of four parts viz:

Working Principle

The principle of operation of a fuel cell is similar to electrolysis but in reverse. A schematic diagram of a fuel cell working on hydrogen-oxygen fuel is shown in figure below.

In a fuel cell, fuel (hydrogen in this case) is supplied to the negative electrode (anode) and oxygen or air is supplied to the positive electrode.

A catalyst on the porous anode causes hydrogen molecules to dissociate into hydrogen ions and electrons. The H⁺ ion migrates through the electrolyte, usually an acid to the cathode. At cathode H⁺ ion reacts with electrons supplied by an external circuit and with oxygen to form water.

Reaction at anode: $H_2 \rightarrow 2H^+ + 2e^-$

Reaction at cathode:
$$(2H^+) + (2e^-) + \frac{1}{2}O_2 \rightarrow H_2O$$

As a consequence electrical current flow from cathode to anode i.e. in the opposite direction of flow of electrons.

Fuel cells produce typically 0.7 to 0.8 volts. Fuel cells are connected in series to get useful working voltage.

ESE 2019 India's Best Institute for IES, GATE & PSUs **Main Examination** Mechanical Engineering | Paper-I the in higher good - aspress Fuel Cell :- Topic harding So Merry protein A juel Cell is an electrochemical device Which convert directly NOTE: Hence, the efficiency of the fuel cell is not limited by the 2nd law of Td. It means it can be loss I efficient NOTE C.G. -> HA -(Shall Para) > HR WA -(ALA. 15.P-Directly > Electrica) [IR OVE OVI] Fuel Ener 84 (chemical) Energy) E.P. mj. (CV)1 > 100 % - Fuel (-> 60.1) Desirable property of electrolyte :-It should be conductive to ions, non conductive to e-and It it should not get charged. It doesn't have any honny part and it coleak electricity without any kind of pollution. Advantage 9 fuel cell. End of Solution Corporate Office: 44-A/1, Kalu Sarai, New Delhi-110016 🛛 info@madeeasy.in 💽 www.madeeasy.in Page 44

$$0.85 = \frac{9.81 \times 100}{V_{w2} \times 52.36} \xrightarrow{u_2}{V_{w2}} V_{w2} = \frac{9.81 \times 100}{52.36 \times 0.85} V_{w2} = 22.04 \text{ m/s}$$

Since, $u_2 > V_{w2}$,
the type of impeller is backward curved.

Since, $u_2 > V_{w_2}$,

Discharge, $Q = 1.5 \text{ m}^3/\text{s}$ Width of impeller, $B_2 = 85 \text{ mm}$ Velocity Triangle at outlet $Q = \pi D_2 B_2 V_{f2}$

$$.5 = \pi \times 1 \times 0.085 \times V_{f2}$$

Flow component of velocity at outlet

$$V_{f2} = 5.6172$$
 m/s

From Velocity triangle at outlet,

$$\tan \phi = \frac{V_{f2}}{u_2 - V_{w2}}$$
$$\tan \phi = \frac{5.6172}{52.36 - 22.04}$$
$$\phi = 10.496^{\circ}$$

MADE EASY Source

- From MADE EASY Mains Batch Class Notes
- ESE 2019 Mains Workbook: Similar to Q.59 (Page 271)

 V_{w2} β

 V_2

 V_{f2}

Q.6 (b) Consider the combined gas steam power cycle shown in the figure. The topping cycle is a gas turbine cycle that has a pressure ratio of 8. Air enters the compressor at 300 K and the turbine at 1300 K. The isentropic efficiency of the compressor is 80 percent, and that of the gas turbine is 85 percent. The bottoming cycle is a sample ideal Rankine cycle operating between the pressure limits of 7 MPa and 5 kPa. Steam is heated in a heat exchanger by the exhaust gases to a temperature of 500°C. The exhaust gases leave the heat exchanger at 450 K. Determine (i) The ratio of the mass flow rates of the steam and the combustion gases. (ii) The thermal efficiency of the combined cycle.

Assume specific heat of gas as 1.005 kJ/kgK

T	U	u	h	8	v	14	h	8	U	u	h	s
•C	m³/kg	kJ/kg	kJ/kg	kJ/kg-K	m³/kg	kJ/kg	kJ/kg	k-J/kg-K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg-K
	P =	4.0 MPa	(250.35°	CI	P=	4.5 MPa	(257.44°	C)	P =	50 MPa	(263.94	C)
Sat.	0.04978	2601.7	2800.8	6.0696	0.04406	2599.7	2798.0	6.0198	0.03945	2597.0	2794 2	5 9737
275	0.05461	2668.9	2887.3	6.2312	0.04733	2651.4	2864.4	6.1429	0.04144	2632.3	2839.5	6.0571
300	0.05887	2726.2	2961.7	6.3639	0.05138	2713.0	2944.2	6.2854	0.04535	2699.0	2925.7	6.2111
350	0.06647	2827.4	3093.3	6.5843	0.05842	2818.6	3081.5	6.5153	0.05197	2809.5	3069.3	6.4516
400	0.07343	2920.8	3214.5	6.7714	0.06477	2914.2	3205.7	6.7071	0.05784	2907.5	3196.7	6.648
450	0.08004	3011.0	3331.2	6.9386	0.07076	3005.8	3324.2	6.8770	0.06332	3000.6	3317.2	6.8210
500	0.08644	3100.3	3446.0	7.0922	0.07652	3096.0	3440.4	7.0323	0.06858	3091.8	3434.7	6.978
600	0.09886	3279.4	3674.9	7.3706	0.08766	3276.4	3670.9	7.3127	0.07870	3273.3	3666.9	7.2603
700	0.11098	3462.4	3906.3	7.6214	0.09850	3460.0	3903.3	7.5647	0.08852	3457.7	3900.3	7.5136
800	0.12292	3650.6	4142.3	7.8523	0.10916	3648.8	4140.0	7.7962	0.09816	3646.9	4137.7	7.7458
900	0.13476	3844.8	4383.9	8.0675	0.11972	3843.3	4382.1	8.0118	0.10769	3841.8	4380.2	7.9619
1000	0.14653	4045.1	4631.2	8.2698	0.13020	4043.9	4629.8	8.2144	0.11715	4042.6	4628.3	8.1648
1100	0.15824	4251.4	4884.4	8.4612	0.14064	4250.4	4883.2	8.4060	0.12655	4249.3	4882.1	8.3566
1200	0.16992	4463.5	5143.2	8.6430	0.15103	4462.6	5142.2	8.5880	0.13592	4461.6	5141.3	8.5388
1300	0.18157	4680.9	5407.2	8.8164	0.16140	4680.1	5406.5	8.7616	0.14527	4679.3	5405.7	8.7124
	P =	6.0 MPa	(275.59%)	C)	P =	7.0 MPa	(285.83°	C)	P =	8.0 MPa	(295.01	°C)
Sat.	0.03245	2589.9	2784.6	5.8902	0.027378	2581.0	2772.6	5.8148	0.023525	2570.5	2758.7	5.7450
300	0.03619	2668.4	2885.6	6.0703	0.029492	2633.5	2839.9	5.9337	0.024279	2592.3	2786.5	5.7937
350	0.04225	2790.4	3043.9	6.3357	0.035262	2770.1	3016.9	6.2305	0.029975	2748.3	2988.1	6.1321
400	0.04742	2893.7	3178.3	6.5432	0.039958	2879.5	3159.2	6.4502	0.034344	2864.6	3139.4	6.3658
450	0.05217	2989.9	3302.9	6.7219	0.044187	2979.0	3288.3	6.6353	0.038194	2967.8	3273.3	6.5579
500	0.05667	3083.1	3423.1	6.8826	0.048157	3074.3	3411.4	6.8000	0.041767	3065.4	3399.5	6.7266
550	0.06102	3175.2	3541.3	7.0308	0.051966	3167.9	3531.6	6.9507	0.045172	3160.5	3521.8	6.8800
600	0.06527	3267.2	3658.8	7.1693	0.055665	3261.0	3650.6	7.0910	0.048463	3254.7	3642.4	7.0221
700	0.07355	3453.0	3894.3	7.4247	0.062850	3448.3	3888.3	7.3487	0.054829	3443.6	3882.2	7.2822
800	0.08165	3643.2	4133.1	7.6582	0.069856	3639.5	4128.5	7.5836	0.061011	3635.7	4123.8	7.5185
900	0.08964	3838.8	4376.6	7.8751	0.076750	3835.7	4373.0	7.8014	0.067082	3832.7	4369.3	7.7372
1000	0.09756	4040.1	4625.4	8.0786	0.083571	4037.5	4622.5	8.0055	0.073079	4035.0	4619.6	7.9419
1100	0.10543	4247.1	4879.7	8.2709	0.090341	4245.0	4877.4	8.1982	0.079025	4242.8	4875.0	8.1350
1200	0.11326	4459.8	5139.4	8.4534	0.097075	4457.9	5137.4	8.3810	0.084934	4456.1	5135.5	8.3181
1300	0.12107	4677.7	5404.1	8.6273	0.103781	4676.1	5402.6	8.5551	0.090817	4674.5	5401.0	8.4925
-	P = 5	9.0 MPa	(303.35°	()	P = 1	0.0 MPa	(311.00	°C)	P = 1	12.5 MPa	(327.81	°C)
Sat.	0.020489	2558.5	2742.9	5.6791	0.018028	2545.2	2725.5	5.6159	0.013496	2505.6	2674.3	5.4638
325	0.023284	2647.6	2857.1	5.8738	0.019877	2611.6	2810.3	5.7596				
350	0.025816	2725.0	2957.3	6.0380	0.022440	2699.6	2924.0	5.9460	0.016138	2624.9	2826.6	5.7130
400	0.029960	2849.2	3118.8	6.2876	0.026436	2833.1	3097.5	6.2141	0.020030	2789.6	3040.0	6.0433
450	0.033524	2956.3	3258.0	6.4872	0.029782	2944.5	3242.4	6.4219	0.023019	2913.7	3201.5	6.2749
500	0.036793	3056.3	3387.4	6.6603	0.032811	3047.0	3375.1	6.5995	0.025630	3023.2	3343.6	6.4651
550	0.039885	3153.0	3512.0	6.8164	0.035655	3145.4	3502.0	6.7585	0.028033	3126.1	3476.5	6.6317
600	0.042861	3248.4	3634.1	6.9605	0.038378	3242.0	3625.8	6.9045	0.030306	3225.8	3604.6	6.7828
650	0.045755	3343.4	3755.2	7.0954	0.041018	3338.0	3748.1	7.0408	0.032491	3324.1	3730.2	6.9227
700	0.048589	3438.8	3876.1	7.2229	0.043597	3434.0	3870.0	7.1693	0.034612	3422.0	3854.6	7.0540
800	0.054132	3632.0	4119.2	7.4606	0.048629	3628.2	4114.5	7.4085	0.038724	3618.8	4102.8	7.2967
900	0.059562	3829.6	4365.7	7.6802	0.053547	3826.5	4362.0	7.6290	0.042720	3818.9	4352.9	7.5195
1000	0.064919	4032.4	4616.7	7.8855	0.058391	4029.9	4613.8	7.8349	0.046641	4023.5	4606.5	7.7269
1100	0.070224	4240.7	4872.7	8.0791	0.063183	4238.5	4870.3	8.0289	0.050510	4233.1	4864.5	7.9220
1200	0.075492	4454.2	5133.6	8.2625	0.067938	4452.4	5131.7	8.2126	0.054342	4447.7	5127.0	8.1065
1300	0.080733	4672.9	5399.5	8.4371	0.072667	4671.3	5398.0	8.3874	0.058147	4667.3	5394.1	8.2819

		Specific	Volume	Inte	rnal En	ergy	E	athalpy	,		Entropy	
		m ³ /	kg		kJ/kg			kJ/kg			kJ/kg-K	
Press.	Sat. Temp.	Sat. Liquid	Sat. Vapour	Sat. Liquid	Evap.	Sat. Vapour	Sat. Liquid	Evap.	Sat. Vapour	Sat. Liquid	Evap.	Sat. Vapour
P kPa	Trat of	Vf	Ug	u _f	14 fg	ue	hi	hfx	hr	Sf	Sfg	SR
1.0	6.97	0.001000	129.19	29.302	2355.2	2384.5	29.303	2484.4	2513.7	0.1059	8.8690	8.9749
1.5	13.02	0.001001	87.964	54.686	2338.1	2392.8	54.688	2470.1	2524.7	0.1956	8.6314	8.8270
2.0	17.50	0.001001	66.990	73.431	2325.5	2398.9	73.433	2459.5	2532.9	0.2606	8.4621	8.7227
2.5	21.08	0.001002	54.242	88.422	2315.4	2403.8	88.424	2451.0	2539.4	0.3118	8.3302	8.6421
3.0	24.08	0.001003	45.654	100.98	2306.9	2407.9	100.98	2443.9	2544.8	0.3543	8.2222	8.5765
4.0	28.96	0.001004	34.791	121.39	2293.1	2414.5	121.39	2432.3	2553.7	0.4224	8.0510	8.4734
5.0	32.87	0.001005	28.185	137.75	2282.1	2419.8	137.75	2423.0	2560.7	0.4762	7.9176	8.3938
7.5	40.29	0.001008	19.233	168.74	2261.1	2429.8	168.75	2405.3	2574.0	0.5763	7.6738	8.2501
10	45.81	0.001010	14.670	191.79	2245.4	2437.2	191.81	2392.1	2583.9	0.6492	7.4996	8.1488
15	53.97	0.001014	10.020	225.93	2222.1	2448.0	225.94	2372.3	2598.3	0.7549	7.2522	8.0071
20	60.06	0.001017	7.6481	251.40	2204.6	2456.0	251.42	2357.5	2608.9	0.8320	7.0752	7.9073
25	64.96	0.001020	6.2034	271.93	2190.4	2462.4	271.96	2345.5	2617.5	0.8932	6.9370	7.8302
30	69.09	0.001022	5.2287	289.24	2178.5	2467.7	289.27	2335.3	2624.6	0.9441	6.8234	7.7675
40	75.86	0.001026	3.9933	317.58	2158.8	2476.3	317.62	2318.4	2636.1	1.0261	6.6430	7.6691
50	81.32	0.001030	3.2403	340.49	2142.7	2483.2	340.54	2304.7	2645.2	1.0912	6.5019	7.5931
75	91.76	0.001037	2.2172	384.36	2111.8	2496.1	384.44	2278.0	2662.4	1.2132	6.2426	7.4558
100	99.61	0.001043	1.6941	417.40	2088.2	2505.6	417.51	2257.5	2675.0	1.3028	6.0562	7.3589
101.325	99.97	0.001043	1.6734	418.95	2087.0	2506.0	419.06	2256.5	2675.6	1.3069	6.0476	7.3545
125	105.97	0.001048	1.3750	444.23	2068.8	2513.0	444.36	2240.6	2684.9	1.3741	5.9100	7.2841
150	111.35	0.001053	1.1594	466.97	2052.3	2519.2	467.13	2226.0	2693.1	1.4337	5.7894	7.2231
175	116.04	0.001057	1.0037	486.82	2037.7	2524.5	487.01	2213.1	2700.2	1.4850	5.6865	7.1716
200	120.21	0.001061	0.88578	504.50	2024.6	2529.1	504.71	2201.6	2706.3	1.5302	5.5968	7.1270
225	123.97	0.001064	0.79329	520.47	2012.7	2533.2	520.71	2191.0	2711.7	1.5706	5.5171	7.0877
250	127.41	0.001067	0.71873	535.08	2001.8	2536.8	535.35	2181.2	2716.5	1.6072	5.4453	7.0525
275	130.58	0.001070	0.65732	548.57	1991.6	2540.1	548.86	2172.0	2720.9	1.6408	5.3800	7.0207
300	133.52	0.001073	0.60582	561.11	1982.1	2543.2	561.43	2163.5	2724.9	1.6717	5.3200	6.9917
325	136.27	0.001076	0.56199	572.84	1973.1	2545.9	573.19	2155.4	2728.6	1.7005	5.2645	6.9650
350	138.86	0.001079	0.52422	583.89	1964.6	2548.5	584.26	2147.7	2732.0	1.7274	5.2128	6.9402
375	141.30	0.001081	0.49133	594.32	1956.6	2550.9	594.73	2140.4	2735.1	1.7526	5.1645	6.9171
400	143.61	0.001084	0.46242	604.22	1948.9	2553.1	604.66	2133.4	2738.1	1.7765	5.1191	6.8955
450	147.90	0.001088	0.41392	622.65	1934.5	2557.1	623.14	2120.3	2743.4	1.8205	5.0356	6.8561
500	151.83	0.001093	0.37483	639.54	1921.2	2560.7	640.09	2108.0	2748.1	1.8604	4.9603	6.8207
550	155.46	0.001097	0.34261	655.16	1908.8	2563.9	655.77	2096.6	2752.4	1.8970	4.8916	6,7886
600	158.83	0.001101	0.31560	669.72	1897.1	2566.8	670.38	2085.8	2756.2	1,9308	4.8285	6.7593
650	161.98	0.001104	0.29260	683.37	1886.1	2569.4	684.08	2075.5	2759.6	1.9623	4.7699	6.7329
700	164.95	0.001108	0.27278	696.23	1875.6	2571.8	697.00	2065.8	2762.8	1 9918	4 7153	6 7071
750	167 75	0.001111	0.95550	700 40	1005 0	9574.0	700.04	0050	0705 7	0.0105	1.0010	0.000

[20 Marks]

Announcing

Early Start • Extra Edge

Test Series is Now Live

Streams : CE, ME, EE, EC, CS, IN, PI

Total 54 Tests Newly Designed 1782 Qs

Fee : **Rs. 1300 + GST Rs. 900 + GST** This offer is valid till 15th July, 2019

Admission Open

Register online at : www.madeeasy.in

ESE 2019 | **Main Examination** ADE EASY MADE E India's Best Institute for IES, GATE & PSUs Mechanical Engineering | Paper-I Т Solution: 1300 **Topping Cycle** Pressure ratio, $r_p = 8$, $T'_1 = 300$ K $\frac{T_{2s'}}{T_1'} = (r_p)^{\frac{\gamma-1}{\gamma}}$ 3 500°C 7 MPa 7 MPa $\frac{T_{2s'}}{300} = (8)^{\frac{1.4-1}{1.4}}$ 300 5 kPa *T*_{2's} = 543.434 K $T_{2'} = T_{1'} + \frac{T_{2s'} - T_1}{\eta_C} = 300 + \frac{543.434 - 300}{0.8} = 604.293 \text{ K}$ $T_{3'} = 1300 \text{ K}$ $\frac{T_{4s'}}{T_{3'}} = \left(\frac{1}{r_{\rho}}\right)^{\frac{\gamma-1}{\gamma}}$ $T_{4s'} = 717.658 \text{ K}$ $T_{4'} = T_{3'} - \eta_{7}(T_{3'} - T_{4s'}) = 1300 - 0.85(1300 - 717.658)$ $T_{\prime\prime} = 805.009 \text{ K}$ Bottoming cycle From steam table, At 500°C, 7 MPa (superheated) $h_3 = 3411.4 \text{ kJ/kg}$ $s_3 = 6.8 \text{ kJ/kgK}$ At 5 kPa (saturated water) $V_f = 0.001005 \text{ m}^3/\text{kg}$ $h_1 = h_f = 137.75 \text{ kJ/kg}$ $s_1 = s_f = 0.4762 \text{ kJ/kgK}$ $h_{fa} = 2423 \text{ kJ/kg}$ $s_{fg} = 7.9176 \text{ kJ/kgK}$ Since process 3 - 4 is isentropic, $S_3 = S_4$ $6.8 = s_f + x_4 s_{fg} = 0.4762 + x_4 \times 7.9176$ \Rightarrow $x_4 = 0.7987$ $h_4 = h_f + x_4 h_{fq}$ = 137.75 + 0.7987 × 2423 = 2073 kJ/kg Pump work, $W_{p} = V_{f}(p_{2} - p_{1})$ $= 0.001005 \times (7000 - 5) = 7.0299 \text{ kJ/kg}$ Also, $W_{p} = h_{2} - h_{1}$ $7.0299 = h_2 - 137.75$ $h_2 = 144.78 \text{ kJ/kg}$ In heat exchanger,

 \Rightarrow

Heat rejected by gas = heat taken by steam

$$\dot{m}_g C_{pg} (T_{4'} - T_{5'}) = \dot{m}_s (h_3 - h_2)$$

 $\Rightarrow \quad \dot{m}_g \times 1.005(805.009 - 450) = \dot{m}_s (3411.4 - 144.78)$

Ratio of mass flow rate of steam to that of gas,

$$\frac{\dot{n}_s}{\dot{n}_g} = 0.1092$$

Net work in topping cycle,

$$W_T = \dot{m}_g C_{pg} [(T_{3'} - T_{4'}) - (T_{2'} - T_{1'})]$$

= $\dot{m}_g \times 1.005 [(1300 - 805.009) - (604.293 - 300)]$
 $W_T = 191.65 \, \dot{m}_g \, \text{kW}$

Net work in bottoming cycle,

$$W_B = \dot{m}_s [(h_3 - h_4) - w_p]$$

= $\dot{m}_s [(3411.4 - 2073) - 7.0299]$
 $W_p = 1331.37 \dot{m}_s \text{ kW}$

Total heat supplied,

$$Q_s = \dot{m}_g C_{pg} [T_{3'} - T_{2'}]$$

= $\dot{m}_g \times 1.005 \times [1300 - 604.293]$

$$Q_s = 699.186 \ \dot{m}_g \ \text{kW}$$

Thermal efficiency of combined cycle,

$$\eta = \frac{\text{Total work}}{\text{Total heat supplied}} = \frac{W_T + W_B}{Q_s}$$
$$= \frac{191.65 \,\dot{m}_g + 1331.37 \,\dot{m}_s}{699.186 \,\dot{m}_g}$$

$$\frac{191.65}{699.186} + \frac{1331.37}{699.186} \times 0.1092 \qquad \left[\because \frac{\dot{m}_s}{\dot{m}_g} = 0.1092 \right]$$

 $\eta = 0.4820 = 48.20\%$

MADE EASY Source

ESE 2019 Mains Workbook: Power Plant Q. 22 (Page. 157) discussed in Class

End of Solution

Q.6 (c) What is Betz limit for wind turbines? Derive an expression for Betz limit for wind turbines.

[20 Marks]

Corporate Office: 44-A/1, Kalu Sarai, New Delhi-110016 🛛 info@madeeasy.in 💽 www.madeeasy.in

Solution:

Betz limit: Theoretically, the maximum power extracted by a turbine rotor is 59.3% of the total wind energy in the area swept by the rotor, this is known as Betz limit.

$$C_{p} = \frac{P_{\text{max}}}{P_{\text{total}}} = 0.593$$

Maximum theoretical efficiency (also known as power coefficient C_{p}) is the ratio of maximum power output to total power available in the wind. Its maximum value is 0.593, which is known as Betz limit (after the name of the engineer who first derived this relationship.)

Let us assume, wind turbine is installed in the flow path of wind.

Let V_{up} and p_{up} be velocity and pressure upstream of the turbine and V_{dw} and p_{dw} be velocity and pressure downstream of the turbine. Also V_{tb} be wind velocity at turbine. Bernoulli's equation can be applied between upstream side and downstream side

$$(p_{up} - p_{dw}) = \frac{1}{2} \rho \Big[V_{up}^2 - V_{dw}^2 \Big]$$

Force on the rotor

 $F = A_s \left[p_{up} - p_{dw} \right]$ [Where A_c is area swept by rotor perpendicular to wind direction]

Also from linear momentum

$$F = \dot{m} V_{up} - V_{dw}$$

Combining these equations:

$$A_{s} \times \frac{1}{2} \rho [V_{up}^{2} - V_{dw}^{2}] = (\rho A_{s} \times V_{tb}) (V_{up} - V_{dw})$$

 $V_{tb} = \frac{V_{up} + V_{dw}}{2}$

 \Rightarrow

Now power output of wind turbine is given by:

$$P_{\text{turbine}} = \frac{1}{2}\dot{m}V^{2}$$
$$= \frac{1}{2}\dot{m}[V_{up}^{2} - V_{dw}^{2}] = \frac{1}{2}\rho A_{s}V_{tb}[V_{up}^{2} - V_{dw}^{2}]$$
$$= \frac{1}{2}\rho A_{s}\left[\frac{V_{up} + V_{dw}}{2}\right][V_{up}^{2} - V_{dw}^{2}]$$

 $\frac{dP_{\text{turbine}}}{dV_{dw}} = 0$ Maximum power is obtained if

$$\frac{dP_{\text{turbine}}}{dV_{dw}} = \frac{1}{4}\rho A_{s}[V_{up}^{2} - 3V_{dw}^{2} - 2V_{up}V_{dw}] = 0$$

- Q.7 (a) A Pelton turbine with a wheel diameter of 1.5 m, operating with four nozzles, produces 16 MW of power. The turbine is running at 400 rpm and operating under a gross head of 300 m. Water is supplied through penstock of length 2 km. The coefficient of friction in penstock is 0.004. There is 10% of head loss taking place in the penstock. If the velocity coefficient is 0.97, blade velocity coefficient is 0.9, overall efficiency is 0.84 and Pelton bucket deflects the jet by 165°, determine
 - (i) Discharge through the turbine (m³/s)
 - (ii) Penstock diameter (m)
 - (iii) Jet diameter (m)

HDE

E

India's Best Institute for IES. GATE & PSUs

(iv) Hydraulic efficiency of the turbine Draw velocity triangles.

[20 Marks]

GS & Engineering Aptitude Improvement Program for ESE 2020 Preliminary Examination

100 Days Course

Classroom Course

Live/Online Course also available

6-7 days/week • 4 hours classes /day

Subject	Hours	Fee for Non MADE EASY Students	Fee for Ex. MADE EASY Students
GS (8 Subjects)	200 Hrs.	₹20,000	₹15,000
GS + Maths + Reasoning & Aptitude (10 Subjects)	300 Hrs.	₹25,000	₹18,000

Live/Online Classes : Fee Structure

Subject	Hours	Fee for Non MADE EASY Students	Fee for Ex. MADE EASY Students
GS (8 Subjects)	200 Hrs.	₹16,000	₹12,000
GS + Maths + Reasoning & Aptitude (10 Subjects)	300 Hrs.	₹20,000	₹14,500

Batches commencing from **20th Aug, 2019**

Class timing **5.00 PM - 9:00 PM**

Venue

Hundred Million IGNOU main Road Saket, Saidulajab Extension, New Delhi-110030

Ph: 9958995830 • www.madeeasy.in

	ADE EAS est Institute for IES, GATE & P	ESE 2019 Main ExaminationSUsMechanical Engineering Paper-I
Solution:		
Gros Net	ss head, <i>H_g</i> = 300 m head,	$H = H_g - h_f$ where h_f = head loss due to friction in penstock
(i)	As we know, \Rightarrow 16 × Discharge through turbin	$= 300 - 0.1 \times 300 = 300 - 30 = 270 \text{ m}$ $P = \eta_0 \times \rho g Q H$ $10^6 = 0.84 \times 1000 \times 9.81 \times Q \times 270$ ne,
(ii)	Length of penstock, Coefficient of friction, Friction factor,	$Q = 7.1913 \text{ m}^3/\text{s}$ L = 2000 m f' = 0.004 $f = 4f' = 4 \times 0.004 = 0.016$
	Now,	$h_f = \frac{fLQ^2}{\frac{\pi^2 g}{8}D^5}$
	0.1 ×	$300 = \frac{0.016 \times 2000 \times 7.1913^2}{\frac{\pi^2 \times 9.81}{8} \times D^5}$
(iii)	Penstock diameter, Velocity coefficient,	D = 1.3544 m $C_v = 0.97$
	Velocity of jet at inlet,	$V_1 = C_V \sqrt{2gH} = 0.97 \times \sqrt{2 \times 9.81 \times 270} = 70.599 \text{ m/s}$
	Now,	$Q = n \times \left(\frac{\pi}{4} d^2 \times V_1\right)$
	7.1	$913 = 4 \times \left(\frac{\pi}{4} \times d^2 \times 70.599\right)$
(iv)	Jet diameter,	<i>d</i> = 0.18 m <i>N</i> = 400 rpm
	Wheel diameter,	D = 1.5 m
		$4 = \frac{\pi DN}{60} = \frac{\pi \times 1.5 \times 400}{60} = 31.416 \text{ m/s}$
		$V_{r1} = V_1 - u = 70.599 - 31.416 = 39.183$ m/s $V_{r2} = kV_{r1}$, where blade velocity coefficient, $k = 0.9$ $= 0.9 \times 39.183 = 35.265$ m/s
	Jet deflection angle, Vane angle at outlet	$\delta = 165^{\circ}$ $\phi = 180^{\circ} - \delta = 180 - 165 - 15^{\circ}$
	V_{r2} c	$\cos\phi = 35.265 \times \cos 15 = 34.063 \text{ m/s}$
	Since, $V_{r2} \cos \phi > u$, ve	locity diagram:

 $V_{x_{2}} \cos \beta_{z} > U$ $V_{w_{2}} = V_{x_{2}} \cos \beta_{z} - U = 3.63$ $H_{\delta} = \frac{(V_{w_{1}} + V_{w_{2}})U}{g} = \frac{187.17}{9}$ $U = \frac{\pi DN}{60} \quad D = \frac{2.67m}{-7}$ $M_{H} = \frac{H_{\delta}}{H_{pe}} = \frac{187.17}{200} = 93.58\%$ $M_{b} = \frac{H_{V}}{H_{pe}} = \frac{187.17}{C_{V}^{2} \times 200} = 97.4\%$

End of Solution

Q.7 (b) What do you mean by compounding in steam and gas turbines ? What are the various methods of compounding in steam and gas turbines? Explain all the methods with neat sketch.

[20 Marks]

Solution:

Compounding of Steam Turbines

If the steam is expanded from the boiler pressure to condenser pressure in single stage then rotor speed exceeded high within the very less time which creates practical complicates.

One row of nozzle followed by one row of blades is called a **stage of turbine**. If steam is allowed to expand from boiler to condenser in a single row of nozzle, the velocity at exit from nozzle is very large. For example, single stage impulse turbine called **De Laval turbine** have high rotational speeds (N). Such large rotational speeds are not properly utilized. It entails large frictional losses and high centrifugal stresses.

Compounding is a method for reducing the rotational speed of the impulse turbine to practical limits.

There are different methods of compounding:

- (i) Velocity compounded impulse turbine
- (ii) Pressure compounded impulse turbine
- (iii) Pressure Velocity compounded impulse turbine

Velocity Compounded Impulse Turbine

In this type of arrangement, velocity gained from the exit of the nozzles is splitted up into many drops through several rows of moving blades and hence named as velocity compounded impulse turbine.

It is also called **curtis staging**. In velocity compounding, all the pressure drop, and enthalpy drop of steam takes place in a single row of nozzles and resultant kinetic energy of steam is absorbed by wheel in number of row of moving blades with guide blades in between two rows.

The kinetic energy of steam jet at nozzle exit is partially converted to shaft work in first

row of moving blades with velocity decreasing from V_1 to V_2 . The existing steam jets are deflected by stationary guide blades to the next moving blade where part of kinetic energy in converted to shaft work.

Velocity compounded stage is used to give lower blade speed ratio and better utilization of kinetic energy of steam.

When exit from the 2nd row is axial then kinetic energy carried by steam is minimum and therefore efficiency becomes maximum compared to the simple impulse turbine the leaving velocity is small and it is about 2% of initial total available energy of steam.

Velocity of blade (u) is same for all rows because of being on same shaft.

ī

$$\frac{V_{r2}}{V_{r1}} = \frac{V_3}{V_2} = \frac{V_{r4}}{V_{r3}} = K_k$$

where, K_{b} is blade friction factor

E

India's Best Institute for IES, GATE & PSUs

(a) **Stationary Nozzle** : Steam expanded through Nozzle from boiler (inlet) pressure to condenser pressure,

> During expansion in nozzle, pressure drops and velocity increases hence KE of steam increases.

- (b) Moving blades : Moving blades absorbs a portion of available kinetic energy (KE) and velocity decreases while moving over moving blades.
- (c) Fixed blades or guide blades: Re-direct the steam without changing its velocity to the next row of moving blades where again work is done and steam leaves the turbine with low velocity

Advantages : Low initial cost since lesser number of stages.

Disadvantages: Efficiency is low and used for driving small machines.

Velocity Compound Impulse Turbine

Pressure Compounded Impulse Turbine

It is also called **Rateau staging**. It corresponds to putting a number of simple impulse stages in series. The total enthalpy drop is divided equally among the stages. The pressure drop occur only in nozzle. There is no pressure drop while steam flows through the blades. The kinetic energy of steam increases in nozzle at expense of pressure drop and it is absorbed by blade in each stage.

Corporate Office: 44-A/1, Kalu Sarai, New Delhi-110016 😡 info@madeeasy.in 💽 www.madeeasy.in

General Awareness and General Intelligence & Reasoning Courses

SSC (JE/CGL)

Classroom Course

Live/Online Course also available

90 Days Course

6-7 days/week • 3 hours classes /day

Batches commencing from **20th Aug, 2019**

Class timing 8.00 AM - 11:00 AM

Venue

Hundred Million IGNOU main Road Saket, Saidulajab Extension, New Delhi-110030

Regular Classroom	Course : Fe	e Structure
Subject	Hours	Fee for all
General Awareness	160 Hrs.	₹10,000
General Intelligence & Reasoning	50 Hrs.	₹4,000
Combined	210 Hrs.	₹12,000

Live/Online Classe	s : Fee Struc	ture
Subject	Hours	Fee for all
General Awareness	160 Hrs.	₹8,000
General Intelligence & Reasoning	50 Hrs.	₹3,200
Combined	210 Hrs.	₹10,000

Ph: 8851176822, 8851176823 • www.ssc.madeeasy.in

	So,			$P_{\text{act}} = 4$ $P_{\text{act}} = 7$	39.025 kJ/i	min			
	OI			$r_{act} = r$.517 KVV				
Ν	ADE EAS	Y Source	e						
•	ESE 20	019 Maiı	ns Test Sei	r ies: Test	-2 (Similar C	<u>)</u> . 6C)			
								End	of Solı
o (1)	A								
8 (D)	Consider	r an ide	al steam	regenera	tive cycle	IN WHICH S	steam e	nters the t	urbin
	3 MPa, 3	00°C ar			condense	er at 10 kP	a. Stea	m is extrac	
	the turbin	ne at U.8	s MPa and		to an op	en teed wa	ater nea	ater. The te	ea w
	leaves tr	ie neate	er as satt	Irated IIC	quid. The a	appropriat	e pump	os are use	a tor
	water lea	iving the	e conden	ser and t	eed water	neater. If t	ine mas	ss flow rate) thro
	the bolle	IS 1 K	g/s, dete	ermine th	e amount	of steam	extract	ea (kg/s),	the
	pump wo	ork (KW)	and tota	I turbine	work (KW)	. Draw the	schem	natic of this	set-
	Saturated	d Water I	Pressure E	ntry	Table A				
	Preseure	Temp	Specif	ic Volume, 1	n ³ /kg	Interna	d Energy,	kJ/kg Sat	
	17233472	Temp.	Liquid	Evap.	Vapour	Liquid	Evap.	Vapour	
	(kPa)	(°C)	0.001000	206 131	206 132	<u> </u>	2375 3	2375 3	
	0.0113	6.98	0.001000	129.20702	129.20802	29.29	2355.69	2384.98	
	1.5	13.03	0.001001	87.97913	87.98013	54.70	2338.63	2393.32	
	2	17.50	0.001001	67.00285	67.00385	73.47	2326.02	2399.48	
	2.5	21.08	0.001002	45.66402	45.66502	101.03	2313.93	2404.40	
	4	28.96	0.001004	34.79915	34.80015	121.44	2293.73	2415.17	
	5	32.88	0.001005	28.19150	28.19251	137.79	2282.70	2420.49	
	7.5	40.29	0.001008	19.23674	19.23775	168.76 191.79	2261.74 2246 10	2430.50	
	15	53.97	0.001010	10.02117	10.02218	225.90	2222.83	2448.73	
	20	60.06	0.001017	7.64835	7.64937	251.35	2205.36	2456.71	
	25	64.97	0.001020	6.20322	6.20424	271.88	2191.21	2463.08	
	30	69.10 75.87	0.001022	3.99243	3.99345	289.18	2179.22 2159.49	2468.40	
	50	81.33	0.001030	3.23931	3.24034	340.42	2143.43	2483.85	
	75	91.77	0.001037	2.21607	2.21711	394.29	2112.39	2496.67	
	100	99.62	0.001043	1.69296	1.69400	417.33	2088.72	2506.06	
	123	103.35	0.001048	1.15828	1.15933	466.92	2052.72	2519.64	
	175	116.06	0.001057	1.00257	1.00363	486.78	2038.12	2524.90	
	200	120.23	0.001061	0.88467	0.88573	504.47	2025.02	2529.49	
	225	124.00	0.001064	0.79219	0.79325	520.45	2013.10	2533.56	
	275	130.60	0.001070	0.65624	0.65731	548.57	1991.95	2540.53	
	300	133.55	0.001073	0.60475	0.60582	561.13	1982.43	2543.55	
	325	136.30 138.88	0.001076	0.56093	0.56201	572.88 583.93	1973.46 1964.98	2546.34	
	375	141.32	0.001081	0.49029	0.49137	594.38	1956.93	2551.31	
	400	143.63	0.001084	0.46138	0.46246	604.29	1949.26	2553.55	
	450	147.93	0.001088	0.41289	0.41398	622.75	1934.87	2557.62	
	550	151.86	0.001093	0.34159	0.34268	655.30	1921.07	2564.47	
	600	158.85	0.001101	0.31457	0.31567	669.88	1897.52	2567.40	
	650	162.01	0.001104	0.29158	0.29268	683.55	1886.51	2570.06	
	700	164.97	0.001108	0.27176	0.27286	696.43 708.62	1876.07	2572.49	
	800	170.43	0.001115	0.23931	0.24043	720.20	1856.58	2576.79	

Pressure	Temp	Enthalpy, kJ/kg			Entropy, kJ/kg-K		
		Sat Liquid Fug		Sat.	Sat.	Eran	Sat.
		Sat. Liquia	Evap.	Vapour	Liquid	Evap.	Vapour
(kPa)	(°C)	hf	hfg	hg	s _f	sfg	sg.
0.6113	0.01	0.00	2501.3	2501.3	0	9.1562	9.156
1.0	6.98	29.29	2484.89	2514.18	0.1059	8.8697	8.975
1.5	13.03	54.70	2470.59	2525.30	0.1956	8.6322	8.827
2.0	17.50	73.47	2460.02	2533.49	0.2607	8.4629	8.723
2.5	21.08	88.47	2451.56	2540.03	0.3120	8.3311	8.643
3.0	24.08	101.03	2444.47	2545.50	0.3545	8.2231	8.577
4.0	28.96	121.44	2432.93	2554.37	0.4226	8.0520	8.474
5.0	32.88	137.79	2423.66	2561.45	0.4763	7.9187	8.395
7.5 40.29		168.77	2406.02	2574.79	0.5763	7.6751	8.251
10 45.81		191.81	2392.82	2584.63	0.6492	7.5010	8.150
15	53.97	225.91	2373.14	2599.06	0.7548	7.2536	8.008
20	60.06	251.38	2358.33	2609.70	0.8319	7.0766	7.908
25	64.97	271.90	2346.29	2618.19	0.8930	6.9383	7.831
30	69.10	289.21	2336.07	2625.28	0.9439	6.8247	7.768
40	75.87	317.55	2319.19	2636.74	1.0258	6.6441	7.670
50	81.33	340.47	2305.40	2645.87	1.0910	6.5029	7.593
75	91.77	384.36	2278.59	2662.96	1.2129	6.2434	7.456
100	99.62	417.44	2258.02	2675.46	1.3025	6.0568	7.359
125	105.99	444.30	2241.05	2685.35	1.3739	5.9104	7.284
150	111.37	467.08	2226.46	2693.54	1.4335	5.7897	7.223
175	116.06	486.97	2213.57	2700.53	1.4848	5.6868	7.171
200	120.23	504.68	2201.96	2706.63	1.5300	5.5970	7.127
225	124.00	520.69	2191.35	2712.04	1.5705	5.5173	7.087
250	127.43	535.34	2181.55	2716.89	1.6072	5.4455	7.052
275	130.60	548.87	2172.42	2721.29	1.6407	5.3801	7.020
300	133.55	561.45	2163.85	2725.30	1.6717	5.3201	6.991
325	136.30	573.23	2155.76	2728.99	1.7005	5.2646	6.965
350	138.88	584.31	2148.10	2732.40	1.7274	5.2130	6.940
375	141.32	594.79	2140.79	2735.58	1.7527	5.1647	6.917
400	143.63	604.73	2133.81	2738.53	1.7766	5.1193	6.895
450	147.93	623.24	2120.67	2743.91	1.8206	5.0359	6.856
500	151.86	640.21	2108.47	2748.67	1.8606	4.9606	6.821
550	155.48	655.91	2097.04	2752.94	1.8972	4.8920	6.789
600	158.85	670.54	2086.26	2756.80	1.9311	4.8289	6.760
650	162.01	684.26	2076.04	2760.30	1.9627	4.7704	6.733
700	164.97	697.20	2066.30	2763.50	1.9922	4.7158	6.708
750	167.77	709.45	2056.98	2766.43	2.0199	4.6647	6.684
800	170.43	721.10	2048.04	2769.13	2.0461	4.6166	6.662

Superheated Vapour Water				Table A						
Temp.	v	u	h	8	v	u	h	8		
(°C)	(m ³ /kg)	(kJ/kg)	(kJ/kg)	(kJ/kg-K)	(m ³ /kg)	(kJ/kg)	(kJ/kg)	(kJ/kg-K)		
	300 kPa (133.55°C)					400 kPa (143.63°C)				
250	0.79636	2728.69	2967.59	7.5165	0.5951	2726.11	2964.16	7.3788		
300	0.87529	2806.69	3069.28	7.7022	0.6548	2804.81	3066.75	7.5661		
400	1.03151	2965.53	3274.98	8.0329	0.7726	2964.36	3273.41	7.8984		
500	1.18669	3129.95	3485.96	8.3250	0.8893	3129.15	3484.89	8.1912		
600	1.34136	3300.79	3703.20	8.5892	1.0056	3300.22	3702.44	8.4557		
700	1.49573	3478.38	3927.10	8.8319	1.1215	3477.95	3926.53	8.6987		
800	1.64994	3662.85	4157.83	9.0575	1.2372	3662.51	4157.40	8.9244		
900	1.80406	3854.20	4395.42	9.2691	1.3529	3853.91	4395.06	9.1361		
1000	1.95812	4052.27	4639.71	9.4689	1.4685	4052.02	4639.41	9.3360		
1100	2.11214	4256.77	4890.41	9.6585	1.584	4256.53	4890.15	9.5255		
1200	2.26614	4467.23	5147.07	9.8389	1.6996	4466.99	5146.83	9.7059		
1300	2.42013	4682.99	5409.03	10.0109	1.8151	4682.75	5408.80	9.8780		
		500 kPa (1	51.86°C)			600 kPa (158.85°C)				
Sat.	0.37489	2561.23	2748.67	6.8212	0.3157	2567.40	2756.80	6.7600		
200	0.42492	2642.91	2855.37	7.0592	0.352	2638.91	2850.12	6.9665		
250	0.47436	2723.50	2960.68	7.2708	0.3938	2720.86	2957.16	7.1816		
300	0.52256	2802.91	3064.20	7.4598	0.43437	2801.00	3061.63	7.3723		
350	0.57012	2882.59	3167.65	7.6328	0.47424	2881.12	3165.66	7.5463		
400	0.61728	2963.19	3271.83	7.7937	0.51372	2962.02	3270.25	7.7078		
500	0.71093	3128.35	3483.82	8.0872	0.59199	3127.55	3482.75	8.0020		
600	0.80406	3299.64	3701.67	8.3521	0.66974	3299.07	3700.91	8.2673		
700	0.89691	3477.52	3925.97	8.5952	0.74720	3477.08	3925.41	8.5107		
800	0.98959	3662.17	4156.96	8.8211	0.82450	3661.83	4156.52	8.7367		
900	1.08217	3853.63	4394.71	9.0329	0.90169	3853.34	4394.36	8.9485		
1000	1.17469	4051.76	4639.11	9.2328	0.97883	4051.51	4638.81	9.1484		
1100	1.26718	4256.29	4889.88	9.4224	1.05594	4256.05	4889.61	9.3381		
1200	1.35964	4466.76	5146.58	9.6028	1.13302	4466.52	5146.34	9.5185		
1300	1.45210	4682.52	5408.57	9.7749	1.21009	4682.28	5408.34	9.6906		
	800 kPa (170.43°C)					1000 kPa (179.91°C)				
Sat.	0.24043	2576.79	2769.13	6.6627	0.19444	2583.64	2778.08	6.5864		
200	0.26080	2630.61	2839.25	6.8158	0.20596	2621.90	2827.86	6.6939		
250	0.29314	2715.46	2949.97	7.0384	0.23268	2709.91	2942.59	6.9246		
300	0.32411	2797.14	3056.43	7.2327	0.25794	2793.21	3051.15	7.1228		
350	0.35439	2878.16	3161.68	7.4088	0.28247	2875.18	3157.65	7.3010		
400	0.38426	2959.66	3267.07	7.5715	0.30659	2957.29	3263.88	7.4650		
500	0.44331	3125.95	3480.60	7.8672	0.35411	3124.34	3478.44	7.7621		
600	0.50184	3297.91	3699.38	8.1332	0.40109	3296.76	3697.85	8.0289		

Supe	rheated	Vapour	Water	Table A						
T	v	u	h	s	v	u	h	s		
Temp.	(m ³ /kg)	(kJ/kg)	(kJ/kg)	(kJ/kg-K)	(m ³ /kg)	(kJ/kg)	(kJ/kg)	(kJ/kg-K)		
(°C)		2000 kPa	(212.42°C)	2500 kPa (223.99°C)					
Sat.	0.09963	2600.26	2799.51	6.3408	0.07998	2603.13	2803.1	6.2574		
250	0.11144	2679.58	2902.46	6.5452	0.08700	2662.55	2880.1	6.4084		
300	0.12547	2772.56	3023.50	6.7663	0.09890	2761.56	3008.81	6.6437		
350	0.13857	2859.81	3136.96	6.9562	0.10976	2851.84	3126.24	6.8402		
400	0.15120	2945.21	3247.60	7.1270	0.12010	2939.03	3239.28	7.0147		
450	0.16353	3030.41	3357.48	7.2844	0.13014	3025.43	3350.77	7.1745		
500	0.17568	3116.20	3467.55	7.4316	0.13998	3112.08	3462.04	7.3233		
600	0.19960	3290.93	3690.14	7.7023	0.15930	3287.99	3686.25	7.5960		
700	0.22323	3470.99	3917.45	7.9487	0.17832	3468.80	3914.59	7.8435		
800	0.24668	3657.03	4150.40	8.1766	0.19716	3655.30	4148.20	8.0720		
900	0.27004	3849.33	4389.40	8.3895	0.21590	3847.89	4387.64	8.2853		
1000	0.29333	4047.94	4634.61	8.5900	0.23458	4046.67	4633.12	8.4860		
1100	0.31659	4252.71	4885.89	8.7800	0.25322	4251.52	4884.57	8.6761		
1200	0.33984	4463.25	5142.92	8.9606	0.27185	4462.08	5141.70	8.8569		
1300	0.36306	4678.97	5405.10	9.1328	0.29046	4677.80	5403.95	9.0291		
	3000 kPa (233.90°C)					4000 kPa (250.40°C)				
Sat.	0.06668	2604.10	2804.14	6.1869	0.04978	2602.27	2801.38	6.0700		
250	0.07058	2644.00	2855.75	6.2871	_		_			
300	0.08114	2750.05	2993.48	6.5389	0.05884	2725.33	2960.68	6.3614		
350	0.09053	2843.66	3115.25	6.7427	0.06645	2826.65	3092.43	6.5820		
400	0.09936	2932.75	3230.82	6.9211	0.07341	2919.88	3213.51	6.7689		
450	0.10787	3020.38	3344.00	7.0833	0.08003	3010.13	3330.23	6.9362		
500	0.11619	3107.92	3456.48	7.2337	0.08643	3099.49	3445.21	7.0900		
600	0.13243	3285.03	3982.34	7.5084	0.09885	3279.06	3674.44	7.3688		
700	0.14838	3466.59	3911.72	7.7571	0.11095	3462.15	3905.94	7.6198		
800	0.16414	3653.58	4146.00	7.9862	0.12287	3650.11	4141.59	7.8502		
900	0.17980	3846.46	4385.87	8.1999	0.13469	3843.59	4382.34	8.0647		
1000	0.19541	4045.40	4631.63	8.4009	0.14645	4042.87	4628.65	8.2661		
1100	0.21098	4250.33	4883.26	8.5911	0.15817	4247.96	4880.63	8.4566		
1200	0.22652	4460.92	5140.49	8.7719	0.16987	4458.60	5138.07	8.6376		
1300	0.24206	4676.63	5402.81	8.9442	0.18156	4674.29	5400.52	8.8099		

[20 Marks]

Solution:

Ideal Regenerative Steam Cycle

enthalpy of steam entering OFWH from turbine Process 1 - 3 isentropic $S_1 = S_3$ $6.5389 = [S_f + x_3 S_{fg}]_{@10 \text{ kPa}}$ At 10 kPa (From table) $s_f = 0.6492 \text{ kJ/kgK}$ $s_{fa} = 7.5010 \text{ kJ/kgK}$ $h_f = 191.81 \text{ kJ/kg}$ $h_{fa} = 2392.82 \text{ kJ/kg}$ $v_f = 0.001010 \text{ m}^3/\text{kg}$ $6.5389 = 0.6492 + x_3(7.501)$ $x_2 = 0.78518$ (dryness fraction of steam entering condenser) $h_3 = h_f + x_3 h_{fg}$ $h_3 = 191.81 + 0.78518 \times (2392.82)$ $h_3 = 2070.6 \text{ kJ/kg}$ enthalpy of steam entering condenser Let \dot{m} be the mass of steam per second extracted from turbine for regeneration. So, $(1 - \dot{m})$ kg/s mass flow through condenser. Energy Balance at open feed water heater (OFWH) - *ṁ* kg/s OFWH 1 kg/s (6) (5) ⊤(1 – *ṁ*)kg/s $\dot{m}h_2 + (1 - \dot{m})h_5 = h_6$ $h_5 = (h_f)_{@10 \text{ kPa}} + (800 - 10) \times V_{f@10 \text{ kPa}}$ $h_5 = 191.81 + 790 \times 0.00101$ $h_5 = 192.6079 \text{ kJ/kg}$ $h_5 = h_{f@0.8 \text{ MPa}} = 721.10 \text{ kJ/kg}$ $\therefore \dot{m}(2714.21) + (1 - \dot{m})(192.6079) = 721.10$ $\dot{m} = 0.20958 \text{ kg/s}$ mass of steam extracted from Turbine for regeneration $W_{\tau} = 1 \times (h_1 - h_2) + (1 - \dot{m}) \times (h_2 - h_3)$ Total Turbine Work, $W_{\tau} = (2993.48 - 2714.21) + (1 - 0.20958) \times (2714.21 - 2070.6)$ $W_{\tau} = 787.992 \text{ kW} \approx 788 \text{ kW}$ $W_{P} = W_{P1} + W_{P2} = (1 - \dot{m})(\Delta P_1) \times v_{f4} + 1 \times (\Delta P_2) \times v_{f6}$ Total pump work, = (1 - 0.20958) × (800 - 10) × 0.00101 $+ 1 \times (3000 - 800) \times 0.001115$ $W_{\rm D} = 3.083 \text{ kW}$

MADE EASY Source

- ESE 2019 Mains Test Series: Similar to Q.7(a), Test-14
- MADE EASY Mains Class Notes
- ESE 2019 Mains Workbook: Similar to Q.14, Page 143 discussed in Class
- MADE EASY Classnotes

End of Solution

Q.8 (c) A Brayton cycle works between 1 bar, 300 K and 5 bar 1250 K. There are two stages of compression with perfect inter-cooling and two stages of expansion. The work out of first expansion stage is being used to drive the two compressors. The air from the first stage turbine is again heated to 1250 K and expanded. Calculate the power output of free power turbine and cycle efficiency without and with a perfect heat exchanger and compare them. Also calculate the percentage improvement in the efficiency because of the addition of heat exchangers.

[20 Marks]

Launched Titles

State Engineering Services Examinations

Previous Years' CIVIL ENGINEERING **OBJECTIVE** SOLVED PAPERS OF

- APSC • BPSC RPSC
 - OPSC KPSC
- MPPSC
 TNPSC HPPSC
 UKPSC
 Kerala PSC

MPSC

• 24 Solved papers of 11 Public Service Commissions. • Full solved with detailed explanations.

• Highly useful for ESE, GATE, PSUs, SSC-JE and other State Engineering Services exams.

State Engineering Services Examinations

Previous Years' CIVIL ENGINEERING **CONVENTIONAL SOLVED PAPERS OF**

- BPSC
- RPSC
 - OPSC
- GPSC MPPSC • KPSC • HPSC
- JPSC Kerala PSC
- MPSC UKPSC

- 24 **Solved Papers** of 11 PSCs
 - Detailed step by step solutions in lucid language with graphical representation. Highly useful for ESE, SSC-JE and other State Engineering Services Examinations

Available on all major book stalls across India.

🗯 www.madeeasypublications.org 🛛 amazon.in 🛛 Flipkart 🔀 Ph: 011-45124660, 08860378007

Pressure ratio across turbine 1

$$r_{\text{PT1}} = \left(\frac{T_5}{T_6}\right)^{\frac{\gamma}{\gamma-1}} = \left(\frac{1250}{1094.9}\right)^{\frac{1.4}{0.4}} = 1.59$$

Since total pressure ratio is 5, so pressure ratio across free power turbine is

$$r_{\text{PT2}} = \frac{5}{1.59} = 3.14465$$

Power of free power turbine

$$\begin{split} W_{T2} &= c_p (T_7 - T_8) \\ \frac{T_7}{T_8} &= (r_{PT2})^{\frac{\gamma - 1}{\gamma}} = (3.14465)^{0.4/1.4} \\ T_8 &= \frac{1250}{1.3872} = 901.1 \text{K} \\ W_{T2} &= c_p \times (1250 - 901.1) = 348.9 c_p \text{ kJ/kgK} \\ c_p &= 1.005 \text{ kJ/kgK} \end{split}$$

.... For air,

So, power output of free power turbine

 $W_{T2} = 348.9 \times 1.005 = 350.644 \text{ kJ/kg}$

Heat added

(i) Without regeneration

$$\begin{aligned} Q_1 &= c_p (T_5 - T_4) + c_p (T_7 - T_6) \\ &= c_p (1250 - 377.5 + 1250 - 1094.9) \\ &= 1027.55 c_p \, \text{kJ/kg} \end{aligned}$$

(ii) With perfect regeneration
$$[T_a = T_8]$$

 $Q_2 = c_p(T_5 - T_a) + c_p(T_7 - T_6)$
 $= c_p(1250 - 901.1 + 1250 - 1094.9)$
 $= 504 c_p \text{ kJ/kg}$

Efficiency

(i) Without regeneration

With perfect regeneration (ii)

$$\eta_2 = \frac{W_{T1} + W_{T2} - W_{TC}}{Q_2} \qquad \qquad W_{T1} = W_{TC}$$
$$\eta_2 = \frac{W_{T2}}{Q_2} = \frac{348.9 c_p}{504 c_p} \times 100 = 69.22\%$$

% improvement in efficiency,

Corporate Office: 44-A/1, Kalu Sarai, New Delhi-110016 🛛 info@madeeasy.in 💽 www.madeeasy.in

$$= \frac{\eta_2 - \eta_1}{\eta_1} \times 100 = \frac{69.22 - 33.97}{33.97} \times 100$$
$$= 103.768\%$$

MADE EASY Source

- ESE 2019 Mains Test Series: Similar to Q.6(c), Test-14
- MADE EASY Classnotes

210 Totoemiculate quessive for minimum weak up by compussor with portect intercooling We = Wat + Was = Cp [T3-T1 + T4# T3] = $Cp^{\pm}T_1 \cdot \left[\frac{T_1}{T_1} - 1 + \frac{T_4}{T_1} - \frac{T_3}{T_1}\right]$ > Perfect Intelecoling Ti=T3 We = Cp. Ti. $\frac{T_2}{T_1} + \frac{T_4}{T_3} - 2$ $\frac{T_2}{T_1} = \left(\frac{P_1}{P_1}\right)^{\frac{P_1}{V}} \qquad \text{Jet} \quad \left(\frac{Y_1}{Y} = x\right)$ $\frac{T_{2}}{T_{1}} = \left(\frac{P_{1}}{P_{1}}\right)^{2} \qquad \frac{P_{4}}{P_{3}} = \left(\frac{P_{2}}{P_{1}}\right)^{2}.$ $W_{C} = Cp \cdot T_{1} \cdot \left[\frac{R^{2}}{R^{2}} + \frac{R^{2}}{R^{2}} - 2 \right]$ Your We to be min duc =0 $\frac{\mathcal{X} \cdot \mathcal{P}_{L}^{X-1}}{\mathcal{P}_{L}^{u}} + \frac{\mathcal{P}_{D}^{u} \left(\mathcal{X}\right)}{\mathcal{P}_{L}^{u+1}} = 0$ $\frac{\mathcal{P}_{L}^{u+1}}{\mathcal{P}_{L}^{u}} = \frac{\mathcal{P}_{D}^{u}}{\mathcal{P}_{L}^{u+1}} \Rightarrow \mathcal{P}_{L}^{u} = \mathcal{D}_{L}^{u} \mathcal{P}_{L}^{u}$ $\frac{\mathcal{P}_{L}^{u}}{\mathcal{P}_{L}^{u}} = \frac{\mathcal{P}_{D}^{u}}{\mathcal{P}_{L}^{u+1}} \Rightarrow \frac{\mathcal{P}_{L}^{u}}{\mathcal{P}_{L}^{u}} = \frac{\mathcal{P}_{D}^{u}}{\mathcal{P}_{L}^{u}}$

