

MADE EASY

Leading Institute for ESE, GATE & PSUs

Test Centres: Delhi, Hyderabad, Bhopal, Jaipur, Pune

ESE 2026: Prelims Exam CLASSROOM TEST SERIES

ELECTRICAL ENGINEERING

Test 8

Section A : Power Systems [All Topics]

Section B : Electrical Machines-1 [Part Syllabus]

Section C: Control Systems-2 [Part Syllabus] + Engineering Mathematics-2 [Part Syllabus]

			AN	SWE	ER KEY				
1.	(c)	16.	(b)	31.	(b)	46.	(a)	61.	(b)
2.	(a)	17.	(d)	32.	(c)	47.	(a)	62.	(c)
3.	(a)	18.	(c)	33.	(a)	48.	(a)	63.	(c)
4.	(c)	19.	(c)	34.	(b)	49.	(b)	64.	(a)
5.	(b)	20.	(d)	35.	(a)	50.	(d)	65.	(b)
6.	(b)	21.	(c)	36.	(c)	51.	(b)	66.	(c)
7.	(c)	22.	(b)	37.	(b)	52.	(b)	67.	(d)
8.	(a)	23.	(d)	38.	(d)	53.	(c)	68.	(a)
9.	(c)	24.	(c)	39.	(b)	54.	(b)	69.	(d)
10.	(c)	25.	(a)	40.	(d)	55.	(c)	70.	(c)
11.	(c)	26.	(d)	41.	(d)	56.	(a)	71.	(b)
12.	(c)	27.	(b)	42.	(c)	57.	(b)	72.	(c)
13.	(a)	28.	(b)	43.	(a)	58.	(c)	73.	(d)
14.	(c)	29.	(b)	44.	(d)	59.	(a)	74.	(c)
15.	(d)	30.	(a)	45.	(a)	60.	(d)	75.	(b)

DETAILED EXPLANATIONS

Section A: Power Systems

1. (c)

Overall efficiency of the power station is

$$\eta_{\text{overall}} = \eta_{\text{thermal}} \times \eta_{\text{electrical}}$$

$$= 0.30 \times 0.92$$

$$= 0.276$$

Unit generated/hour = $(100 \times 10^3) = 10^5 \text{ kWh}$

Heat produced per hour,

$$H = \frac{\text{Electrical output in heat unit}}{\eta \text{ overall}}$$

$$= \frac{10^5 \times 860}{0.276} = 311.6 \times 10^6 \text{ Kcal} \qquad (\because 1 \text{ kWh} = 860 \text{ Kcal})$$

∴ Coal consumption/hour =
$$\frac{H}{\text{Calorific value}} = \frac{311.6 \times 10^6}{6400} = 48687 \text{ kg}$$

2. (a)

Nuclear power plants are used as base load plants.

4. (c)

$$Z_C = \sqrt{\frac{B}{C}} = \sqrt{\frac{57.97\angle 90^{\circ}}{8.315\times 10^{-4}\angle 90^{\circ}}} = 250 \ \Omega$$

Ideal power transfer capability

SIL =
$$\frac{V^2}{Z_C} = \frac{(400)^2}{250} = 640 \text{ MW}$$

5. (b)

Diameter of conductor = 10 mm

Radius of conductor = 5 mm

Thickness of conductor = 5 m

$$R = t + r = 10 \text{ mm}$$

$$g_{\text{max}} = \frac{V}{r \ln\left(\frac{R}{r}\right)} = \frac{6.5 \times 10^3}{5 \times \ln\left(\frac{10}{5}\right)}$$
$$= \frac{6.5 \times 10^3}{5 \times 0.69} = \frac{6.5 \times 10^3}{3.46}$$
$$= 1878.6 = 1.8 \text{ kV/mm}$$

6. (b)

$$Q_{R} = \frac{|V_{R}|}{X} (|V_{S}| - |V_{R}|)$$

$$1 = \frac{|V_{R}|}{0.2} (1.2 - |V_{R}|)$$

$$0.2 = 1.2 |V_{R}| - |V_{R}|^{2}$$

$$|V_{R}|^{2} - 1.2 |V_{R}| + 0.2 = 0$$

$$(|V_{R}| - 1.0) (|V_{R}| - 0.2) = 0$$

$$\therefore \qquad |V_{R}| = 1 \text{ p.u.}$$

$$\text{Voltage drop} = |V_{S}| - |V_{R}|$$

$$= 1.2 - 1 = 0.2 \text{ p.u.}$$

7. (c)

Load factor =
$$\frac{\text{Average demand}}{\text{Maximum demand}}$$

 $0.60 = \frac{\text{Average demand}}{30}$

Average demand = 18 MW

Plant capacity factor = $\frac{\text{Average demand}}{\text{Installed capacity}}$

$$0.50 = \frac{18}{\text{Installed capacity}}$$

Installed capacity =
$$\frac{18}{0.50}$$
 = 36 MW

The energy corresponding to installed capacity per day

$$= 36 \times 24 = 864 \text{ MWh}$$

8. (a)

Total load,
$$P_{G_1} + P_{G_2} = 250 \text{ MW}$$

For optimum load sharing,

$$\begin{split} \frac{dC_1}{dP_{G_1}} &= \frac{dC_2}{dP_{G_2}} \\ 0.20P_{G_1} + 40.0 &= 0.25P_{G_2} + 30.0 \\ 5P_{G_2} - 4P_{G_1} &= 200 \\ P_{G_1} + P_{G_2} &= 250 \\ &\dots (i) \end{split}$$

On solving equations (i) and (ii), we obtain

$$P_{G_1} = \frac{350}{3} \,\text{MW}$$

and

$$P_{G_2} = \frac{400}{3} \,\text{MW}$$

10. (c)

Diversity factor:

The ratio of the individual maximum demands of all the consumers supplied by it to the maximum demand of the power station.

 $Diversity\ factor = \frac{Sum\ of\ individual\ maximum\ demands}{Maximum\ demand\ of\ power\ station}$

11. (c)

Corona effects can be minimized in a transmission line by using large diameter conductors which may be accomplished by using hollow conductors.

12. (c)

If we increase the spacing between the phase conductors, the line capacitance decreases.

13. (a)

Let

 ΔV = Voltage fluctuation

 ΔQ = Reactive power variation (i.e. the size of the compensator)

 $S_{s/c}$ = System short circuit capacity

Then,
$$\Delta V = \frac{\Delta Q}{S_{s/c}}$$

$$\begin{split} \Delta Q &= \Delta V \times S_{s/c} \\ &= \pm \; (0.05 \times 5000) \\ &= \pm \; 250 \; \text{MVAR} \end{split}$$

:. The capacity of the static VAR compensator is 250 MVAR.

14. (c)

Steady state stability limit is enhanced by providing auxiliary stability controllers to damp low frequency oscillations. Hence, statement-5 is not correct.

16. (b)

Since the generators are in parallel, they will operate at same frequency at steady load. Let,

load on generator 1 (200 MW) = x MW

load on generator 2 (400 MW) = (600 - x) MW

Reduction in frequency = Δf

$$\frac{\Delta f}{x} = \frac{0.04 \times 50}{200}$$

$$\frac{\Delta f}{600 - x} = \frac{0.05 \times 50}{400}$$

Also,

Equating
$$\Delta f = \frac{0.04 \times 50}{200}(x) = \frac{0.05 \times 50}{400}(600 - x)$$
,

we have $x \approx 231$ MW (load on generator 1)

$$\therefore \qquad \text{System frequency} = 50 - \left(\frac{0.04 \times 50}{200}\right) \times 231$$
$$= 47.69 \text{ Hz}$$

17. (d)

Turbine power will increase from 100 MW for a 0.03 p.u. droop or 1.5 Hz drop in frequency. Thus, we have regulation parameter

$$= R = \frac{-1.5}{100} = -0.015 \text{ Hz/MW}$$

For a frequency change of $\Delta f = -0.2$ Hz, the turbine power will experience a static change of

$$\Delta P_t = -\frac{1}{0.015} \times (-0.2) = 13.33 \text{ MW}$$

18. (c)

A sudden short circuit in an ac power system causes a rise in current in the short circuited phase.

20. (d)

Three phase fault current is given as

$$(I_f)_{3-\phi} = \frac{V_3^0}{Z_{33}} = \frac{1}{j0.3} = -j \ 3.33 \text{ p.u.}$$

23. (d)

The diagonal element Y_{22} of $Y_{\rm bus}$ is obtained by,

$$Y_{22} = y_{12} + y_{23} + y_{20}$$

$$= \frac{1}{Z_{12}} + \frac{1}{Z_{23}} + \frac{1}{Z_{20}} = \frac{1}{j0.1} + \frac{1}{j0.1} + \frac{1}{-j20} = -j19.95 \text{ p.u.}$$

24. (c)

Stored energy =
$$G \times H = 800 \text{ MJ}$$

 $P_a = 80 - 50 = 30 \text{ MW}$
= $M \frac{d^2 \delta}{dt^2}$

$$M = \frac{GH}{180 f} = \frac{800}{180 \times 50} = \frac{4}{45}$$
 MJ-s/ele. deg

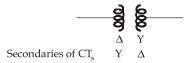
Now, acceleration of rotor,

$$\alpha = \frac{d^2\delta}{dt^2} = \frac{30 \times 45}{4}$$
$$= 337.5 \text{ ele. deg/s}^2$$

$$Z_{1}(\text{actual}) = Z_{\text{pu.}} Z_{\text{base}}$$
$$= 0.05 \times \frac{400 \times 400}{250} = 32 \ \Omega$$

27. (b)

$$V_t = 100 \times \frac{2 \times 50}{450} = 22.22 \text{ kV}$$


28. (b)

Synchronizing power coefficient,

$$S_p = \left. \frac{dP_e}{d\delta} \right|_{\delta = \delta_0} = P_{\text{max}} \cos \delta_0$$

29. (b)

They should be opposite in nature.

$$I_{S} = CV_{r} + DI_{R}$$

$$V_{r} = \frac{220}{\sqrt{3}}, I_{r} = 0$$

$$I_{C} = I_{S} = 0.5 \times 10^{-4} \times \frac{220}{\sqrt{3}} \times 10^{3}$$

$$I_{C} = I_{S} = \frac{11}{\sqrt{3}} A$$

31. (b)

:.

$$I_{PK} = 0.5 \times 5 = 2.5$$

PSM = $\frac{I_f}{I_{PK} \times CT \text{ ratio}} = \frac{3000}{2.5 \times \frac{200}{5}} = 30$

$$\begin{bmatrix} I_{a0} \\ I_{a1} \\ I_{a2} \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & \alpha & \alpha^2 \\ 1 & \alpha^2 & \alpha \end{bmatrix} \begin{bmatrix} I_a \\ I_b \\ I_c \end{bmatrix}$$

$$I_{a2} = \frac{1}{3} [I_a + \alpha^2 I_b + \alpha I_c]$$

$$I_{a2} = \frac{1}{3} [(0 + (1 \angle 120^\circ)^2 \times 6 \angle 60^\circ + (1 \angle 120^\circ) \times (6 \angle -120^\circ)]$$

$$= \frac{1}{3} (3 - 3\sqrt{3}j + 6) = 3 - j\sqrt{3} \text{ A}$$

33. (a)

Quantity of water per second,

$$Q = \frac{P}{\rho \times H \times 9.81 \times 10^{-3} \times \eta}$$

$$= \frac{30000}{1000 \times 50 \times 9.81 \times 10^{-3} \times 0.6} = 101.9 \text{ m}^3/\text{s}$$

Rate of fall of water level = $\frac{Q}{A} = \frac{101.9}{50 \times 10^6} \times 3600 = 7.33 \times 10^{-3} \text{ m/hr}$ = 7.33 mm/hr

H = 5 kW-sec/kVA

34. (b)

= 5 MJ/MVA
K.E. = H.S = 5 × 100 = 500 MJ

$$f_2 = f_1 \times \left(\frac{H.S + \Delta P_D \cdot t_d}{H.S}\right)^{1/2}$$
= 50 × $\left(\frac{500 + (100 - 50) \times 0.4}{500}\right)^{1/2}$
= 50 × $\left(\frac{500 + 20}{500}\right)^{1/2}$ = 51 Hz

35. (a)

%winding unprotected,

$$\% W_u = \frac{I_n R_n}{V_{\text{ph}}} \times 100$$

$$I_n$$
 = Out of balance $I \times$ CT ratio
$$= 1.8 \times \frac{1000}{5} = 360 \text{ A}$$

$$\%W_u = \frac{360 \times 10}{10 \times 10^3} \times 100 = 62.36\%$$

$$\%W_{dg} \text{ protected} = 100 - 62.36$$

$$= 37.64\%$$

$$E_{\text{max }1} = \frac{V}{r \ln\left(\frac{R}{r}\right)}$$

$$E_{\text{max }1} = \frac{V}{0.5R \ln\left(\frac{R}{0.5R}\right)} = \frac{2V}{R \ln 2}$$

$$E_{\text{max }2} = \frac{V}{0.25R \ln\left(\frac{R}{0.25R}\right)} = \frac{4V}{R \ln 4}$$

$$= \frac{2V}{R \ln 2}$$

$$E_{\text{max }2} = E_{\text{max }1}$$

. .

So no change in maximum voltage gradient.

37. (b)

$$\eta = \frac{V_{\text{ph}}}{2V_2} \times 100 = \frac{(V_1 + V_2)}{2V_2} \times 100$$

$$V_2 = V_1(1 + K)$$

$$V_2 = 12 \text{ kV}$$

$$K = \frac{C_m}{C_s} = \frac{C/3}{C} = \frac{1}{3}$$

$$V_1 = \frac{12}{\left(1 + \frac{1}{3}\right)} = \frac{12 \times 3}{4} = 9 \text{ kV}$$

$$\eta = \frac{9 + 12}{2 \times 12} \times 100 = \frac{21}{24} \times 100 = \frac{7}{8} \times 100 = 87.5\%$$

% winding unprotected = 100 - 85 = 15%

$$I_{fL} = \frac{100 \times 10^6}{\sqrt{3} \times 1000} = 5249 \text{ A}$$

Output of balance current,

$$I_0 = \frac{20}{100} \times 5249 = 1050 \text{ A}$$

$$V_{\text{ind}} = V_{\text{ph}} \times \frac{15}{100} = \frac{11000}{\sqrt{3}} \times \frac{15}{100} = 953 \text{ A}$$

$$R = \frac{V_{\text{ind}}}{I_0} = \frac{953}{1050} = 0.9 \Omega$$

39. (b)

$$R = \frac{1}{2} \sqrt{\frac{L}{C}}$$

$$= \frac{1}{2} \sqrt{\frac{5}{0.02 \times 10^{-6}}} = \frac{1}{2} \times 15.8 \times 10^{3}$$

$$= 7.9 \text{ k}\Omega$$

40. (d)

Steady state stability limit = $P_{SSSL} = \frac{EV}{X}$

So on increasing the value of *E* and *V* and on decreasing the value of *X* stability limit increases.

41.

Load flow study is generally carried out by using Y_{bus} matrix.

42.

f = 0For HVDC system,

So,
$$X_C = \frac{1}{2\pi f C}$$

Hence,
$$I_C = 0$$

and in EHVAC system, $f \neq 0$, hence I_C value is present in EHVAC and it requires shunt and series compensation.

45. (a)

Reactance relay is more suitable for the protection of short lines because it is practically unaffected by arc resistance which may be large compared with the line impedance as a result of which more of the line can be protected at high speed using a reactance relay. Hence, both statement (I) and statement (II) are individually true and statement (II) is the correct explanation of statement (I).

Section B: Electrical Machines-1

46. (a)

Net cross sectional area of core,

$$a = 55 \text{ cm}^2 = 0.0055 \text{ m}^2$$

Maximum value of flux,

$$\phi_{\text{max}} = \frac{E_1}{4.44 f N_1} = \frac{400}{4.44 \times 50 \times 350} = 5.148 \times 10^{-3} \text{ Wb}$$

Peak value of flux density in the core,

$$B_{\text{max}} = \frac{5.148 \times 10^{-3}}{0.0055} = 0.936 \text{ T}$$

47. (a)

- The core has infinite permeability so that zero magnetizing current is needed to establish the requisite amount of flux in the core.
- The core-loss (hysteresis as well as eddy-current loss) is considered zero.

48. (a)

Star/delta connection is the most commonly used connection for power systems. At transmission levels star connection is on the HV side i.e Δ/Y for step-up and Y/Δ for step-down.

49. (b)

Full load copper loss, $P_C = 300 \text{ W}$

Iron loss, $P_i = 120 \text{ W}$

kVA load corresponding to maximum efficiency

$$= x \times \text{Rated kVA}$$

$$=\sqrt{\frac{120}{300}} \times 20 = 12.649 \text{ kVA}$$

kVA load corresponding to maximum efficiency

=
$$12649 \times 0.8 = 10119 \text{ W}$$
 (: $P_C = P_i = 120 \text{ W}$)

Maximum efficiency of transformer

$$= \frac{\text{Output}}{\text{Input} + P_i + P_c} \times 100 = \frac{10119}{10119 + 120 + 120} \times 100 = 97.68\%$$

50. (d)

When the two windings are connected in series, the total voltage available is (11000 + 2200) ie., 13200 V. The other side can have the voltage of 11000 V or 2200 V. So the voltage rating can be either 13200/11000 V or 13200/2200 V

In the first case transformation ratio,

$$K_1 = \frac{11000}{13200} = 0.8333$$

Rated output =
$$\frac{\text{Rating as a two-winding transformer}}{1-K}$$

= $\frac{1000}{1-0.8333}$ = 6000 kVA

51. (b)

$$\frac{N_1}{N_2} = \frac{I_2}{I_1}$$

$$\Rightarrow \frac{1000}{400} = \frac{I_2}{3}$$

$$\Rightarrow I_2 = 7.5 \text{ A}$$

By changing supply from HV to LV or vice versa, losses in the system remains same as long as the system is operating under rated condition,

Power,
$$P = V_H I_H \cos \phi = 1000 \times 0.5 \times 3$$
$$= 1500 \text{ W}$$
$$1500 = V_L I_L \cos \phi$$
$$1500 = 400 \times 7.5 \times \cos \phi$$
$$\text{p.f.} = \cos \phi = 0.5 \text{ lag}$$

52. (b)

Synchronous speed,
$$N_s=\frac{120\,f}{P}=\frac{120\times50}{20}=300~\mathrm{rpm}$$
 Full load speed, $N_f=294~\mathrm{rpm}$ Full-load slip, $S_f=\frac{N_s-N_f}{N_c}=\frac{300-294}{300}=0.02$

Slip corresponding to maximum torque

$$S_{\text{max, }T} = \frac{R_2}{X_2} = \frac{0.025}{0.28} = 0.0893$$

Ratio of maximum to full-load torque,

$$\frac{T_{\text{max}}}{T_f} = \frac{\frac{S_{\text{max}T}}{S_f} + \frac{S_f}{S_{\text{max}T}}}{2} = \frac{\frac{0.0893}{0.02} + \frac{0.02}{0.0893}}{2} = 2.344$$

53. (c)

TUF =
$$\frac{\sqrt{3}}{2}$$
 = 86.6%

54. (b)

Autotransformer as step up transformer and to give maximum kVA, the connection should be additive polarity with HV common

So,
$$V_{HV} = 2000 + 200 = 2200 \text{ V}$$

$$V_{LV} = 2000 \text{ V}$$

$$K = \frac{V_{LV}}{V_{HL}} = \frac{2000}{2200} = 0.909$$
 %(voltage regulation)_{auto} = $(1 - K) (V_R)_{2\text{-wdg}}$ = $(1 - 0.909) \times 3$ = 0.273%

55. (c)

Supply frequency,
$$f = 50 \text{ Hz}$$

Synchronous speed, $N_s = \frac{120 f}{P} = \frac{120 \times 50}{6} = 1000 \text{ rpm}$
Full-load slip, $s = \frac{\text{Frequency of rotor emf}}{\text{Supply frequency}}$
 $= \frac{f'}{f} = \frac{2}{50} = 0.04$
Full load speed, $N = N_s(1-s)$
 $= 1000(1-0.04) = 960 \text{ rpm}$

56. (a)

External resistance in the rotor circuit of a wound-rotor improves its starting power factor.

57. (b)

Rotor emf,
$$f' = \frac{\text{Number of cycles completed per minute}}{60}$$

$$= \frac{100/2}{60} = 0.833 \text{ Hz}$$
Slip,
$$s = \frac{f'}{f} = \frac{0.833}{50} = 0.0166$$
Power input to rotor,
$$P_2 = 80 \text{ kW}$$
Total rotor copper losses = sP_2

$$= 0.0166 \times 80 = 1.333 \text{ kW}$$

Mechanical power developed

$$= 80 - 1.333$$

= 78.667 kW

58. (c)

Starting current with normal voltage = I_{SC}

Starting current with 80% of normal supply voltage

$$= 0.8I_{sc}$$

Starting torque with 80% of normal supply voltage applied to the stator

$$= T_f \left(\frac{0.8I_{SC}}{I_f}\right)^2 S_f$$

= 0.64 times of starting torque with normal supply voltage

Reduction in starting torque = $(1 - 0.64) \times 100 = 36\%$

59. (a)

 $N_s = \frac{120 f}{P} = \frac{120 \times 50}{6} = 1000 \text{ prm}$ Synchronous speed,

Slip corresponding to speed of 960 rpm

$$s_1 = \frac{1000 - 960}{1000} = 0.04$$

Slip corresponding to speed of 750 rpm

$$s_2 = \frac{1000 - 750}{1000} = 0.25$$

For constant toque,

Slip ∞ Rotor resistance

$$\frac{R_2 + R}{R_2} = \frac{s_1}{s_2} = \frac{0.25}{0.04}$$

Where *R* is additional resistance inserted in the rotor circuit per phase

$$\frac{0.2 + R}{0.2} = 6.25$$

$$R = 6.25 \times 0.2 - 0.2$$

$$= 1.05 \Omega$$

60. (d)

The voltage regulation of an ideal transformer is always zero.

Section C: Control Systems-2 + Engineering Mathematics-2

61. (b)

Critical gain = 50 dB

Operating gain = 25 dB

 $(Gain margin)_{dB}$ = Critical gain - Actual gain

$$= 50 - 25 = 25 dB$$

Lag compensator reduces steady state error and increases rise time.

63. (c)

$$\omega_n = \sqrt{16} = 4 \text{ rad/sec}$$

$$\xi = \frac{4}{2 \times 4} = \frac{1}{2}$$

$$\omega_r = \omega_n \sqrt{1 - 2\xi^2} = 4\sqrt{1 - 2 \times \left(\frac{1}{2}\right)^2}$$

$$= 4 \times \frac{1}{\sqrt{2}} = 2.82 \text{ rad/sec}$$

64. (a)

Initial slope = 6 dB/oct = 20 dB/dec

$$\frac{a - 0}{\log_{10} 20 - \log_{10} 2} = 20$$

$$\frac{a}{\log_{10} \left(\frac{20}{2}\right)} = 20$$

$$\frac{a}{\log_{10} \left(\frac{20}{2}\right)} = 20$$

a = 20 dB

65. (b)

Characteristic equation:

$$|sI - A| = 0$$

$$\begin{vmatrix} s & 1 \\ -1 & s + 2 \end{vmatrix} = 0$$

$$\Rightarrow \qquad s(s+2) + 1 = 0$$

$$\Rightarrow \qquad s^2 + 2s + 1 = 0$$

$$\Rightarrow \qquad (s+1)^2 = 0$$

$$\Rightarrow \qquad s = -1, -1$$

Real and equal roots. So system is critically damped.

66. (c)

Given,

$$G(j\omega) = \frac{4}{3(1+s)^2}$$

:.

$$|G(j\omega)| = \frac{4}{3(\sqrt{1+\omega^2})^2} = \frac{4}{3(1+\omega^2)}$$

At
$$\omega = \omega_{g_c}$$
, $|G(j\omega)| = 1$

MADE EASY

$$\frac{4}{3(1+\omega^2)} = 1$$

$$(1+\omega^2) = \frac{4}{3}$$

$$\omega^2 = \frac{1}{3}$$

$$\omega = \omega_{gc} = \frac{1}{\sqrt{3}} \text{ rad/sec}$$

$$\phi = \angle G(j\omega) = -2 \tan^{-1} \omega$$

$$\omega = \omega_{gc} = \frac{1}{\sqrt{3}} \text{ rad/sec}$$

$$\phi = -2 \tan^{-1} \left(\frac{1}{\sqrt{3}} \right) \text{ rad/sec}$$

$$= -2 \times 30^{\circ} = -60^{\circ}$$

P.M. =
$$180^{\circ} + \phi = 180^{\circ} - 60^{\circ} = 120^{\circ}$$

67. (d)

$$A = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix}$$

$$B = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

and

$$C = [1 \ 1]$$

Check for controllability:

$$Q_C = [B \quad AB]$$

$$[AB] = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

$$Q_C = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

$$|Q_C| = 0$$
 \Rightarrow Not controllable

Check for observability:

$$Q_o = [C^T : A^T C^T]$$

 \Rightarrow

$$C^T = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$A^{T}C^{T} = \begin{bmatrix} 0 & -1 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$
$$Q_{o} = \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$$
$$|Q_{o}| = 0 \implies \text{Not observable}$$

68. (a)

It is a linear differential equation of the form

$$\frac{dy}{dx} + Py = Q(x)$$

Here,

$$P = \frac{1}{x}$$

$$Q = \log x$$

then,

I.F. =
$$e^{\int Pdx} = e^{\int \frac{dx}{x}} = e^{\log x} = x$$

Hence, the general solution is,

$$y(I.F.) = \int Q(IF)dx$$

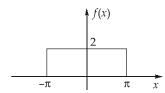
i.e.

$$yx = \int x \cdot (\log x) dx$$

$$yx = (\log x) \cdot \frac{x^2}{2} - \int \frac{1}{x} \cdot \frac{x^2}{2} + c$$

$$yx = \frac{x^2}{2}\log x - \frac{x^2}{4} + c$$

$$y = \frac{x \log x}{2} - \frac{x}{4} + \frac{c}{x}$$


69. (d)

Here,
$$I = \int_{c} \frac{\cos 2\pi z}{(2z-1)(z-3)} dz = \frac{1}{2} \int_{c} \frac{\cos(2\pi z)}{\left(z-\frac{1}{2}\right)(z-3)} dz$$

Both $z = \frac{1}{2}$ and z = 3 lies outside the closed curve c and $\int_{c} f(z)dz = 2\pi i$ [Residue at these poles

which are inside c]

$$2\pi i(0) = 0$$

Given function is even function

 \therefore value of coefficient $b_n = 0$

71. (b)

$$\ln f = x \ln y$$

$$\frac{1}{f} \frac{\partial f}{\partial x} = \ln y$$

$$\frac{\partial f}{\partial x} = y^x \ln y$$

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{1}{y} \cdot y^x - x \ln y \ y^{x-1} = \frac{1}{1} (1)^2 - 2 \cdot \ln(1) \cdot 1^1$$

$$= 1$$

72. (c)

Probability of item to be defective,

$$p = 0.1$$

Probability of item to be non-defective,

$$q = 1 - 0.1 = 0.9$$

$$P(x=2) = {}^{10}C_2 p^2 q^8 = \frac{10 \times 9}{1 \times 2} \times \left(\frac{1}{10}\right)^2 \times \left(\frac{9}{10}\right)^8 = \frac{1}{2} \left(\frac{9}{10}\right)^9$$

73. (d)

$$\frac{1}{z\sin z} = \frac{1}{z \left[z - \frac{z^3}{3!} + \frac{z^5}{5!} \dots\right]} = \frac{1}{z^2 \left[1 - \frac{z^2}{3!} + \frac{z^4}{5!} \dots\right]}$$
$$= \frac{1}{z^2} \left[1 - \left(\frac{z^2}{6} - \frac{z^4}{120} \dots\right)\right]^{-1}$$
$$= \frac{1}{z^2} \left[1 + \frac{z^2}{6} + \frac{z^4}{120} + \dots\right]$$
$$= \frac{1}{z^2} + \frac{1}{6} + \frac{z^2}{120} \dots$$

$$\Rightarrow \operatorname{Res} (z = 0) = \left[\frac{1}{(2-1)!} \frac{d^{2-1}}{dz^{2-1}} z^2 f(z) \right]_{z=0}$$
$$= \frac{d}{dz} \left(1 + \frac{z^2}{6} + \frac{z^4}{120} \right)_{z=0} = 0$$
$$\int_C \frac{dz}{z \sin z} = 2\pi i (0) = 0$$

Given, $f(x) = \begin{cases} K(1-x^2) & 0 < x < 1 \\ 0, & \text{otherwise} \end{cases}$

We know that,

$$\int_{-\infty}^{\infty} f(x)dx = 1$$
i.e.,
$$\int_{-\infty}^{0} f(x)dx + \int_{0}^{1} f(x)dx + \int_{1}^{\infty} f(x)dx = 1$$

$$0 + \int_{0}^{1} K(1 - x^{2})dx + 0 = 1$$

$$K\left(x - \frac{x^{3}}{3}\right)_{0}^{1} = 1$$

$$K\left(1 - \frac{1}{3}\right) = 1$$

$$\vdots$$

$$K = \frac{3}{2}$$

75. (b)

Both statements are separately observed.

Hence, statement (II) is not the reason for statement (I).

OOOO