

# GATE 2019 Electrical Engineering

Detailed Solutions of Questions

## Date of Exam : 9/2/2019

Scroll down to view

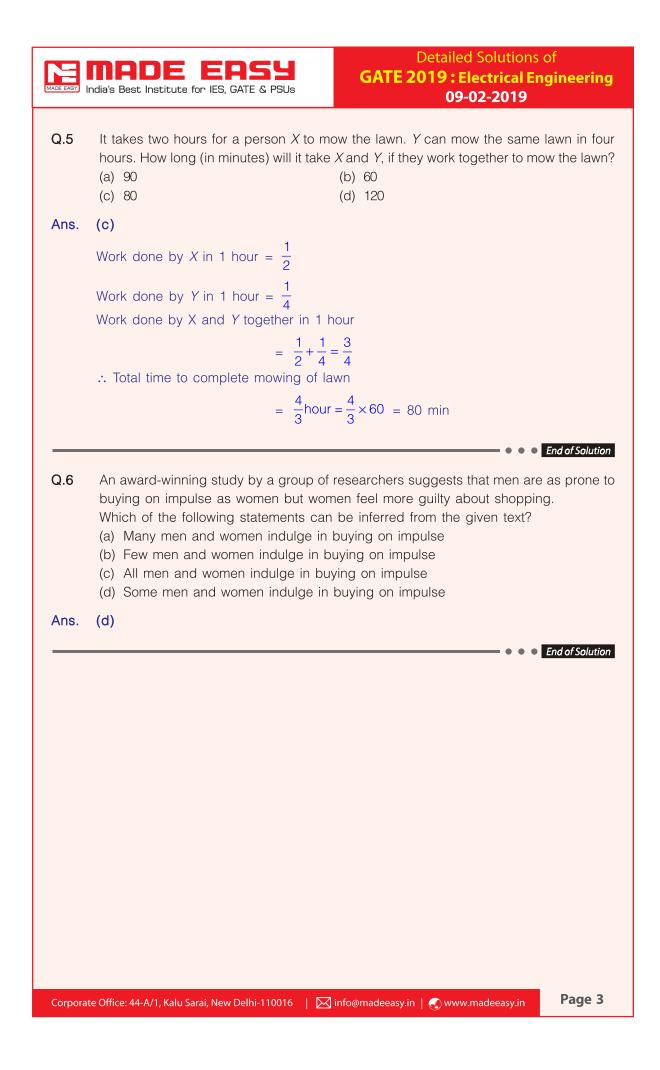


Corporate Office: 44-A/1, Kalu Sarai, New Delhi - 110016 | Ph: 011-45124612, 9958995830 Delhi | Hyderabad | Noida | Bhopal | Jaipur | Lucknow | Indore | Pune | Bhubaneswar | Kolkata | Patna



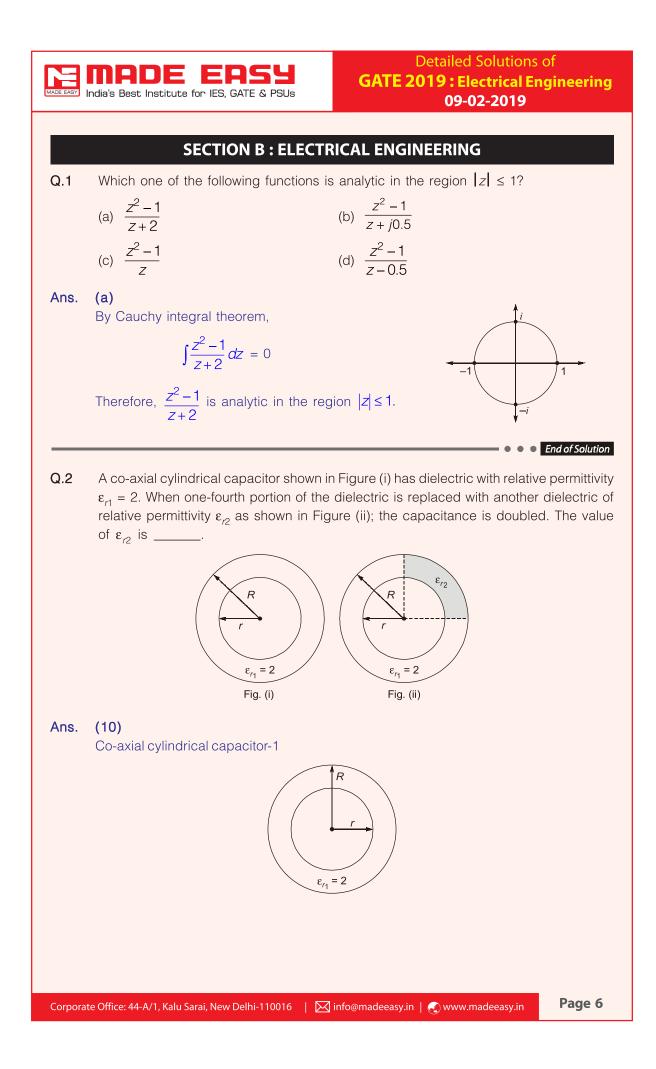
#### **Features :**

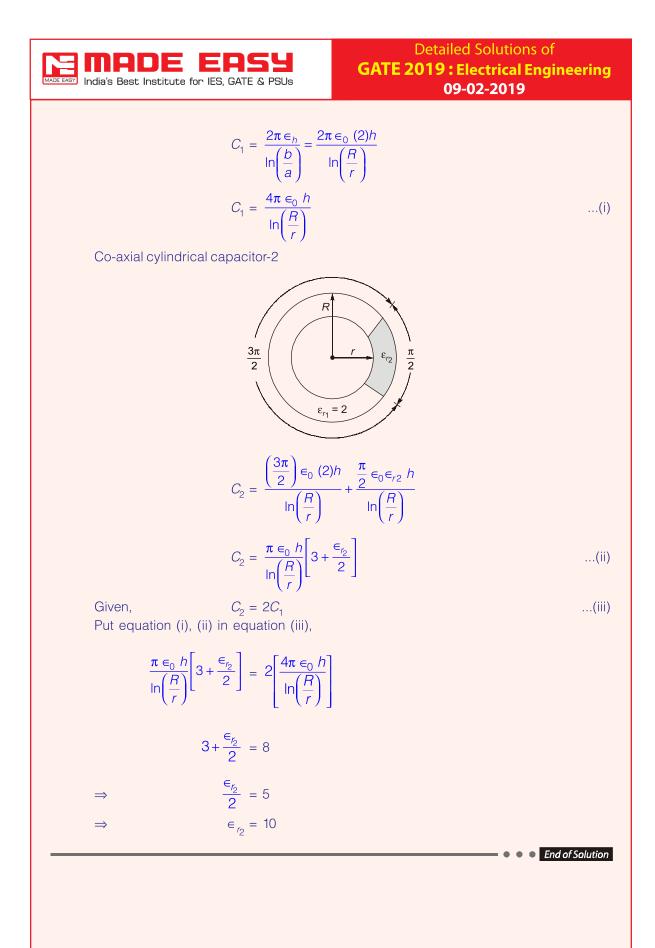
- Very useful to develop numerical solving approach & improving writing skills.
- Special focus on improving answer layout specially for theory questions.
- Classes will be delivered by senior faculties.
- Updated Mains workbook for every subject having varied practice question sets.
- Test series will be conducted on every Sunday in synchronisation with the subject taught in class.
- Discussion on probable questions.
- Comprehensive and in-depth discussion on variety of conventional questions, thus strengthening fundamental concepts.


| Batch<br>Details | Batch<br>DetailsCourse Duration<br>90 days   300 - 350 hours |             |             | <b>Class Duration</b><br>a week and 6-7 hours a day | Test Series<br>Every Sunday |  |
|------------------|--------------------------------------------------------------|-------------|-------------|-----------------------------------------------------|-----------------------------|--|
| Streams          | Batch Code                                                   | Batch Comme | encing Date | Venue (Delhi)                                       | Timing                      |  |
| ME               | A                                                            | 20-Feb      | 2019        | Ghitorni Centre                                     | 7:30 AM to 1:30 PM          |  |
| ME               | В                                                            | 20-Feb-     | 2019        | Ghitorni Centre                                     | 3:00 PM to 9:00 PM          |  |
| ME               | С                                                            | 20-Feb      | 2019        | Saket Centre                                        | 7:30 AM to 1:30 PM          |  |
| CE               | A                                                            | 21-Feb·     | 2019        | Ignou Road Centre                                   | 7:30 AM to 1:30 PM          |  |
| CE               | В                                                            | 21-Feb·     | 2019        | Kalu Sarai Centre                                   | 3:00 PM to 9:00 PM          |  |
| EE               | A                                                            | 22-Feb      | 2019        | Lado Sarai Centre                                   | 7:30 AM to 1:30 PM          |  |
| EE               | В                                                            | 22-Feb      | 2019        | Kalu Sarai Centre                                   | 3:00 PM to 9:00 PM          |  |
| EC               | A                                                            | 22-Feb-     | 2019        | Lado Sarai Centre                                   | 7:30 AM to 1:30 PM          |  |

| <b>Fee</b><br>Structure | Program                                                                    | <b>Ex. MADE EASY Students</b><br>Enrolled in Postal, Rank Improvement, Mains, GS,<br>Post-GATE, ESE+ GATE, GATE Batches | Non MADE EASY<br>students   |  |
|-------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------|--|
|                         | Mains Exclusive Batch<br>(Inclusive of ESE-2019 Mains Offline Test Series) | ₹ 18,500 ₹ 22,50                                                                                                        |                             |  |
|                         | ESE 2019 Mains Offline Test Series                                         | Rs. 3,500/- Rs. 2,500/-                                                                                                 | Rs. 4,500/- Rs. 3,500/-     |  |
|                         |                                                                            | <b>Rs. 1000/-</b> Discount on test series va                                                                            | alid till <b>15-02-2019</b> |  |

Corporate office : 44-A/1, Kalu Sarai, New Delhi - 1100 16 🕓 011-45124612, 9958995830


#### **Click here to enroll**


| Q.1  | Newspapers are a constant source of<br>is that I read many of th<br>(a) even, quite<br>(c) even, too                                   | of delight and recreation for me. The troub<br>nem.<br>(b) only, too<br>(d) only, quite                                                             |
|------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Ans. | (b)                                                                                                                                    |                                                                                                                                                     |
| Q.2  | The passengers were angry<br>(a) towards<br>(c) about                                                                                  | <ul> <li>• • • End of Solution</li> <li>the airline staff about the delay.</li> <li>(b) on</li> <li>(d) with</li> </ul>                             |
| Ans. | <b>(d)</b><br>Angry on an issue<br>angry with someone.                                                                                 | ••• End of Solution                                                                                                                                 |
| Q.3  | The missing number in the given s<br>(a) 4096<br>(c) 3375                                                                              | sequence 343, 1331,, 4913 is<br>(b) 2744<br>(d) 2197                                                                                                |
| Ans. | (d)<br>7 <sup>3</sup> , 11 <sup>3</sup> ,, 17 <sup>3</sup><br>∵ 7, 11, 13 and 17 are all prime n<br>The series is cube of these number | ers.                                                                                                                                                |
| Q.4  | I am not sure if the bus that has be<br>(a) fill<br>(c) accommodate                                                                    | <ul> <li>         End of Solution     </li> <li>         een booked will be able to all the student (b) sit         (d) deteriorate     </li> </ul> |
| Ans. | (c)                                                                                                                                    |                                                                                                                                                     |
|      |                                                                                                                                        | • • End of Solution                                                                                                                                 |
|      |                                                                                                                                        |                                                                                                                                                     |
|      |                                                                                                                                        |                                                                                                                                                     |



| MADE EASY   | India's Best Institute for IES, GATE & PSUs                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Detailed Solutions of<br>GATE 2019 : Electrical Engineering<br>09-02-2019                                                                                                                                                                                                                                 |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Q.7         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | , 4}, we construct a set $Z$ of all possible fraction and the denominators belong to set $Y$ . The product kimum values in the set Z is                                                                                                                                                                   |
|             | (a) $\frac{1}{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (b) $\frac{1}{12}$                                                                                                                                                                                                                                                                                        |
|             | (c) $\frac{3}{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (d) $\frac{1}{8}$                                                                                                                                                                                                                                                                                         |
| Ans.        | (c)<br>$X = \{1, 2, 3\}$ $Y = \{2, 3, 4\}$ $Z = \begin{cases} \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{2}{3}, \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                            | $\frac{2}{4}, \frac{3}{2}, \frac{3}{4}$                                                                                                                                                                                                                                                                   |
|             | Minimum value in $\{Z\} = \frac{1}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                           |
|             | Maximum value in $\{Z\} = \frac{3}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                           |
|             | $Product = \frac{1}{4} \times \frac{3}{2} = \frac{3}{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                           |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                           |
| Q.8         | How many integers are there between                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | • • • End of Solution<br>100 and 1000 all of whose digits are even?                                                                                                                                                                                                                                       |
| Q.8         | How many integers are there between<br>(a) 90<br>(c) 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                           |
| Q.8<br>Ans. | (a) 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>100 and 1000 all of whose digits are even?</li> <li>(b) 60</li> <li>(d) 80</li> <li>an be 3 digit numbers only</li> <li>can be filled (0, 2, 4, 6, 8)</li> <li>only 4 digits can be filled (2, 4, 6, 8)</li> </ul>                                                                               |
|             | <ul> <li>(a) 90</li> <li>(c) 100</li> <li>(c)</li> <li>All numbers between 100 and 1000 ca</li> <li>For units and tens digits = 5 integers</li> <li>For hundreds digit = 0 can't be filled</li> <li>∴ Total choices = 4 × 5 × 5 = 100 number</li> <li>Consider five people - Mita, Ganga, Rek</li> <li>Rekha and Lakshmi. Lakshmi is taller</li> <li>the following conclusions are true?</li> <li>1. Lakshmi is taller than Rekha</li> <li>2. Rekha is shorter than Mita</li> <li>3. Rekha is taller than Sana</li> </ul> | <ul> <li>100 and 1000 all of whose digits are even?</li> <li>(b) 60</li> <li>(d) 80</li> <li>an be 3 digit numbers only</li> <li>can be filled (0, 2, 4, 6, 8)</li> <li>only 4 digits can be filled (2, 4, 6, 8)</li> </ul>                                                                               |
| Ans.        | <ul> <li>(a) 90</li> <li>(c) 100</li> <li>(c)</li> <li>All numbers between 100 and 1000 ca</li> <li>For units and tens digits = 5 integers</li> <li>For hundreds digit = 0 can't be filled</li> <li>∴ Total choices = 4 × 5 × 5 = 100 number</li> <li>Consider five people - Mita, Ganga, Rek</li> <li>Rekha and Lakshmi. Lakshmi is taller</li> <li>the following conclusions are true?</li> <li>1. Lakshmi is taller than Rekha</li> <li>2. Rekha is shorter than Mita</li> </ul>                                       | <ul> <li>100 and 1000 all of whose digits are even?</li> <li>(b) 60</li> <li>(d) 80</li> <li>an be 3 digit numbers only can be filled (0, 2, 4, 6, 8) only 4 digits can be filled (2, 4, 6, 8)</li> <li>orrs</li> <li><i>End of Solution</i> scha, Lakshmi and Sana. Ganga is taller than both</li> </ul> |

|         | MADE EASY<br>India's Best Institute for IES, GATE & PSUs                                                                                                                                                                                                                                                                           | Detailed Solutions of<br>GATE 2019 : Electrical Engir<br>09-02-2019               | neering                 |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------|
| Ans.    | <ul> <li>(d)</li> <li>If '&gt;' Implies taller than</li> <li>1. Ganga &gt; Rekha, Ganga &gt; Lakshm</li> <li>2. Lakshmi &gt; Sana</li> <li>3. Mita &gt; Ganga</li> <li>⇒ Mita &gt; Ganga &gt; Lakshmi &gt; Sana</li> <li>⇒ Mita &gt; Ganga &gt; Rekha</li> <li>Statement 2 is correct.</li> <li>Statement 4 is correct.</li> </ul> |                                                                                   | ofSolution              |
| Q.10    | The ratio of the number of boys and g<br>The total percentage of candidates who<br>of girls who passed is 90. The percer<br>(a) 72.50<br>(c) 80.50                                                                                                                                                                                 | rls who participated in an examination<br>passed the examination is 80 and the pe | n is 4 : 3.<br>rcentage |
| Ans.    | (a)Let,Number of boys = 4.andNumber of girls = 3.                                                                                                                                                                                                                                                                                  | x                                                                                 |                         |
|         | Total passed candidates = $\frac{1}{1}$<br>Number of girls candidates who passe                                                                                                                                                                                                                                                    |                                                                                   |                         |
|         |                                                                                                                                                                                                                                                                                                                                    | $\frac{90}{00} \times 3x = \frac{27}{10}x$                                        |                         |
|         |                                                                                                                                                                                                                                                                                                                                    | d<br>umber of girls who passed<br>Number of boys who passed                       |                         |
|         | $\Rightarrow$ Number of boys who passed = $\left($                                                                                                                                                                                                                                                                                 | $\frac{28}{5} - \frac{27}{10} \bigg) x = \frac{56 - 27}{10} x = \frac{29}{10} x$  |                         |
|         | % of boys = $-1$                                                                                                                                                                                                                                                                                                                   | $\frac{29}{0 \times 4x} x \times 100 = 72.5\%$                                    |                         |
|         | Option (a) is correct.                                                                                                                                                                                                                                                                                                             |                                                                                   | of Solution             |
|         |                                                                                                                                                                                                                                                                                                                                    |                                                                                   |                         |
| Corpora | te Office: 44-A/1, Kalu Sarai, New Delhi-110016 \mid 🖂                                                                                                                                                                                                                                                                             | info@madeeasy.in   🜏 www.madeeasy.in                                              | Page 5                  |







- Quality Teaching
- Comprehensive Study Material
- Well Planned Curriculum
- Professionally Managed

Announcing

# **NEW BATCHES** for **ESE 2020** & **GATE 2020**

1 Yr/2Yrs CLASSROOM COURSES

···· Early start ···· Extra edge

## **Batches Commencement Dates**

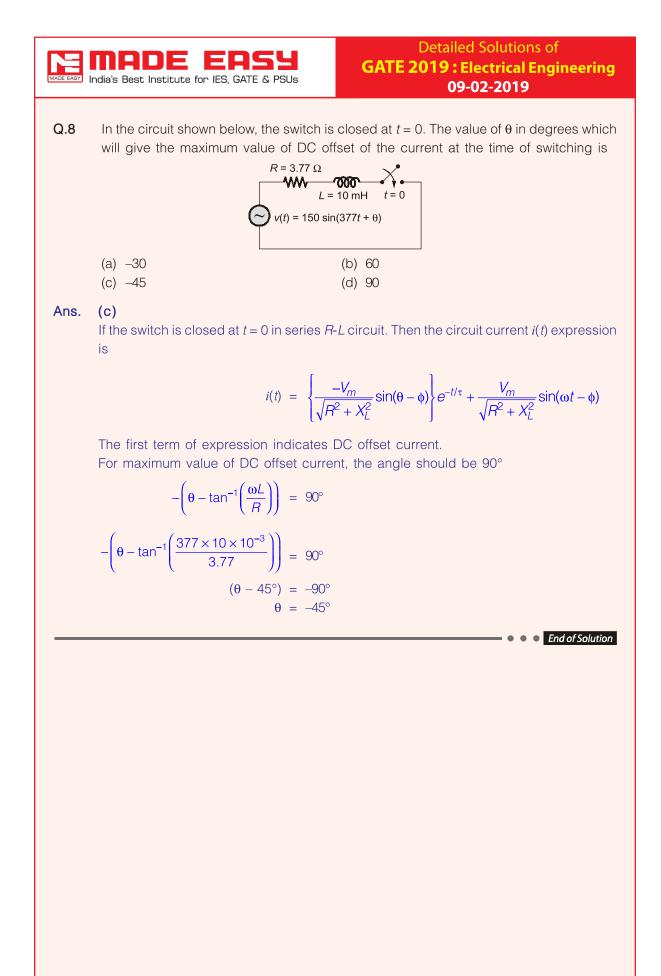
| <b>Regular Batches</b> |               | Weekend Batches |             |             |
|------------------------|---------------|-----------------|-------------|-------------|
| Delhi                  |               |                 | Delhi No    |             |
| CE                     | 14-Feb-2019   | CE              |             |             |
| ME                     | 14-Feb-2019   | ME              | NA          | 03-Feb-2019 |
| EE                     | 18-Feb-2019   |                 | 23-Feb-2019 |             |
| EC                     | Mid-Feb, 2019 |                 | 23-Feb-2019 | 16-Feb-2019 |
| CS                     | 16-May-2019   |                 | 17-Feb-2019 |             |

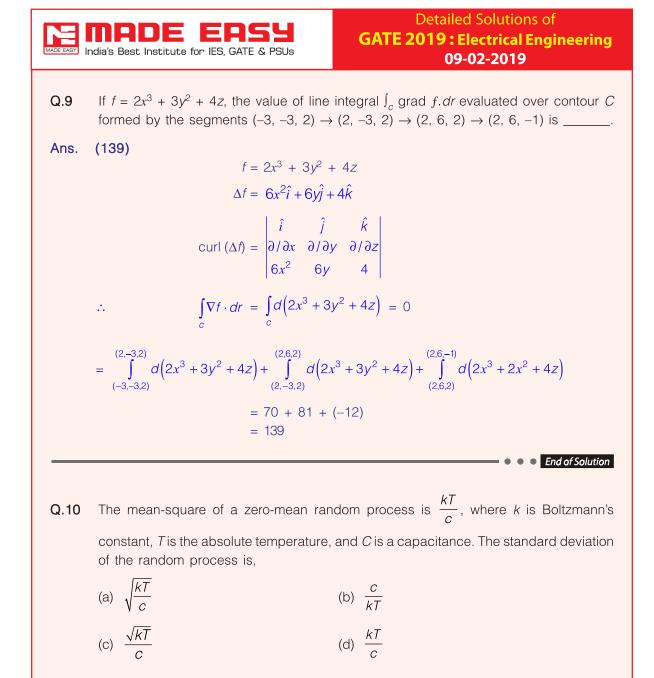
## Rest of India (Regular Batches)

| <b>Patna</b> 25-Feb'19 | <b>Lucknow</b> | <b>Bhopal</b> | <b>Indore</b> | <b>Jaipur</b> |
|------------------------|----------------|---------------|---------------|---------------|
|                        | 20-Feb'19      | 25-Feb'19     | 20-Feb'19     | 17-Feb'19     |
| <b>Pune</b>            | Hyderabad      | Bhubaneswar   | Kolkata       |               |
| 11-Feb'19              | 17-Feb'19      | 25-Feb'19     | 2-Mar'19      |               |

## **Admission open**

Corporate office : 44-A/1, Kalu Sarai, New Delhi - 1100 16 🕓 011-45124612, 9958995830 Bhopal Lucknow Indore Bhubaneswar Delhi Hyderabad Noida Jaipur Pune Kolkata Patna Centres ) 011-45124612


09919111168 0731-4029612

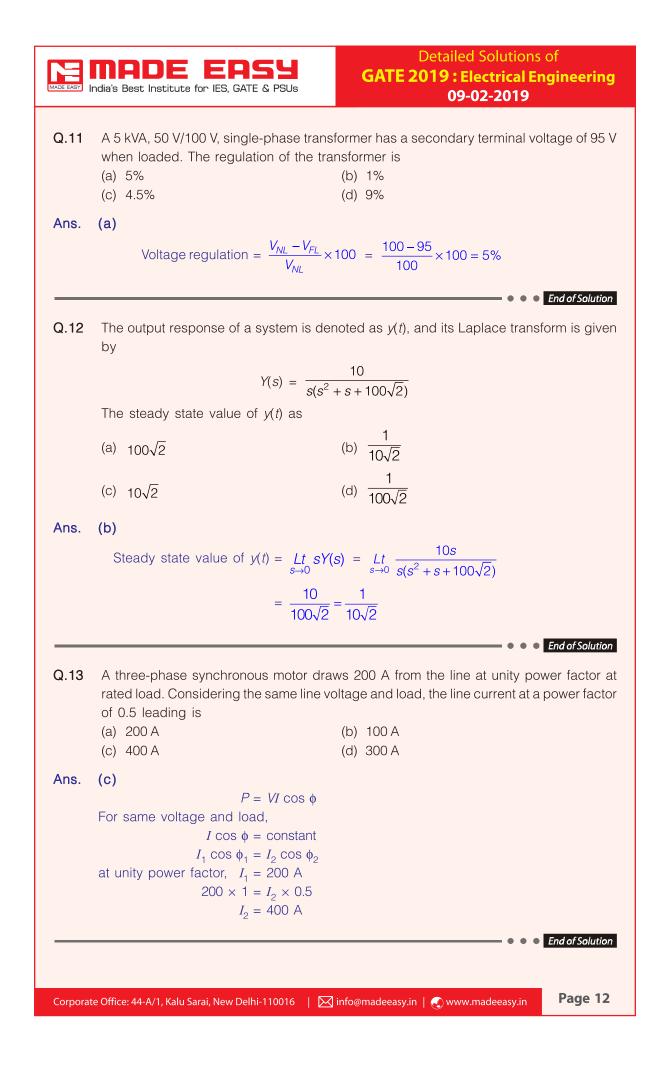

0612-2356615

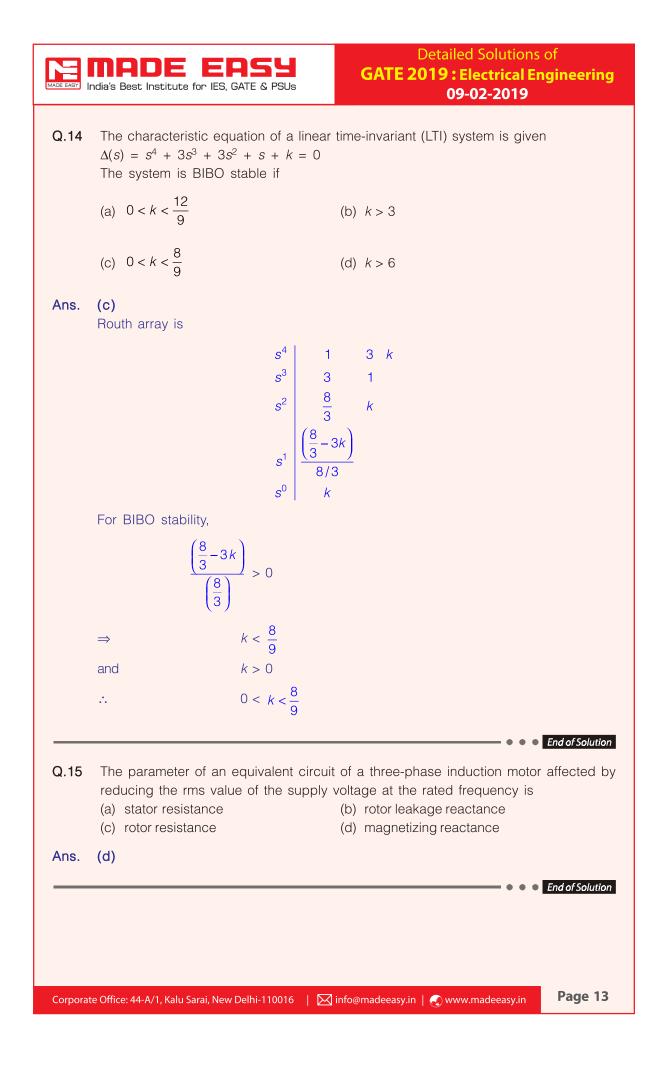
040-66774612

|      | India's Best Institute for IES, GATE & PSUs                                                                  | Detailed Solutions of<br>GATE 2019 : Electrical Engineering<br>09-02-2019                                                                  |
|------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Q.3  |                                                                                                              | connected to a balanced three-phase 50 Hz AC<br>current of the rectifier is constant, the lowest<br>current is<br>(b) 100 Hz               |
|      | (c) 300 Hz                                                                                                   | (d) 150 Hz                                                                                                                                 |
| Ans. | (a)<br>For 6 pulse converter harmonics prese<br>Lowest order harmonic = 5<br>Lowest harmonic frequency = 5 × | 50 = 250 Hz                                                                                                                                |
| Q.4  | <i>M</i> is a 2 $\times$ 2 matrix with eigenvalues (a) -2 and -3 (c) 4 and 9                                 | <ul> <li>• • End of Solution</li> <li>4 and 9. The eigenvalues of M<sup>2</sup> are</li> <li>(b) 2 and 3</li> <li>(d) 16 and 81</li> </ul> |
| Ans. | (d)<br>M is a 2 × 2 matrix with eigen values<br>The eigen values of $M^2$ are 16 and 81                      |                                                                                                                                            |
| Q.5  | The open loop transfer function of a $G(s) = \frac{1}{2}$                                                    | ••• End of Solution<br>unity feedback system is given by<br>$\frac{\pi e^{-0.25s}}{s}$                                                     |
|      |                                                                                                              | s<br>asses through the negative real axis at the point.<br>(b) (–0.5, j0)<br>(d) (–0.75, j0)                                               |
| Ans. | (b)                                                                                                          |                                                                                                                                            |
|      | $\angle G(j\omega) = -0.25 \times \frac{180}{3}$                                                             | $\frac{\partial \omega_{\rho c}}{\pi} - 90^\circ = -180^\circ$                                                                             |
|      | $-0.25 \times \frac{180\omega_{pc}}{\pi} = -90^{\circ}$                                                      |                                                                                                                                            |
|      | $\omega_{pc} = \frac{4\pi}{2} = 2\pi$                                                                        |                                                                                                                                            |
|      | $\left G(j\omega)\right _{\omega=\omega_{pc}} = \left \frac{\pi e^{-0.25s}}{s}\right _{\omega=0}$            | $=\frac{\pi}{2\pi}=0.5$                                                                                                                    |
|      | ∴ Point is (-0.5, <i>j</i> 0).                                                                               |                                                                                                                                            |
|      |                                                                                                              | • • End of Solution                                                                                                                        |
|      |                                                                                                              |                                                                                                                                            |
|      |                                                                                                              |                                                                                                                                            |

|        | India's Best Institute for IES, GATE & PSUs                                                                                                                                                                                             | Detailed Solutions<br>GATE 2019 : Electrical Er<br>09-02-2019 |                 |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------|
| Q.6    | Given, $V_{gs}$ is the gate-source voltage,<br>threshold voltage of an enhancement ty<br>to be biased in saturation are<br>(a) $V_{gs} > V_{th}$ ; $V_{ds} \le V_{gs} - V_{th}$<br>(c) $V_{gs} > V_{th}$ ; $V_{ds} \ge V_{gs} - V_{th}$ | pe NMOS transistor, the conditions                            |                 |
| Ans.   | (c)<br>For NMOS transistor to be in saturatio<br>$V_{gs} > V_{th}$<br>and $V_{ds} \ge V_{gs} - V_{th}$                                                                                                                                  | n the condition will be                                       | End of Solution |
| Q.7    | The rank of the matrix, $M = \begin{bmatrix} 0 & 1 & -1 \\ 1 & 0 & -1 \\ 1 & 1 & 0 \end{bmatrix}$                                                                                                                                       | 1<br>], is                                                    |                 |
| Ans.   | <b>(3)</b><br>[0 1 1]                                                                                                                                                                                                                   |                                                               |                 |
|        | $M = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$                                                                                                                                                                 |                                                               |                 |
|        | $R_{1} \leftrightarrow R_{2}$ $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$ $R_{3} \rightarrow R_{3} - R_{1}$                                                                                                     |                                                               |                 |
|        | $R_{3} \rightarrow R_{3} - R_{2}$ $= \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & -1 \end{bmatrix}$                                                                                                                                |                                                               |                 |
|        | $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & -2 \end{bmatrix}$                                                                                                                                                                    |                                                               |                 |
|        | $\begin{bmatrix} 0 & 0 & -2 \end{bmatrix}$<br>Which is in echelon form<br>∴ $\rho(A) = 3$                                                                                                                                               |                                                               |                 |
|        |                                                                                                                                                                                                                                         | •••                                                           | End of Solution |
|        |                                                                                                                                                                                                                                         |                                                               |                 |
| Corpor | ate Office: 44-A/1, Kalu Sarai, New Delhi-110016 🏾   🖂                                                                                                                                                                                  | info@madeeasy.in   🜏 www.madeeasy.in                          | Page 9          |







Ans. (a)

Given that,  $E(x^2) = \frac{kT}{2}$ 

$$E(x) = 0$$
$$= E(x^{2}) - (E(x))^{2}$$
$$Var(x) = \frac{kT}{C} - 0 = \frac{kT}{C}$$
Standard deviation =  $\sqrt{\frac{kT}{C}}$ 

End of Solution

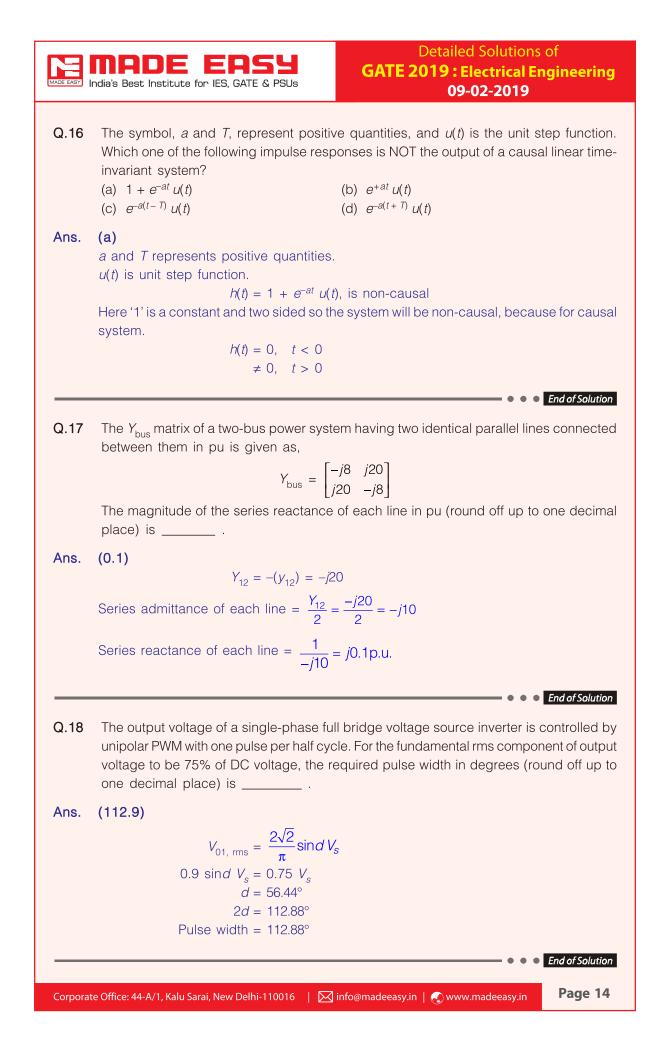


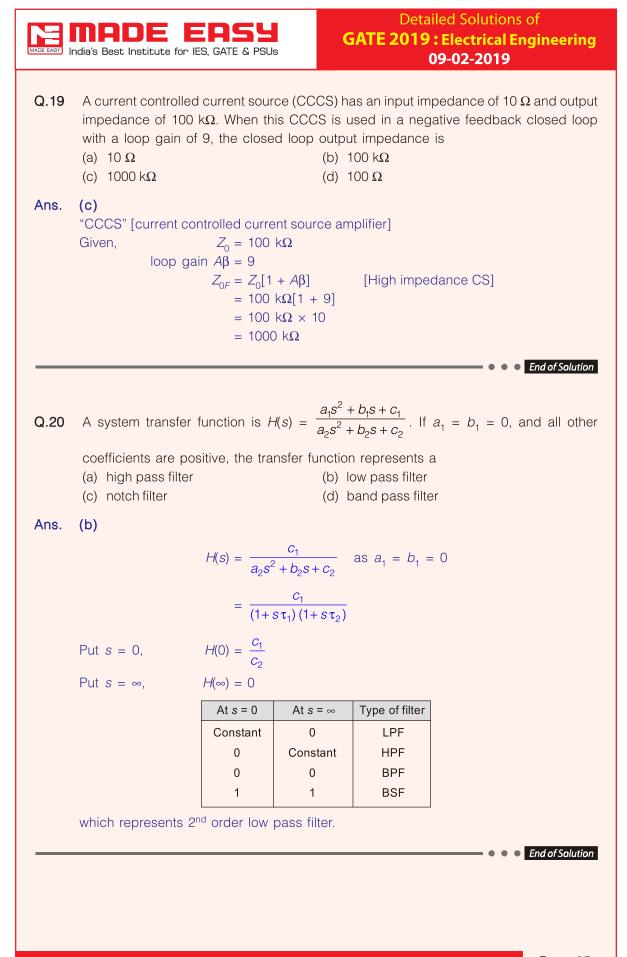




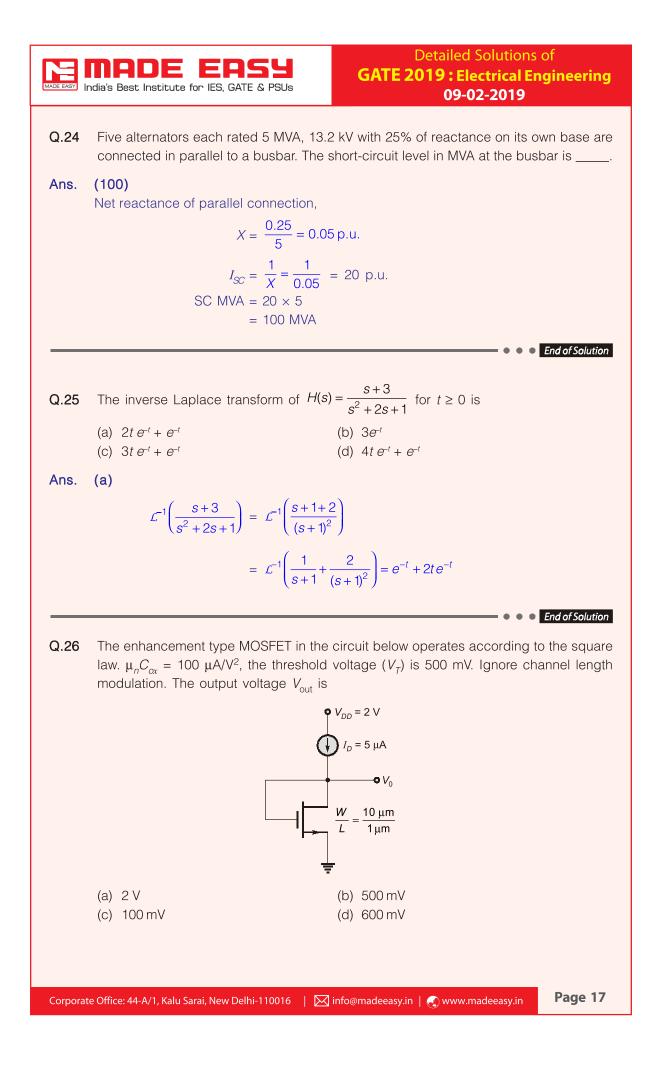


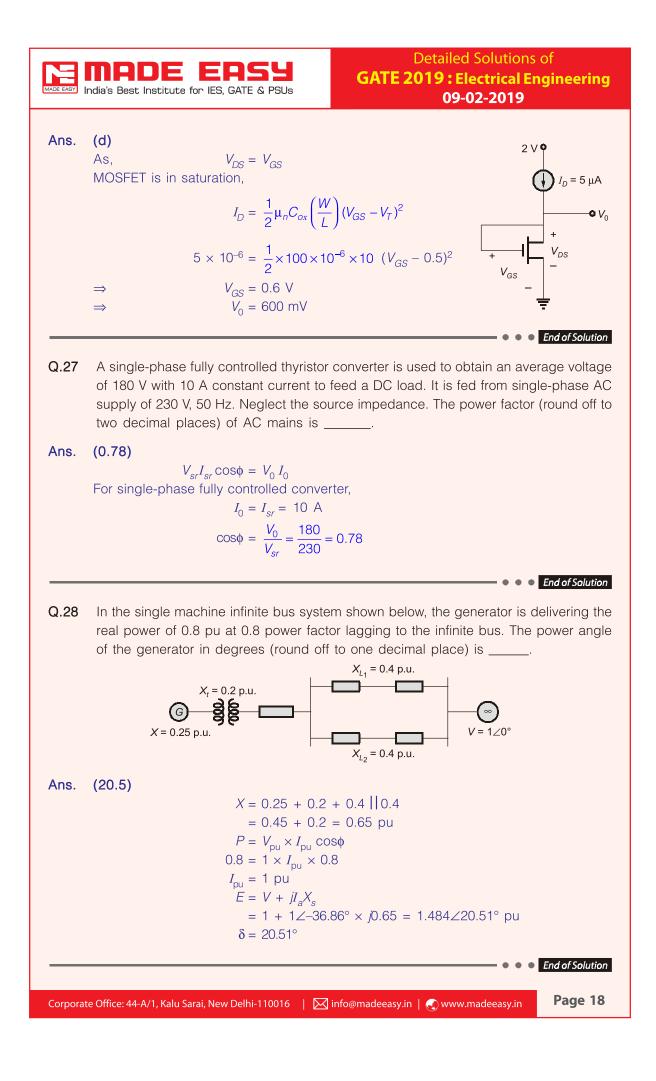
# Admission Open in Classroom Course for RRB-JE (CBT-1)

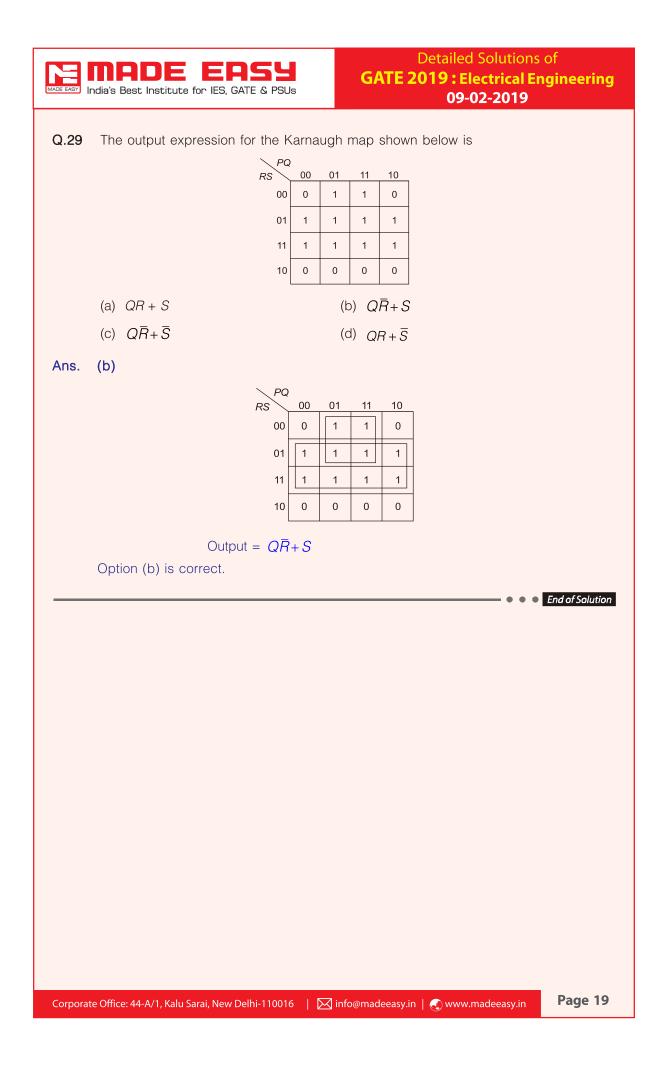

Classroom Centres : Delhi Lucknow Patna


# Batches commencing from 15<sup>th</sup> Feb, 2019 All streams are eligible

| Fee Structure : Classroom Course (RRB-JE) |                            |                                  |                                    |                                                                    |  |
|-------------------------------------------|----------------------------|----------------------------------|------------------------------------|--------------------------------------------------------------------|--|
| Exam                                      | Course Duration            | Timing                           | Freshers                           | Ex. MADE EASY Students<br>Enrolled in any classroom/postal courses |  |
| CBT 1<br>(only)                           | 50 Days<br>(180-200 hours) | 7 days a week<br>4 hours per day | Rs. 10,170 + GST<br>= Rs. 12,000/- | Rs. 7,628 + GST<br>= Rs. 9,000/-                                   |  |

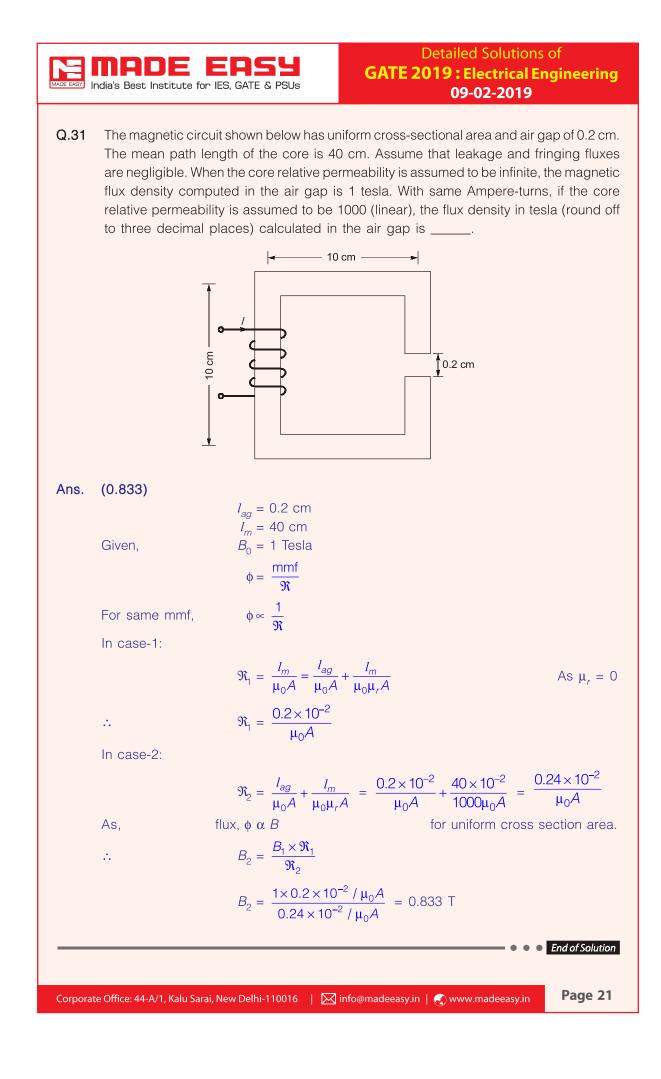

**Delhi :** 7303231082, 7303212325 Lucknow: 09919111168, 08400029422 **Patna :** 0612-2356615, 9955991166


# www.madeeasy.in












| MADE EASY | Detailed Solutions of<br>GATE 2019: Electrical Engineering<br>09-02-2019                                                                                                                          |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Q.30      | A 0.1 $\mu$ F capacitor charged to 100 V is discharged through a 1 k $\Omega$ resistor. The time in ms (round off to two decimal) required for the voltage across the capacitor to drop to 1 V is |
| Ans.      | (0.46)<br>$V_{C}(t) = V_{0} e^{-t/\tau}$<br>$V_{0} = 100 V$<br>$\tau = RC = (10^{3}) (10^{-7}) = 10^{-4} \sec$<br>$0.1 \mu F$<br>-<br>100 V<br>-<br>$1 \mu \Omega$                                |
|           | :. $v_c(t) = 100e^{-10^4t} V$                                                                                                                                                                     |
|           | Let the time required by the voltage across the capacitor to drop to 1 V is $t_1$ ,                                                                                                               |
|           | $\therefore \qquad v_c(t_1) = 100e^{-10^4t_1} \qquad v_c(t_1) = 1\mathrm{V}$                                                                                                                      |
|           | $\Rightarrow \qquad 1 = 100e^{-10^4t_1}$                                                                                                                                                          |
|           | $e^{-10^4 t_1} = 0.01$                                                                                                                                                                            |
|           | $t_1 = 0.46 \text{ msec}$                                                                                                                                                                         |
|           | Alternate solution:<br>$C = 0.1 \ \mu\text{F},  R = 1 \ \text{k}\Omega$<br>$E = 100 \ \text{V},  v = 1 \ \text{V}$                                                                                |
|           | $R = \frac{0.4343 \times t}{C \times \log(E/v)}$                                                                                                                                                  |
|           | $10^{3} = \frac{0.4343 \times t}{0.1 \times 10^{-6} \times \log\left(\frac{100}{1}\right)}$                                                                                                       |
|           | $t = \frac{10^{-4} \times \log(100)}{0.4343} = 4.60511 \times 10^{-4}$                                                                                                                            |
|           | = 0.46 msec                                                                                                                                                                                       |
|           | • • End of Solution                                                                                                                                                                               |
|           |                                                                                                                                                                                                   |
|           |                                                                                                                                                                                                   |
|           |                                                                                                                                                                                                   |
|           |                                                                                                                                                                                                   |
|           |                                                                                                                                                                                                   |
|           |                                                                                                                                                                                                   |
|           |                                                                                                                                                                                                   |

Corporate Office: 44-A/1, Kalu Sarai, New Delhi-110016 🏾 | 🔀 info@madeeasy.in | 📀 www.madeeasy.in





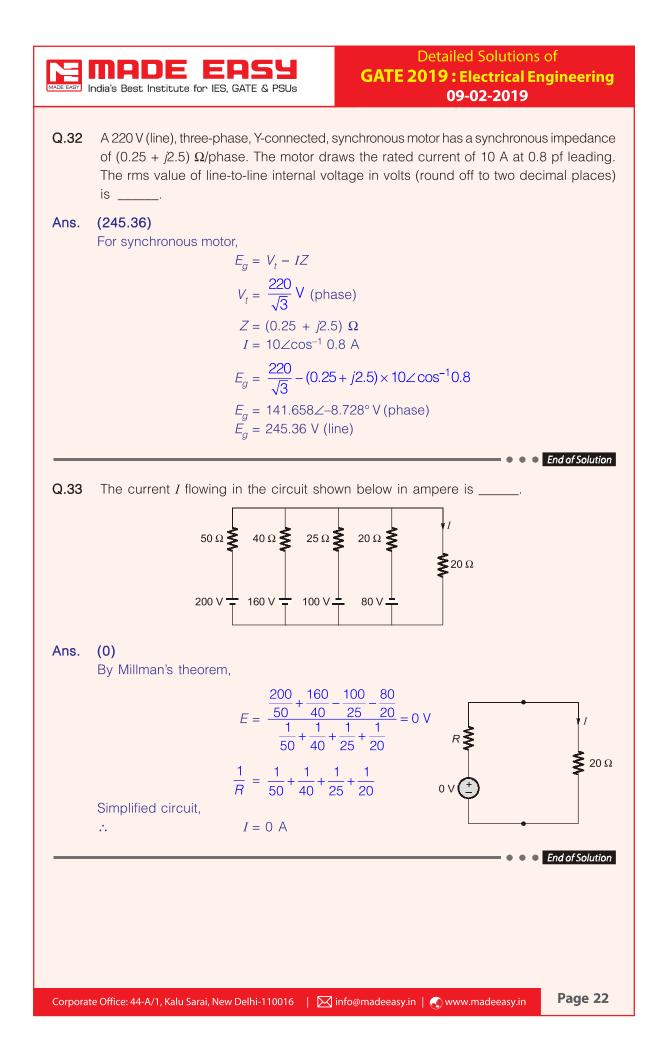
# GATE 2019 RANK PREDICTOR

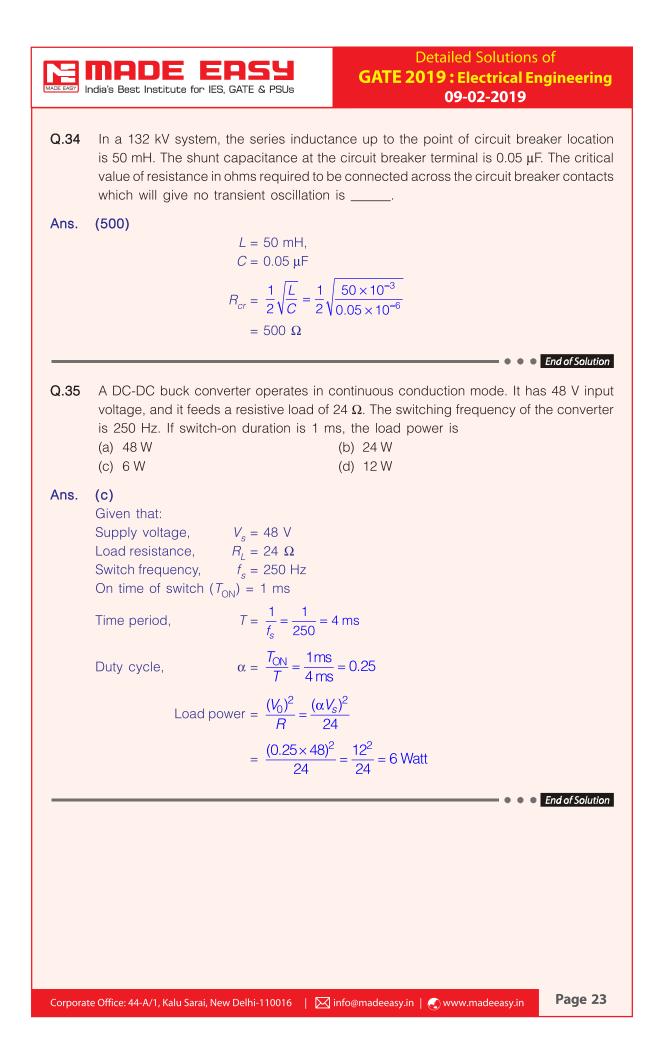
www.gaterankpredictor.madeeasy.in

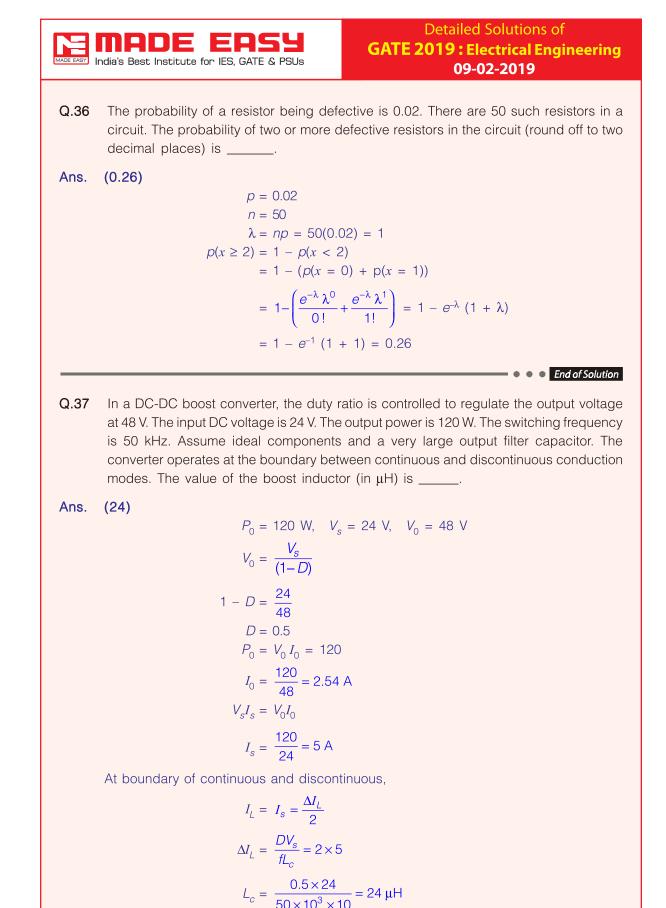


**Step 1** Select Your Stream



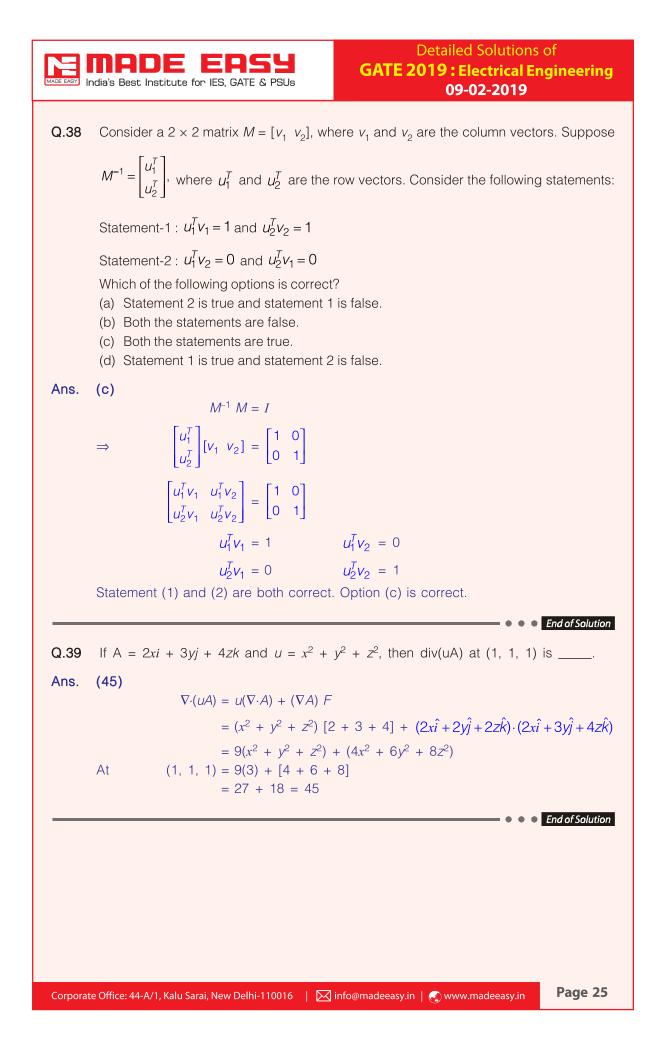

**Step 2** Select the session you appeared for





**Step 3** Paste the URL of your Response Sheet

# and predict your All India Rank Normalized Marks

Click here to redirect at MADE EASY GATE Rank Predictor








End of Solution

Corporate Office: 44-A/1, Kalu Sarai, New Delhi-110016 | 🔀 info@madeeasy.in | 🔊 www.madeeasy.in



#### Detailed Solutions of GATE 2019 : Electrical Engineering 09-02-2019

Q.40 Consider a state-variable model of a system:

MADE EASY

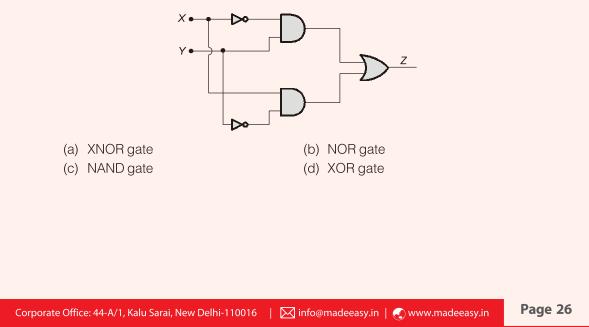
India's Best Institute for IES, GATE & PSUs

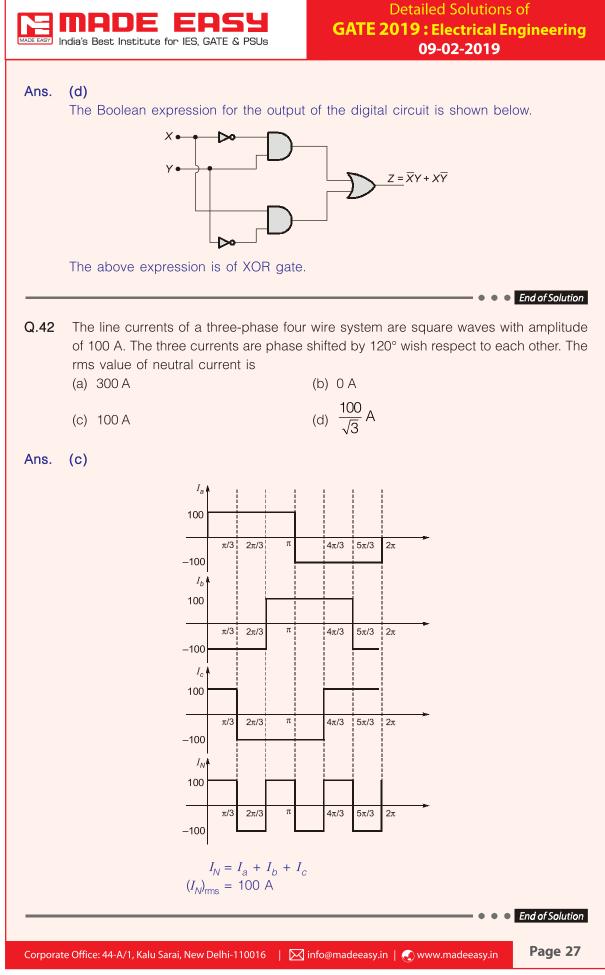
$$\begin{bmatrix} \hat{x}_1 \\ \hat{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\alpha & -2\beta \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ \alpha \end{bmatrix} r$$
$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

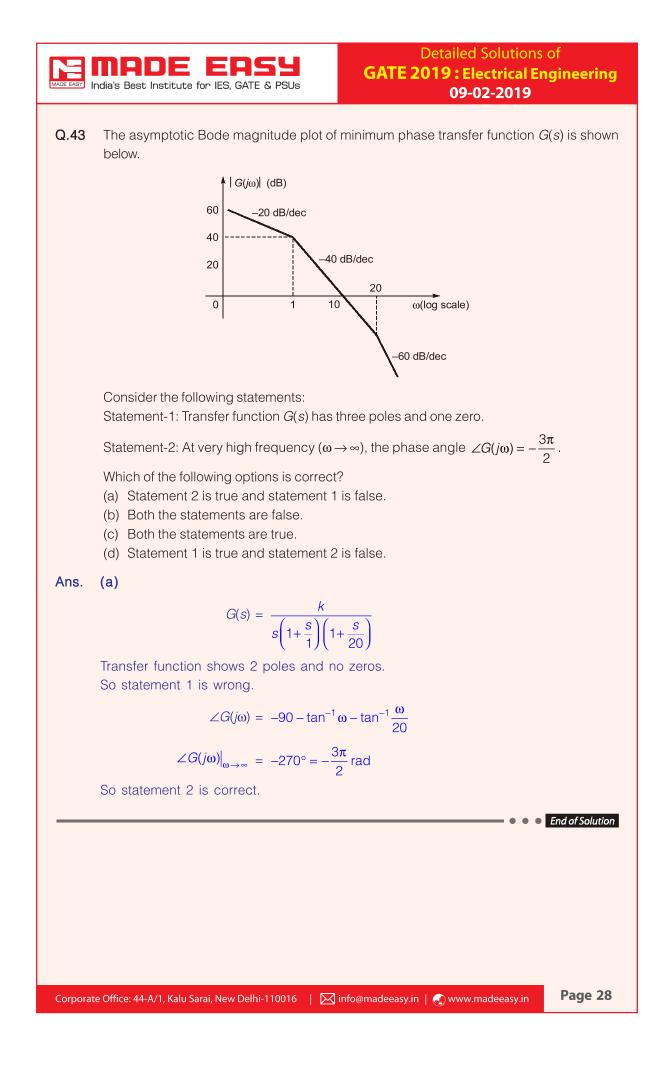
where *y* is the output, and *r* is the input. The damping ratio  $\xi$  and the undamped natural frequency  $\omega_n$  (rad/sec) of the system are given by

(a) 
$$\xi = \frac{\beta}{\sqrt{\alpha}}; \quad \omega_n = \sqrt{\alpha}$$
  
(b)  $\xi = \sqrt{\alpha}; \quad \omega_n = \frac{\beta}{\sqrt{\alpha}}$   
(c)  $\xi = \frac{\sqrt{\alpha}}{\beta}; \quad \omega_n = \sqrt{\beta}$   
(d)  $\xi = \sqrt{\beta}; \quad \omega_n = \sqrt{\alpha}$ 

#### Ans. (a)


....


Characteristic equation is,


$$\begin{vmatrix} SI - A \end{vmatrix} = 0$$
  
$$\begin{vmatrix} SI - A \end{vmatrix} = \begin{vmatrix} s & -1 \\ \alpha & s + 2\beta \end{vmatrix} = s^2 + 2s\beta + \alpha = 0$$
  
$$\omega_n^2 = \alpha$$
  
$$\omega_n = \sqrt{\alpha}$$
  
$$2\xi\omega_n = 2\beta$$
  
$$\xi = \frac{\beta}{\sqrt{\alpha}}$$

End of Solution

**Q.41** In the circuit shown below, *X* and *Y* are digital inputs, and *Z* is a digital output. The equivalent circuit is







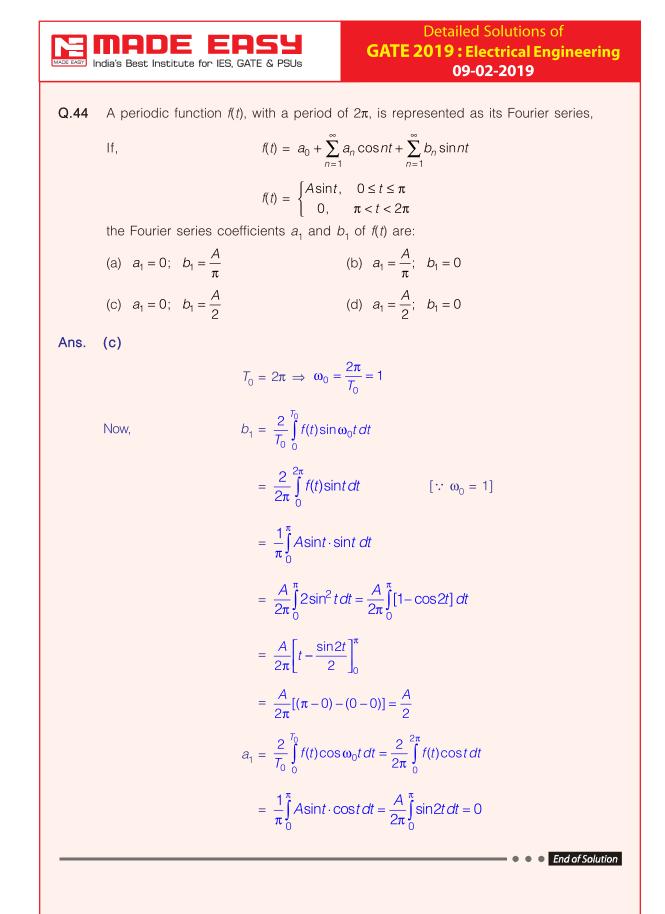
## **General Studies & Engineering Aptitude Batches for ESE 2020** (Preliminary Examination)

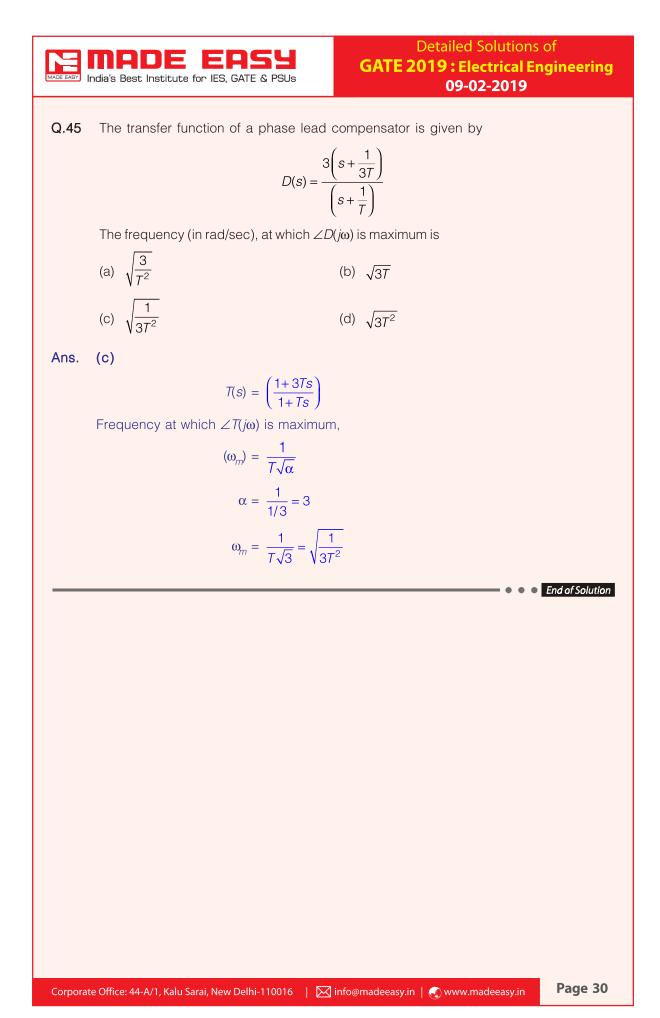


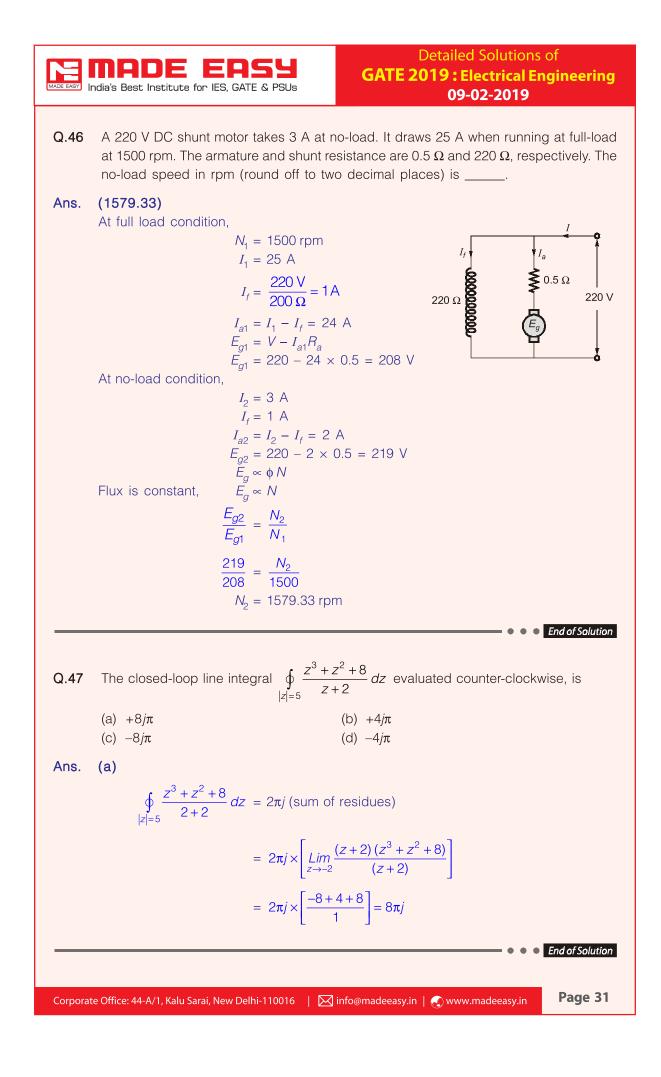
ADMISSION OPEN

## **Syllabus Covered**

- 1. Current issues of national and international importance relating to social economic and industrial development.
- 2. Engineering Aptitude covering Logical reasoning and Analytical ability.
- 3. Engineering Mathematics and Numerical Analysis.
- 4. General Principles of Design, Drawing, Importance of Safety.
- 5. Standards and Quality practices in production, construction, maintenance and services.
- 6. Basic of Energy and Environment : Conservation, Environmental pollution and degradation, Climate Change, Environmental impact assessment.
- 7. Basic of Project Management.
- 8. Basics of Material Science and Engineering.
- 9. Information and Communication Technologies (ICT) based tools and their applications in Engineering such as networking, e-governance and technology based education.
- 10. Ethics and values in engineering profession.


| <b>Course Duration</b>                                     | Ì | Timings                                                                                                   | <b>Teaching Hours</b> |
|------------------------------------------------------------|---|-----------------------------------------------------------------------------------------------------------|-----------------------|
| Regular Batches : 2.5 months<br>Weekend Batches : 4 months |   | Regular : 6 to 7 days a week and 4-6 hours a day<br>Weekend : Sat, Sun & public holiday, 8 hours each day | 250-300<br>hours      |


| Batch Type    | Commencing Dates           | Venue            | Timing              |
|---------------|----------------------------|------------------|---------------------|
| Regular Batch | 20 <sup>th</sup> Feb, 2019 | Ghitorni (Delhi) | 8:00 AM to 12:00 PM |
| Weekend Batch | 24 <sup>th</sup> Feb, 2019 | Ghitorni (Delhi) | 8:00 AM to 5:00 PM  |
| Weekend Batch | 24 <sup>th</sup> Feb, 2019 | Noida Centre     | 8:00 AM to 5:00 PM  |


| Fee Structure                                          |                                                                                                                                                        |  |  |
|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Non-MADE EASY Students                                 | <b>Ex. MADE EASY Students</b><br>Enrolled in Postal, Rank Improvement, Mains, GS, GATE, GATE + ESE Batches                                             |  |  |
| ₹ 25,000<br>• GS & Engg Aptitude Books will be issued. | <ul> <li>• GS &amp; Engg Aptitude Books will NOT be issued.</li> <li>• Interested students can avail books by paying the fee of Rs. 2,000/-</li> </ul> |  |  |

Corporate office : 44-A/1, Kalu Sarai, New Delhi - 1100 16 🕓 011-45124612, 9958995830

Noida office : D-28, Sector - 63, Noida, Uttar Pradesh - 201301 🕓 0120-6524612, 08860378009







#### Detailed Solutions of GATE 2019 : Electrical Engineering 09-02-2019

Q.48 The voltage across and the current through a load are expressed as follows:

IADE EASY

India's Best Institute for IES, GATE & PSUs

$$v(t) = -170 \sin\left(377t - \frac{\pi}{6}\right) V$$
$$i(t) = 8\cos\left(377t + \frac{\pi}{6}\right) A$$

The average power in watts (round off to one decimal place) consumed by the load is

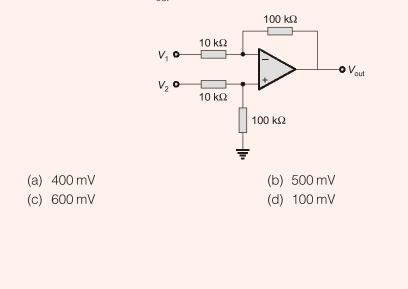
Ans. (588.9)

\_\_\_\_.

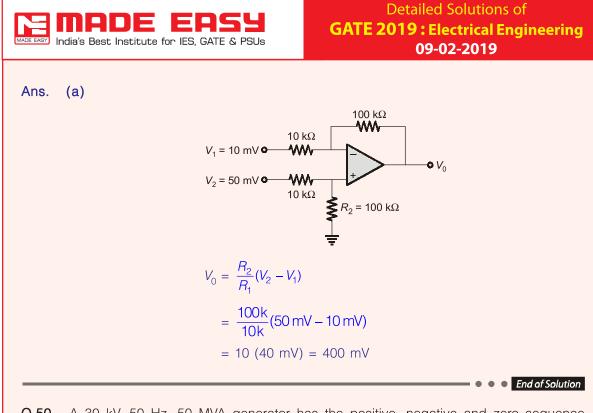
$$v(t) = -170 \sin\left(377t - \frac{\pi}{6}\right) V = v_{pc}$$
  

$$i(t) = 8\cos\left(377t + \frac{\pi}{6}\right) A = I_{cc}$$
  

$$i(t) = 8\sin\left(377t + \frac{2\pi}{3}\right) = I_{cc}$$
  


$$P_{avg} = \frac{1}{2} \times (-170) (8) \times \cos\left(-\frac{\pi}{6} - \frac{2\pi}{3}\right)$$
  

$$= \frac{1}{2} \times (-170) (8) \times \cos(150^{\circ})$$
  


$$= 588.9 \text{ W}$$

End of Solution

**Q.49** In the circuit below, the operational amplifier is ideal. If  $V_1 = 10$  mV and  $V_2 = 50$  mV, the output voltage ( $V_{out}$ ) is



Corporate Office: 44-A/1, Kalu Sarai, New Delhi-110016 🔰 🔀 info@madeeasy.in 📔 🔊 www.madeeasy.in



Q.50 A 30 kV, 50 Hz, 50 MVA generator has the positive, negative and zero sequence reactances of 0.25 pu, 0.15 pu, 0.05 pu, respectively. The neutral of the generator is grounded with a reactance so that the fault current for a bolted LG fault and that of a bolted three-phase fault at the generator terminal are equal. The value of grounding reactance in ohms (round off to one decimal place) is \_\_\_\_\_.

Ans. (1.8)

 $\Rightarrow$ 

$$X_{1} = 0.25 \text{ p.u.}$$

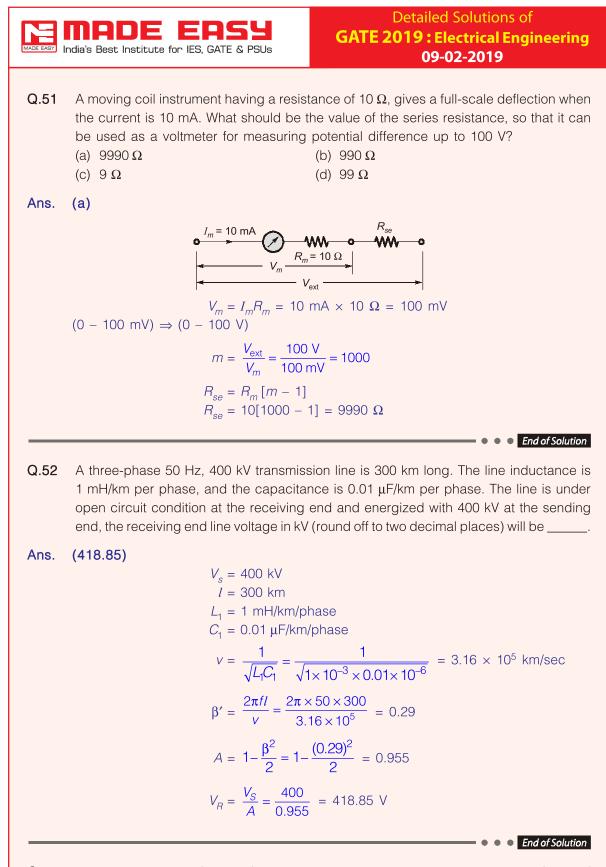
$$X_{2} = 0.15 \text{ p.u.}$$

$$X_{0} = 0.05 \text{ p.u.}$$

$$I_{f (LG)} = I_{f(3-\phi)}$$

$$\frac{3V_{pu}}{(X_{1} + X_{2} + X_{0} + 3X_{n})} = \frac{V_{pu}}{X_{1}}$$

$$= \frac{3 \times 1}{(0.25 + 0.15 + 0.05 + 3X_{n})} = \frac{1}{0.25}$$


$$= \frac{3}{(0.45 + 3X_{n})} = \frac{1}{0.25}$$

$$X_{n} = 0.1 \text{ p.u.}$$

$$X_{n} = 0.1 \times Z_{B}$$

$$= 0.1 \times \frac{30^{2}}{50} = 1.8 \Omega$$

End of Solution



Q.53 A single-phase transformer of rating 25 kVA, supplied a 12 kW load at power factor of 0.6 lagging. The additional load at unity power factor in kW (round off to two decimal places) that may be added before this transformer exceeds its rated kVA is \_\_\_\_\_.

Corporate Office: 44-A/1, Kalu Sarai, New Delhi-110016 🔰 🔀 info@madeeasy.in 📔 🌏 www.madeeasy.in

| ADE EASY | India's Best Institute for IES, GATE & PSUs                                                                                                                                                                                                                                                                                                                                                                                                              | Detailed Solutions of<br>GATE 2019 : Electrical Engineerin<br>09-02-2019 |  |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--|
| Ans.     | (7.21)<br>For a 12 kW, 0.6 pf lagging load,<br>$P_L = 12$ kW                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                        |  |
|          | $Q_{L} = \frac{1}{0.6} \times \sin(cc)$<br>Transformer rating, $S = 25$ kVA<br>Let us assume load that can be adde<br>$S^{2} = (P + P_{L})^{2} + C_{L}^{2}$<br>$25^{2} = (P + 12)^{2} + P_{L}^{2}$                                                                                                                                                                                                                                                       | $Q_L^2$                                                                  |  |
| Q.54     | A fully-controlled three-phase bridge converter is working from a 415 V, 50 Hz AC supply<br>It is supplying constant current of 100 A at 400 V to a DC load. Assume large inductive<br>smoothing and neglect overlap. The rms value of the AC line current in amperes (round<br>off to two decimal places) is                                                                                                                                            |                                                                          |  |
| Ans.     | (81.65)                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                          |  |
|          | AC line current rms = $(I_s)_{\rm rms} = I_0$                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                          |  |
| Q.55     | A delta-connected, 3.7 kW, 400 V(line), three-phase, 4-pole, 50 Hz squirrel-cage induction motor has the following equivalent circuit parameters per phase referred to the state $R_1 = 5.39 \ \Omega$ , $R_2 = 5.72 \ \Omega$ , $X_1 = X_2 = 8.22 \ \Omega$ . Neglect shunt branch in the equivaler circuit. The starting line current in amperes (round off to two decimal places) when is connected to a 100 V(line), 10 Hz, three-phase AC source is |                                                                          |  |
| Ans.     | (14.95)                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                          |  |
|          | $I_L = \sqrt{3} I_{ph}$                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                          |  |
|          | At $f = 10$ Hz,                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                          |  |
|          | $X_1 = X_2 = 8.22 \times \frac{10}{50} =$                                                                                                                                                                                                                                                                                                                                                                                                                | 1.644 Ω                                                                  |  |
|          | $I_{ph} = \frac{V}{\sqrt{(R_1 + R_2)^2}}$                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{Y_{ph}}{(X_1 + X_2)^2}$                                           |  |
|          | =                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\frac{100}{(72)^2 + (1.644 + 1.644)^2}$                                 |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                          | , , ,                                                                    |  |
|          | $=\frac{100}{11.586}=8.$                                                                                                                                                                                                                                                                                                                                                                                                                                 | 63 A                                                                     |  |
|          | $I_L = 14.95 \text{ A}$                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                          |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                          | • • End of Solution                                                      |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                          |  |
|          | te Office: 44-A/1, Kalu Sarai, New Delhi-110016 \mid 🖂                                                                                                                                                                                                                                                                                                                                                                                                   | info@madeeasy.in   🔊 www.madeeasy.in Page 35                             |  |