

Electronics Engineering

Questions & Solutions

Exam held on 15/02/2025 (Afternoon Session)

GATE 2025 Electronics Engineering

Detailed Solutions

Exam held on:

15-02-2025

Afternoon Session

SECTION - A GENERAL APTITUDE

Q.1	Here are two analogous groups, Group-I and Group-II, that list words in their decreasing
	order of intensity. Identify the missing word in Group-II.

Group-I: Abuse → Insult → Ridicule

Group-II: \longrightarrow Praise \rightarrow Appreciate

(a) Extol

(b) Prize

(c) Appropriate

(d) Espouse

Ans. (a)

End of Solution

Q.2 Had I learnt acting as a child, I _____ a famous film star.

Select the most appropriate option to complete the above sentence.

(a) will be

- (b) can be
- (c) am going to be

(d) could have been

Ans. (d)

End of Solution

- Q.3 The 12 musical notes are given as C, $C^{\#}$, D, $D^{\#}$, E, F, $F^{\#}$, G, $G^{\#}$, A, $A^{\#}$. Frequency of each note is $\sqrt[12]{2}$ times the frequency of the previous note. If the frequency of the note C is 130.8 Hz, then the ratio of frequencies of notes $F^{\#}$ and C is:
 - (a) $\sqrt[6]{2}$

(b) $\sqrt{2}$

(c) $\sqrt[4]{2}$

(d) 2

Ans. (b)

Given, Common ratio = $\sqrt[12]{2} = (2)^{1/12}$

 $F^{\#} \rightarrow 7^{th} term$

 $C \rightarrow 1^{st} term$

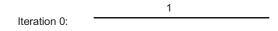
 \therefore The ratio of frequencies of notes $F^{\#}$ and C is,

$$= \frac{7^{th} \text{ term}}{1^{st} \text{ term}} = \frac{130.8 \times [2^{1/12}]^6}{130.8} = 2^{1/2} = \sqrt{2}$$

End of Solution

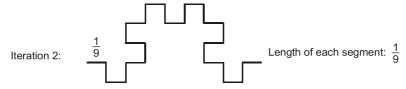
Check Your Expected Rank & GATE Score

by



15-02-2025

Afternoon Session


Q.4 The following figures show three curves generated using an iterative algorithm. The total length of the curve generated after 'Iteration n' is:

Note: The figures shown are representative.

Iteration 1:

Length of each segment: $\frac{1}{3}$

(a)
$$\left(\frac{5}{3}\right)^{\frac{n}{2}}$$

(b)
$$\left(\frac{5}{3}\right)^n$$

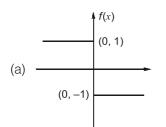
(c)
$$\left(\frac{5}{3}\right)^{2n}$$

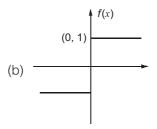
(d)
$$\left(\frac{5}{3}\right)^{n(2n-1)}$$

Ans.

Iteration 0 : $[1 \text{ segment} \times 1] = 1$

Iteration 1:
$$\left[5 \text{ segments} \times \frac{1}{3}\right] = \frac{5}{3}$$

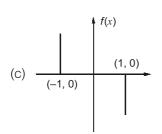

Iteration 2 :
$$\left[25 \text{ segments} \times \frac{1}{9}\right] = \frac{25}{9} = \left(\frac{5}{3}\right)^2$$

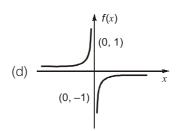

Iteration n: Length = $\left(\frac{5}{3}\right)^n$

End of Solution

Which one of the following plots represents $f(x) = -\frac{|x|}{x}$, where x is a non-zero real number? Q.5

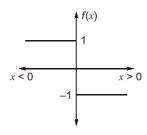
Note: The figures shown are representative.





15-02-2025

Afternoon Session



Ans. (a)

$$f(x) = \frac{-|x|}{x}, \ \forall \ x \in R$$

$$f(x) = \begin{cases} \frac{-(-x)}{x} = 1; & x < 0 \\ \frac{-x}{x} = -1; & x \ge 0 \end{cases}$$

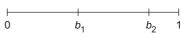
Graph:

End of Solution

- Q.6 Identify the option that has the most appropriate sequence such that a coherent paragraph is formed:
 - P. Over time, such adaptations lead to significant evolutionary changes with the potential to shape the development of new species.
 - Q. In natural world, organisms constantly adapt to their environments in response to challenges and opportunities.
 - R. This process of adaptation is driven by the principle of natural selection, where favorable traits increase an organism's chances of survival and reproduction.
 - S. As environments change, organisms that can adapt their behavior, structure and physiology to such changes are more likely to survive.
 - (a) $P \rightarrow Q \rightarrow R \rightarrow S$
- (b) $Q \rightarrow S \rightarrow R \rightarrow P$
- (c) $R \rightarrow S \rightarrow Q \rightarrow P$
- (b) $Q \rightarrow S \rightarrow P \rightarrow R \rightarrow Q$ (d) $S \rightarrow P \rightarrow R \rightarrow Q$

Ans. (b)

End of Solution


Q.7 A stick of length one meter is broken at two locations at distances of b_1 and b_2 from the origin (0), as shown in the figure. Note that $0 < b_1 < b_2 < 1$. Which one of the following is NOT a necessary condition for forming a triangle using the three pieces?

15-02-2025

Afternoon Session

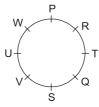
Note: All lengths are in meter. The figure shown is representative.

(a) $b_1 < 0.5$

(b) $b_2 > 0.5$

(c) $b_2 < b_1 + 0.5$

(d) $b_1 + b_2 < 1$


Ans. (d)

End of Solution

Eight students (P, Q, R, S, T, U, V, and W) are playing musical chairs. The figure indicates Q.8 their order of position at the start of the game. They play the game by moving forward in a circle in the clockwise direction.

After the 1st round, 4th student behind P leaves the game. After 2nd round, 5th student behind Q leaves the game. After 3rd round, 3rd student behind V leaves the game. After 4th round, 4th student behind U leaves the game. Who all are left in the game after the 4th round?

Note: The figure shown is representative.

(a) P; T; Q; S

(b) V; P; T; Q

(c) W; R; Q; V

(d) Q; T; V; W

Ans. (d)

According to GATE key.

End of Solution

Q.9 The table lists the top 5 nations according to the number of gold medals won in a tournament; also included are the number of silver and the bronze medals won by them. Based only on the data provided in the table, which one of the following statements is INCORRECT?

Nation		Gold	Silver	Bronze
USA		40	44	41
Canada		39	27	24
Japan		20	12	13
Australia		17	19	16
France		16	26	22

- (a) France will occupy the third place if the list were made on the basis of the total number of medals won.
- (b) The order of the top two nations will not change even if the list is made on the basis of the total number of medals won.

Foundation Courses for

ESE 2026

GATE 2026

Tablet Course

- Pre-loaded full fledged recorded course
- Android OS based 10.5 inch Samsung tablet
- Internet access does not required
- · Classes by senior faculties
- · Validity: 2 Years
- · Learn at your own pace
- Tablet is reusable for normal purpose after validity expires

Recorded Course

- Recorded Course
- Full fledged holistic preparation
- Classes by senior faculties
- Lectures can be watched anytime/ anywhere
- Courses are accessible on PC & Mac desktops/laptops/android/ iOS mobile devices.
- · Learn at your own pace
- Validity: 1 year
- Internet connection required

Teaching Hours |

- **✓ GATE Exclusive** CE, ME, EE: 800 to 900 Hrs.
 - EC, IN, CS, CH: 650-700 Hrs.
- - EC, IN, CS, CH: 950-1050 Hrs.
- **♥ GATE + ESE** CE, ME, EE, EC : 1100 to 1200 Hrs.
- ▼ GATE + SES-GS CE, ME, EE: 1150 to 1250 Hrs. ▼ GATE + SES-GS CE, ME, EE, EC: 1450 to 1550 Hrs.

Note: State Engineering Services Examination.

• The course is offered with a validity options of 1 year and 2 years.

Low Cost EMI Facility Available

Admissions open

For online courses, download the MADE EASY PRIME app now

Android

iOS

15-02-2025

Afternoon Session

- (c) USA and Canada together have less than 50% of the medals awarded to the nations in the above table.
- (d) Canada has won twice as many total medals as Japan.

Ans. (c)

Nation	Gold	Silver	Bronze
USA	40	44	41
Canada	39	27	24
Japan	20	12	13
Australia	17	19	16
France	16	26	22

Total medals awarded to the nations = 376

Medals awarded to USA = 125

Medals awarded to Canada = 90

Medals awarded to USA and Canada = 90 + 125 = 215

$$\therefore \frac{215}{376} \times 100 = 57.18\%$$

USA and Canada together have 57.18% of the total medals awarded to the nations.

End of Solution

Q.10 An organization allows its employees to work independently on consultancy projects but charges an overhead on the consulting fee. The overhead is 20% of the consulting fee, if the fee is up to . 5,00,000. For higher fees, the overhead is . 1,00,000 plus 10% of the amount by which the fee exceeds . 5,00,000. The government charges a Goods and Services Tax of 18% on the total amount (the consulting fee plus the overhead). An employee of the organization charges this entire amount, i.e., the consulting fee, overhead, and tax, to the client. If the client cannot pay more than . 10,00,000, what is the maximum consulting fee that the employee can charge?

(a) 7,01,438

(b) 7,24,961

(c) 7,51,232

(d) 7,75,784

Ans. (b)

Let, consultation fee = X

Case (i):

If $X \le 5.00.000$

Overhead = 20% of X = 0.2X

Total cost = X + 0.2X = 1.2X

Tax = 18% of 1.2
$$X = \left(\frac{18}{100}\right)$$
1.2 $X = 0.216X$

Total amount paid by client = 1.2X + 0.216X = 1.416X

Given that, the client can only pay 10,00,000.

1.416 X = 10.00,000 \Longrightarrow

X = 7,06,215 \Rightarrow

GATE 2025

Detailed Solutions

Exam held on:

15-02-2025

Afternoon Session

Case (ii):

If
$$X > 500000$$

Overhead =
$$1,00,000 + 10\%[X - 500000]$$

= $1,00,000 + 0.1[X - 500000]$
Total cost = $X + 100000 + 0.1[X - 500000]$
= $1.1X + 50000$

$$Tax = \frac{18}{100}(1.1X + 50000) = 0.198X + 9000$$

Total amount paid by client = 1.1X + 50000 + 0.198X + 9000 = 1.298X + 59000Given that, the client can only pay 1000000

 $\Pi\Pi\Pi$

$$\Rightarrow 1.298X + 59000 = 1000000$$
$$X = 724,961$$

: Maximum consultation fee that the client can afford = 724961.

End of Solution

Corporate Office: 44-A/1, Kalu Sarai, New Delhi - 110016 | Ph: 9021300500

Page

15-02-2025

Afternoon Session

SECTION - B

TECHNICAL

Q.11 Consider the matrix A below:

$$A = \begin{bmatrix} 2 & 3 & 4 & 5 \\ 0 & 6 & 7 & 8 \\ 0 & 0 & \alpha & \beta \\ 0 & 0 & 0 & \gamma \end{bmatrix}$$

For which of the following combinations of α , β and γ , is the rank of A at least three?

(i)
$$\alpha = 0$$
 and $\beta = \gamma \neq 0$

(ii)
$$\alpha = \beta = \gamma = 0$$

(iii)
$$\beta = \gamma = 0$$
 and $\alpha \neq 0$

(iv)
$$\alpha = \beta = \gamma \neq 0$$

- (a) Only (i), (iii), and (iv)
- (b) Only (iv)

(c) Only (ii)

(d) Only (i) and (iii)

Ans. (a)

$$A = \begin{bmatrix} 2 & 3 & 4 & 5 \\ 0 & 6 & 7 & 8 \\ 0 & 0 & \alpha & \beta \\ 0 & 0 & 0 & \alpha \end{bmatrix}$$

Required, $\rho(A) \ge 3$

$$\Rightarrow$$

$$\rho(A) = 3 \text{ or } 4$$

(i) For $\alpha = 0$ and $\beta = \gamma \neq 0$

$$A \cong \begin{bmatrix} 2 & 3 & 4 & 5 \\ 0 & 6 & 7 & 8 \\ 0 & 0 & 0 & \beta \\ 0 & 0 & 0 & \beta \neq 0 \end{bmatrix}$$

$$\rho(A) = 3 \ge 3$$

∴ (i) is true.

(ii) For $\alpha = \beta = \gamma = 0$

$$A \cong \begin{bmatrix} 2 & 3 & 4 & 5 \\ 0 & 6 & 7 & 8 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow \rho(A) = 2 \not\geq 3$$

∴ (ii) is false.

Detailed Solutions

Exam held on:

15-02-2025

Afternoon Session

(iii) For $\beta = \gamma = 0$ and $\alpha \neq 0$

Then,
$$A \cong \begin{bmatrix} 2 & 3 & 4 & 5 \\ 0 & 6 & 7 & 8 \\ 0 & 0 & \alpha & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow \rho(A) = 3 \ge 3 \qquad (\because \alpha \ne 0)$$

∴ (iii) is true.

(iv) For $\alpha = \beta = \gamma \neq 0$

Then,
$$A \cong \begin{bmatrix} 2 & 3 & 4 & 5 \\ 0 & 6 & 7 & 8 \\ 0 & 0 & \alpha & \alpha \\ 0 & 0 & 0 & \alpha \end{bmatrix}$$
$$A \cong \begin{bmatrix} 2 & 3 & 4 & 5 \\ 0 & 6 & 7 & 8 \\ 0 & 6 & 7 & 8 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \Rightarrow \rho(A) = 4 \ge 3$$

∴ (iv) is true.

End of Solution

Q.12 Consider the following series:

(i)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$$

(ii)
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$

(iii)
$$\sum_{n=1}^{\infty} \frac{1}{n!}$$

- (a) Only (ii) converges
- (b) Only (ii) and (iii) converge
- (c) Only (iii) converges
- (d) All three converge

Ans. (b)

(i)
$$\sum_{p=1}^{\infty} \frac{1}{\sqrt{n}} = \sum_{p=1}^{\infty} \frac{1}{n^p}$$

By P-test: $P = \frac{1}{2} < 1$

.. Series is divergent.

(ii)
$$\sum_{n=1}^{\infty} u_n = \sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \sum_{n=1}^{\infty} \frac{1}{n} - \frac{1}{n+1} = 1 - \frac{1}{n+1}$$
As $n \to \infty$

:. It is convergent.

ANNOUNCING

FOUNDATION COURSES for ESE 2026 & GATE 2026

The foundation batches are taught comprehensively which cover the requirements of all technical-syllabus based examinations.

- ✓ Classes by experienced & renowned faculties.
- Comprehensive & updated study material.
- Exam oriented learning ecosystem.
- Concept practice through workbook solving.
- Efficient teaching with comprehensive coverage.
- Similar teaching pedagogy in offline & online classes.
- Systematic subject sequence and timely completion.
- Regular performance assessment through class tests.

Commencement Dates:

Offline Batches at Delhi

CE	8 th Mar
ME	6 th Mar
EE/EC/IN	17 th Mar
CS	28 th Feb & 20 th Mar

Teaching Hours

GATE Exclusive

- CE, ME: 950 to 1000 Hrs.
- EE: 800 to 850 Hrs.
- EC, IN, CS: 650-700 Hrs.

GATE + ESE

• CE, ME, EE, EC: 1200-1250 Hrs.

Live-Online Batches

CE/ME/EE/E&T	17 th Mar (Evening)
CE (L8)	18 th Mar (Morning)
EC/IN/CS	17 th Mar (Evening)

Teaching Hours

GATE Exclusive

- CE, ME, EE: 750 to 800 Hrs.
- EC, IN, CS: 650-700 Hrs.

GATE + ESE

CE, ME, EE, EC: 1050-1100 Hrs.

More batches to be announced in Mar, Apr, May 2025 **Note:** Courses with SES (State Engineering Services) are also available.

Low Cost EMI Facility Available

Admissions Open

Delhi Centre: 44-A/1, Kalu Sarai, Near Hauz Khas Metro Station, New Delhi-110016 • Ph: 9021300500

15-02-2025

Afternoon Session

(iii)
$$\sum_{n=1}^{\infty} \frac{1}{n!}$$

By ratio test:

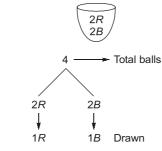
$$\lim_{n \to \infty} \frac{u_n}{u_n + 1} = \lim_{n \to \infty} \frac{\frac{1}{n!}}{\frac{1}{(n+1)!}} = \infty > 1$$

: It is convergent.

End of Solution

Q.13 A pot contains two red balls and two blue balls. Two balls are drawn from this pot randomly without replacement.

What is the probability that the two balls drawn have different colours?


(a)

(b) $\frac{1}{3}$

(c) $\frac{1}{2}$

(d) 1

Ans. (a)

$$P(E) = \frac{{}^{2}C_{1} \times {}^{2}C_{1}}{{}^{4}C_{2}} = \frac{4}{6} = \frac{2}{3}$$

End of Solution

Q.14 Consider a frequency-modulated (FM) signal

$$f(t) = A_c \cos(2\pi f_c t + 3\sin(2\pi f_1 t) + 4\sin(6\pi f_1 t)),$$

where A_c and f_c are, respectively, the amplitude and frequency (in Hz) of the carrier waveform. The frequency f_1 is in Hz, and assume that $f_c > 100f_1$.

The peak frequency deviation of the FM signal in Hz is _____.

(a) $15 f_1$

(b) $12f_1$

(c) $4f_1$

(d) $2f_1$

Ans. (a)

 $f(t) = A_c \cos[2\pi f_c t + 3\sin(2\pi f_t t) + 4\sin(6\pi f_t t)]$

Detailed Solutions

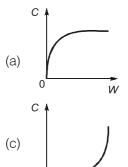
Exam held on:

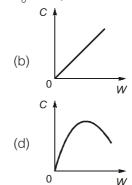
15-02-2025

Afternoon Session

General expression of angle modulated signal,

$$s(t) = A_c \cos[2\pi f_c t + \phi(t)]$$


From comparison: $\phi(t) = 3\sin 2\pi f_1 t + 4\sin 6\pi f_2 t$


Peak frequency deviation:

$$\Delta f = \left| \frac{1}{2\pi} \frac{d}{dt} \phi(t) \right|_{\text{max}} = \left| \frac{1}{2\pi} \left[3 \times 2\pi f_1 \cos 2\pi f_1 t + 4 \times 6\pi f_1 \cos 6\pi f_1 t \right] \right|_{\text{max}}$$
$$= \left| 3f_1 \cos 2\pi f_1 t + 12f_1 \cos 6\pi f_1 t \right|_{\text{max}} = 3f_1 + 12f_1 = 15f_1$$

End of Solution

Q.15 Consider an additive white Gaussian noise (AWGN) channel with bandwidth W and noise power spectral density $\frac{N_o}{2}$. Let P_{av} denote the average transmit power constraint. Which one of the following plots illustrates the dependence of the channel capacity Con the bandwidth W (keeping P_{av} and N_0 fixed)?

Ans. (a)

We know that,
$$C = B \log_2 \left(1 + \frac{S}{N} \right)$$

Given average transmitted power = P_{av} and channel bandwidth = W.

$$C = W \log_2 \left(1 + \frac{P_{av}}{N_o W} \right)$$

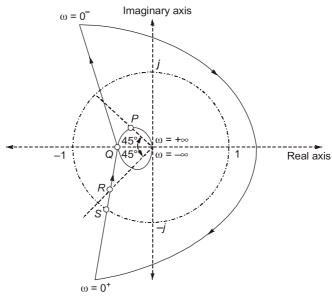
Given P_{av} and N_o are fixed.

$$\frac{P_{\text{av}}}{N_0} = K \text{ (fixed)}$$

$$C = W \log_2 \left(1 + \frac{K}{W} \right)$$

Evaluating C for various W values with fixed K value, plot between C and W will be as below:

End of Solution

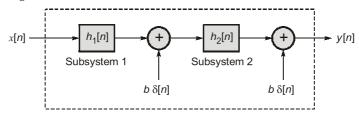

Detailed Solutions

Exam held on:

15-02-2025

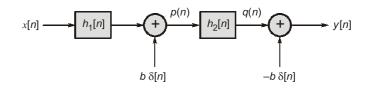
Afternoon Session

The Nyquist plot of a system is given in the figure below. Let $\omega_{P},~\omega_{Q},~\omega_{R},$ and ω_{S} be Q.16 the positive frequencies at the points P, Q, R, and S, respectively. Which one of the following statements is TRUE?


- (a) ω_S is the gain crossover frequency and ω_P is the phase crossover frequency
- (b) ω_Q is the gain crossover frequency and ω_R is the phase crossover frequency
- (c) ω_Q is the gain crossover frequency and ω_S is the phase crossover frequency
- (d) ω_S is the gain crossover frequency and ω_Q is the phase crossover frequency

Ans. (d)

End of Solution


Consider the discrete-time system below with input x[n] and output y[n]. In the figure, Q.17 $h_1[n]$ and $h_2[n]$ denote the impulse responses of LTI Subsystems 1 and 2, respectively. Also, $\delta[n]$ is the unit impulse, and b > 0.

Assuming $h_2[n] \neq \delta[n]$, the overall system (denoted by the dashed box) is _____.

- (a) linear and time invariant
- (b) linear and time variant
- (c) nonlinear and time invariant
- (d) nonlinear and time variant

Ans. (d)

Corporate Office: 44-A/1, Kalu Sarai, New Delhi - 110016 | Ph: 9021300500

$$p(n) = [x(n) * h_1(n)] + b\delta(n)$$

$$\Rightarrow \qquad q(n) = h_2(n) * p(n) = h_2(n) * [x(n) * h_1(n) + b\delta(n)]$$

$$= x(n) * h_1(n) * h_2(n) + bh_2(n) \qquad [\because h_2(n) * \delta(n) = h_2(n)]$$

$$\Rightarrow \qquad y(n) = q(n) - b\delta(n)$$

$$= [x(n) * h_1(n) * h_2(n) + b \cdot h_2(n)] - b\delta(n)$$

$$y(n) = x(n) * h_1(n) * h_2(n) + \underbrace{b h_2(n) - b\delta(n)}_{f(n)}$$

 $f(n) = bh_2(n) - b\delta(n)$ where,

Because of f(n) in the output y(n), the system is non-linear and time-variant.

End of Solution

Consider a continuous-time, real-valued signal f(t) whose Fourier transform Q.18

$$F(\omega) = \int_{-\infty}^{\infty} f(t) \exp(-j\omega t) dt \text{ exists.}$$

Which one of the following statements is always TRUE?

(a)
$$|F(\omega)| \le \int_{-\infty}^{\infty} |f(t)| dt$$

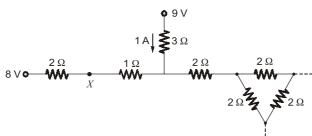
(b)
$$|F(\omega)| > \int_{0}^{\infty} |f(t)| dt$$

(c)
$$|F(\omega)| \le \int_{-\infty}^{\infty} f(t) dt$$

(d)
$$|F(\omega)| \ge \int_{-\infty}^{\infty} f(t) dt$$

Ans. (a)

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t}dt$$


$$\Rightarrow \qquad \left| F(\omega) \right| = \left| \int_{-\infty}^{\infty} f(t) e^{-j\omega t} \, dt \right| \leq \int_{-\infty}^{\infty} \left| f(t) e^{-j\omega t} \, dt \right|$$

$$\Rightarrow \qquad |F(\omega)| \leq \int_{-\infty}^{\infty} |f(t)| dt$$

End of Solution

Q.19 Consider a part of an electrical network as shown below. Some node voltages, and the current flowing through the 3Ω resistor are as indicated.

The voltage (in Volts) at node X is ___

Corporate Office: 44-A/1, Kalu Sarai, New Delhi - 110016 | Ph: 9021300500

Conventional Questions Practice Programme for ESE Mains 2025

Offline

Live-Online

Admissions Open

Batches commenced from 24 FEB 2025

Course includes Mains Test Series (12 tests)

Commencing from 15 June 2025

Note: Solo Mains Test Series is also available.

This course is offered in offline mode at Delhi Centre.

Key Features:

Classes by senior faculties

Comprehensive coverage

👸 Discussion on important questions

Improvement of 'answer presentation'

Updated ESE Mains Workbooks

Mains Test Series is included

Duration: 300-350 Hrs | 80-90 days

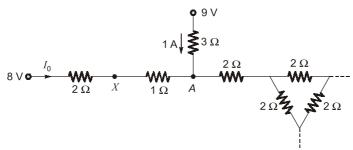
Timing: 7 days/week | 4 hours/day

Streams: CE, ME, EE, E&T

₹14,000 + GST
For MADE EASY Students
(Foundation, RIB and Mains Course)

Fee is same for Offline & Live-online Batches

Test series is available at all MADE EASY Centres.

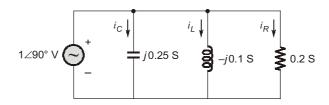


15-02-2025

Afternoon Session

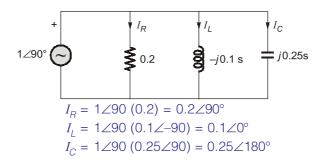
(a) $\frac{20}{3}$

(a) Ans.



Voltage at node A is = $9 - (3 \times 1) = 6 \text{ V}$

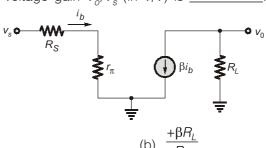
$$I_D = \frac{8-6}{2+1} = \frac{2}{3} \text{ A}$$
 ; $V_x = 8 - \left(2 \times \frac{2}{3}\right) = \frac{20}{3} \text{ V}$


End of Solution

Let i_C , i_I , and i_R be the currents flowing through the capacitor, inductor, and resistor, Q.20 respectively, in the circuit given below. The AC admittances are given in Siemens(S). Which one of the following is true?

- (a) $i_C = 0.25 \angle 180^\circ \text{ A}$, $i_L = 0.1 \angle 0^\circ \text{ A}$, $i_R = 0.2 \angle 90^\circ \text{ A}$ (b) $i_C = 4 \angle 180^\circ \text{ A}$, $i_L = 10 \angle 0^\circ \text{ A}$, $i_R = 5 \angle 90^\circ \text{ A}$ (c) $i_C = 0.25 \angle 270^\circ \text{ A}$, $i_L = 0.1 \angle 90^\circ \text{ A}$, $i_R = 0.2 \angle 90^\circ \text{ A}$ (d) $i_C = 4 \angle 90^\circ \text{ A}$, $i_L = 10 \angle 270^\circ \text{ A}$, $i_R = 5 \angle 0^\circ \text{ A}$

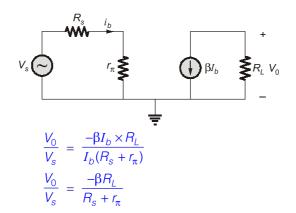
Ans. (a)


End of Solution

15-02-2025

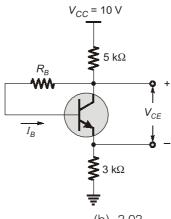
Afternoon Session

Q.21 A simplified small-signal equivalent circuit of a BJT-based amplifier is given below. The small-signal voltage gain V_o/V_s (in V/V) is ______.



(a)
$$\frac{-\beta R_L}{R_s + r_{\pi}}$$

(c)
$$\frac{-\beta R_L}{R_L}$$


(d)
$$\frac{+\beta R_L}{R_S + r_{\pi}}$$

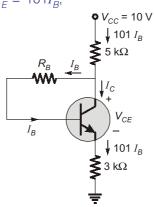
Ans. (a)

End of Solution

Q.22 The ideal BJT in the circuit given below is biased in the active region with a β of 100. If I_B is 10 μ A, then V_{CE} (in Volts, rounded off to two decimal places) is _____.

- (a) 4.95
- (c) 1.92

- (b) 3.03
- (d) 3.73



15-02-2025

Afternoon Session

Ans. (c)

Since,
$$I_C = \beta I_B = 100 I_B$$
; $I_E = 101 I_B$,

 $I_B = 0.01 \text{ mA}$

 $10 = 5 \times 101I_B + V_{CE} + 3 \times 101I_B$

 $V_{CF} = 10 - 808 \times 0.01$

 $V_{CE} = 1.92 \text{ V}$

End of Solution

Q.23 A 3-input majority logic gate has inputs X, Y and Z. The output F of the gate is logic '1' if two or more of the inputs are logic '1'. The output F is logic '0' if two or more of the inputs are logic '0'.

Which one of the following options is a Boolean expression of the output F?

(a) XY + YZ + ZX

(b) $X \oplus Y \oplus Z$

(c) X + Y + Z

By KVL:

(d) XYZ

Ans. (a)

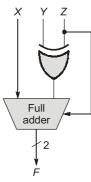
Given inputs are,

Χ	Y	Ζ	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

From 3-variable k-map:

$$\therefore$$
 $F = yz + xy + xz$

End of Solution



15-02-2025

Afternoon Session

Q.24 A full adder and an XOR gate are used to design a digital circuit with inputs X, Y, and Z, and output F, as shown below. The input Z is connected to the carry-in input of the full adder.

If the input Z is set to logic '1', then the circuit functions as _____ with X and Yas inputs.

- (a) an adder
- (c) a multiplier

- (b) a subtractor
- (d) a binary to Gray code converter

Ans. (b)

End of Solution

Consider the function $f: \mathbb{R} \to \mathbb{R}$ defined as Q.25

$$f(x) = 2x^3 - 3x^2 - 12x + 1$$

Which of the following statements is/are correct?

(Here, \mathbb{R} is the set of real numbers.)

- (a) f has no global maximizer
- (b) f has no global minimizer
- (c) x = -1 is a local minimizer of f (d) x = 2 is a local maximizer of f

Ans. (a, b)

$$f(x) = 2x^{3} - 3x^{2} - 12x + 1$$

$$f'(x) = 6x^{2} - 6x - 12$$

$$f'(x) = 0$$

$$6x^{2} - 6x - 12 = 0$$

$$6(x^{2} - x - 2) = 0$$

$$6(x - 2)(x + 1) = 0$$

$$x = 2$$

$$x = -1$$

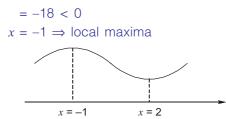
$$f''(x) = 12x - 6$$

$$f'''(x)|_{x=2} = 12 \times 2 - 6$$

$$= 18 > 0$$

$$x = 2 \Rightarrow |\text{ocal minima}|_{x=-1}$$

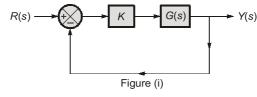
$$f'''(x)|_{x=-1} = 12 \times -1 - 6$$


$$= -12 - 6$$

Page

15-02-2025

Afternoon Session



So function has neither global maxima nor global minima.

End of Solution

Q.26 Consider the unity-negative-feedback system shown in Figure (i) below, where gain $K \ge 0$. The root locus of this system is shown in Figure (ii) below.

For what value(s) of K will the system in Figure (i) have a pole at -1 + j1?

(a) K = 5

- (b) $K = \frac{1}{5}$
- (c) For no positive value of K
- (d) For all positive values of K

Ans. (c)

Since, the given pole -1 + j1 is not on the Root locus, hence the system has no positive value of K at -1 + j1.

End of Solution

Q.27 Let x[n] be a discrete-time signal whose z-transform is X(z).

Which of the following statements is/are TRUE?

- (a) The discrete-time Fourier transform (DTFT) of x[n] always exists
- (b) The region of convergence (RoC) of X(z) contains neither poles nor zeros
- (c) The discrete-time Fourier transform (DTFT) exists if the region of convergence (RoC) contains the unit circle
- (d) If $x[n] = \alpha \delta[n]$, where $\delta[n]$ is the unit impulse and α is a scalar, then the region of convergence (RoC) is the entire z-plane

Total 22 Tests

Paper-I: 11 Tests

GS & Engineering Aptitude

8 Multiple Subject Tests of 50 Questions (400 Ques) Time: 60 minutes

2 Full Syllabus Tests of 100 Questions (300 Ques) Time: 120 minutes

+ 1 Anubhav Test Full Syllabus

Paper-II: 11 Tests

Engineering Discipline

• 8 Multiple Subject Tests of 75 Ouestions (600 Ques) Time: 90 minutes

 2 Full Syllabus Tests of 150 Questions (450 Ques) Time: 180 minutes

+ 1 Anubhav Test

Full Syllabus

Each question carries 2 marks

Tests are designed as per latest syllabus, trend and pattern of ESE. Paper-I (GS and Engineering aptitude) and Paper-II (Technical) both are covered.

All care has been taken to ensure the highest level

Dynamic test series for cyclic revision of subjects. Tests are time tabled with "New Topics" and "Repeat Topics" to maintain the continuity and a perfect balance between tech and non tech subjects.

Negative marking = 2/3 marks

Quality Questions framed by experienced research and development team of MADE EASY.

Well explained, step-by-step illustrated solutions for easy understanding of aspirants..

Opportunity to evaluate yourself on All India Basis. Compare your performance with quality students of MADE EASY.

Fee **Structure**

₹3,000 + GST Non-MADE EASY students ₹ 2,000 + GST

Ex. MADE EASY Students Enrolled in Postal or any long term/ short term classroom course

₹ 1,000 + GST

If student opts this test in live-online mode Nil

For Current Session Students Enrolled in ESE + GATE 2025 Batche

Note: Anubhay Tests are part of the ESE Offline Prelims 2025 test series.

For outside students Anubhay Tests are free of cost. It will be conducted at all our MADE EASY and NEXT IAS centres across India

Delhi Centre: 44-A/1, Kalu Sarai, Near Hauz Khas Metro Station, New Delhi-110016 • Ph: 9021300500 MADE EASY Centres: Delhi | Bhopal | Hyderabad | Jaipur | Kolkata | Pune Enroll Q www.madeeasy.in

GATE 2025 Electronics Engineering

Detailed Solutions

Exam held on:

15-02-2025

Afternoon Session

Ans. (c, d)

End of Solution

- Q.28 Consider a message signal m(t) which is bandlimited to [-W, W], where W is in Hz. Consider the following two modulation schemes for the message signal:
 - Double sideband-suppressed carrier (DSB-SC):

$$f_{\text{DSB}}(t) = A_c m(t) \cos(2\pi f_c t)$$

• Amplitude modulation (AM):

$$f_{AM}(t) = A_c(1 + \mu m(t)) \cos(2\pi f_c t)$$

Here, A_c and f_c are the amplitude and frequency (in Hz) of the carrier, respectively. In the case of AM, μ denotes the modulation index.

Consider the following statements:

- (i) An envelope detector can be used for demodulation in the DSB-SC scheme if m(t) > 0 for all t.
- (ii) An envelope detector can be used for demodulation in the AM scheme only if m(t) > 0 for all t.

Which of the following options is/are correct?

(a) (i) is TRUE

(b) (i) is FALSE

(c) (ii) is TRUE

(d) (ii) is FALSE

Ans. (a, d)

If m(t) > 0 for all t, envelope detector can be used for demodulation of DSB-SC signal. Even for m(t) < 0, envelope detector can be used for demodulation of AM signal.

End of Solution

- Q.29 Which of the following statements is/are TRUE with respect to an ideal opamp?
 - (a) It has an infinite input resistance
 - (b) It has an infinite output resistance
 - (c) It has an infinite open-loop differential gain
 - (d) It has an infinite open-loop common-mode gain

Ans. (a, c)

Χ

End of Solution

- **Q.30** Which of the following statements is/are TRUE with respect to ideal MOSFET-based DC-coupled single-stage amplifiers having finite load resistors?
 - (a) The common-gate amplifier has an infinite input resistance
 - (b) The common-source amplifier has an infinite input resistance
 - (c) The input and output voltages of the common-source amplifier are in phase
 - (d) The input and output voltages of the common-drain amplifier are in phase

Ans. (b, d)

End of Solution

- Q.31 Which of the following can be used as an n-type dopant for silicon? Select the correct option(s).
 - (a) Arsenic

(b) Boron

(c) Gallium

(d) Phosphorous

Ans. (a, d)

End of Solution

Q.32 The function y(t) satisfies

$$t^2y''(t) - 2ty'(t) + 2y(t) = 0,$$

where y'(t) and y''(t) denote the first and second derivatives of y(t), respectively. Given y'(0) = 1 and y'(1) = -1, the maximum value of y(t) over [0, 1] is _ (rounded off to two decimal places).

Ans. (0.25)

Cauchy's Euler differential equation,

$$x = e^{t}$$

$$t = e^{y}$$

$$\ln t = u$$

$$t^{2}y''(t) - 2ty'(t) + 2y(t) = 0$$

$$D(D - 1)y - 2Dy + 2y = 0$$

$$(D^{2} - D - 2D + 2)y = 0$$

$$(D^{2} - 3D + 2)y = 0$$

A.E.

$$m^{2} - 3m + 2 = 0$$

$$m = 1, 2$$

$$y = C_{1}e^{u} + C_{2}e^{2u}$$

$$y = C_{1}t + C_{2}t^{2}$$

$$\frac{dy}{dt} = C_{1} + C_{2} \times 2t$$

$$\frac{dy}{dt} = 1$$

at
$$t = 0$$
,

$$\frac{d}{dt} = 1$$

$$C_1 = 1$$

at
$$t = 1$$
,

$$\frac{dy}{dt} = -1$$

$$-1 = 1 + C_2 \times 2 \times 1$$

$$-1 = 1 + 2C_2$$

$$-2 = 2C_2$$

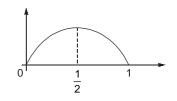
$$C_2 = -1$$

$$y = C_1 t + C_2 t^2$$

$$y = t - t^2$$

15-02-2025

Afternoon Session


$$\frac{dy}{dt} = 1 - 2t = 0$$

$$t=\frac{1}{2}$$

$$\frac{d^2y}{dt^2} = -2 < 0$$

 $t = \frac{1}{2} \implies \text{maxima point}$

$$y\left(\frac{1}{2}\right) = \frac{1}{2} - \left(\frac{1}{2}\right)^2$$
$$= \frac{1}{2} - \frac{1}{4} = \frac{1}{4}$$

End of Solution

Q.33 The generator matrix of a (6,3) binary linear block code is given by

$$G = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}$$

The minimum Hamming distance d_{\min} between codewords equals ____ (answer in integer).

Ans. (3)

$$G = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}_{\substack{3 \times 6 \\ K \times N}}^{3 \times 6}$$

Method 1:

Since, K = 3, $2^K = 8$ distinct message blocks possible i.e. 000 to 111.

Find corresponding codewords $[c] = [d] \cdot [G]$.

Find Hamming weight of each of the codewords.

Smallest possible Hamming weight of non zero codeword equals to d_{\min} . By evaluating above procedure $d_{\min} = 3$.

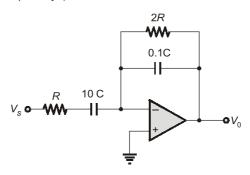
Method 2:

Minimum number of columns of G that sum to zero equals to d_{\min} .

Sum of 1st, 2nd and 6th columns (or) 4th, 5th and 6th columns (or) 2nd, 3rd and 5th columns equals to zero.

For above G, minimum number of columns of G matrix that sum to zero equals to 3 so that $d_{\min} = 3$.

End of Solution



15-02-2025

Afternoon Session

Q.34 All the components in the bandpass filter given below are ideal. The lower -3 dB frequency of the filter is 1 MHz.

The upper –3 dB frequency (in MHz, rounded off to the nearest integer) is ______.

Ans. (50)

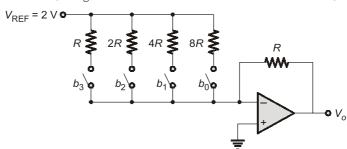
We know that,

$$f_{L} = \frac{1}{2\pi R_{1}C_{1}}$$

$$10^{6} = \frac{1}{2\pi \times R \times 10C}$$

$$\frac{1}{RC} = 2\pi \times 10^{7}$$

$$f_{H} = \frac{1}{2\pi R_{2}C_{2}} = \frac{1}{2\pi \times 2R \times 0.1C}$$


$$= \frac{1}{0.4\pi} \times \frac{1}{RC} = \frac{2\pi \times 10^{7}}{0.4\pi}$$

$$f_{H} = 5 \times 10^{7} \text{ Hz} = 50 \text{ MHz}$$

End of Solution

Q.35 A 4-bit weighted-resistor DAC with inputs b_3 , b_2 , b_1 , and b_0 (MSB to LSB) is designed using an ideal opamp, as shown below. The switches are closed when the corresponding input bits are logic '1' and open otherwise.

When the input b_3 b_2 b_1 b_0 changes from 1110 to 1101, the magnitude of the change in the output voltage V_O (in mV, rounded off to the nearest integer) is _____.

Detailed Solutions

Exam held on:

15-02-2025

Afternoon Session

Ans. (250)

For the given 4-bit weighted-resistor DAC with inputs b_3 , b_2 , b_1 and b_0 (MSB to LSB), the output voltage is,

$$V_o = -R \left[\frac{b_0}{8R} + \frac{b_1}{4R} + \frac{b_2}{2R} + \frac{b_3}{R} \right] V_{\text{REF}}$$

 \Rightarrow

$$V_o = -\left[\frac{b_0}{8} + \frac{b_1}{4} + \frac{b_2}{2} + \frac{b_3}{1}\right] \times 2$$

For input 1110:

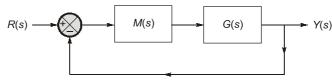
$$V_{O_1} = -\left[0 + \frac{1}{4} + \frac{1}{2} + \frac{1}{1}\right] \times 2 = -3.5$$

For input 1101:

$$V_{o_2} = -\left[\frac{1}{8} + 0 + \frac{1}{2} + \frac{1}{1}\right] \times 2 = -3.25$$

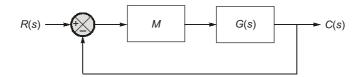
The magnitude of the change in the output voltage is,

$$V_0 = |-3.5 - (-3.25)| = 0.25 = 250 \text{ mV}$$


End of Solution

Q.36 Let $G(s) = \frac{1}{10s^2}$ be the transfer function of a second-order system. A controller M(s)

is connected to the system G(s) in the configuration shown below. Consider the following statements.


- (i) There exists no controller of the form $M(s) = \frac{K_I}{s}$, where K_I is a positive real number,
 - such that the closed loop system is stable.
- (ii) There exists at least one controller of the form $M(s) = K_P + sK_D$, where K_P and K_D are positive real numbers, such that the closed loop system is stable.

Which one of the following options is correct?

- (a) (i) is TRUE and (ii) is FALSE
- (b) (i) is FALSE and (ii) is TRUE
- (c) Both (i) and (ii) are FALSE
- (d) Both (i) and (ii) are TRUE

Ans. (d)
Given,

Corporate Office: 44-A/1, Kalu Sarai, New Delhi - 110016 | Ph: 9021300500

UPPSC-AE 2024 Exam

Live Online Program

Prelims Specific Course

Streams: • CE • ME • EE

Batches Going On Admissions Open
Subjects that have already been taught will be made
available in recorded-mode.

Features:

- 360-degree coverage of the UPPSC-AE 2024 Prelims Specific Course syllabus.
- Structured and effective curriculum aligns with the UPPSC-AE.
- Quality teaching with a clear and concise approach.
- Prelims-specific workbook with a wide range of practice question sets.
- Exam simulated Online test series for UPPSC AE Prelims exam.
- Dedicated doubt chat facility with faculty members.
- Live Classes + accessibility to watch recorded classes 2 times. Subjects that have already been taught will be made available in recorded-mode.
- Option to opt course "with book" or "without books".

15-02-2025

Afternoon Session

and

$$G(s) = \frac{1}{s^2}$$

(i) Given, $M = \frac{K}{s}$, then closed loop system,

$$\frac{C(s)}{R(s)} = \frac{M G(s)}{1 + M G(s)} = \frac{\frac{K}{s} \times \frac{1}{s^2}}{1 + \frac{K}{s} + \frac{1}{s^2}} = \frac{K}{s^3 + K}$$

 \therefore For all values of 'K', the closed loop system is unstable.

(ii) For controller, $M = K_P + K_D s$ Let. M = 1 + s

$$\frac{C(s)}{R(s)} = \frac{(1+s) \times \frac{1}{s^2}}{1 + \frac{s+1}{s^2}} = \frac{(s+1)}{s^2 + s + 1}$$

.. Closed loop system is stable.

.. Both statements are correct.

End of Solution

Q.37 Consider the polynomial $p(s) = s^5 + 7s^4 + 3s^3 - 33s^2 + 2s - 40$. Let (L, I, R) be defined as follows.

L is the number of roots of p(s) with negative real parts.

I is the number of roots of p(s) that are purely imaginary.

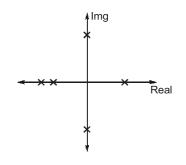
R is the number of roots of p(s) with positive real parts.

Which one of the following options is correct?

(a)
$$L = 2$$
, $I = 2$ and $R = 1$

(b)
$$L = 3$$
, $I = 2$ and $R = 0$

(c)
$$L = 1$$
, $I = 2$ and $R = 2$


(d)
$$L = 0$$
, $I = 4$ and $R = 1$

Ans. (a)

Given

$$p(s) = s^5 + 7s^4 + 3s^3 - 33s^2 + 2s - 40$$

By Routh's Hurwitz criteria

Auxiliary equation is

$$A(s) = -40s^2 - 40$$

$$\frac{dA(s)}{ds} = -80s$$

Detailed Solutions

Exam held on:

15-02-2025

Afternoon Session

From the above table we get

$$L = 2$$
, $I = 2$ and $R = 1$

End of Solution

Q.38 Consider a continuous-time finite-energy signal f(t) whose Fourier transform vanishes outside the frequency interval $[-\omega_c, \omega_c]$, where ω_c is in rad/sec.

The signal f(t) is uniformly sampled to obtain y(t) = f(t) p(t). Here

$$p(t) = \sum_{s=-\infty}^{\infty} \delta(t - \tau - nT_s),$$

with $\delta(t)$ being the Dirac impulse, $T_s > 0$, and $\tau > 0$. The sampled signal y(t) is passed

through an ideal lowpass filter $h(t) = \omega_c T_s \frac{\sin(\omega_c t)}{\pi \omega_c t}$ with cutoff frequency ω_c and passband gain T_{c} .

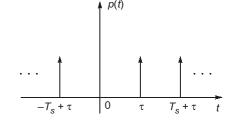
The output of the filter is given by _

(a) f(t) if $T_s < \pi/\omega_c$

(c) $f(t-\tau)$ if $T_s < 2\pi/\omega_c$

(b) $f(t-\tau)$ if $T_s < \pi/\omega_c$ (d) $T_s f(t)$ if $T_s < 2\pi/\omega_c$

Ans. (a)


$$p(t) = \sum_{n = -\infty}^{\infty} \delta(t - \tau - nT_s)$$

For p(t),

FS-coefficient:
$$C_n = \frac{1}{T_s} \int_{T_s} p(t)e^{-jn\omega_s t} dt$$

$$= \frac{1}{T_s} \int_{T_s} \delta(t - \tau)e^{-jn\omega_s t} dt$$

$$= \frac{e^{-jn\omega_s \tau}}{T_s}$$

$$\Rightarrow P(\omega) = 2\pi \sum_{n=-\infty}^{\infty} C_n \delta(\omega - n\omega_s) = 2\pi \sum_{n=-\infty}^{\infty} \frac{e^{-jn\omega_s \tau}}{T_s} \delta(\omega - n\omega_s)$$

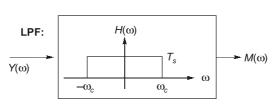
$$= \omega_s \sum e^{-jn\omega_S \tau} \delta(\omega - n\omega_S)$$

Now,

$$\Rightarrow Y(\omega) = \frac{1}{2\pi} \left[F(\omega) * P(\omega) \right] = \frac{1}{2\pi} \left[F(\omega) * \omega_{S} \sum_{n=-\infty}^{\infty} e^{-jn\omega_{S}\tau} \delta(\omega - n\omega_{S}) \right]$$

$$= \frac{1}{T_{S}} \sum_{n=-\infty}^{\infty} e^{-jn\omega_{S}\tau} F(\omega - n\omega_{S})$$

$$= \left[\dots + \frac{e^{-j\omega_{S}\tau}}{T_{S}} F(\omega + \omega_{S}) + \frac{F(\omega)}{T_{S}} + \frac{e^{-j\omega_{S}\tau}}{T_{S}} F(\omega - \omega_{S}) + \dots \right]$$


E 2025

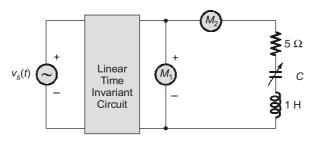
Detailed Solutions

Exam held on:

15-02-2025

Afternoon Session

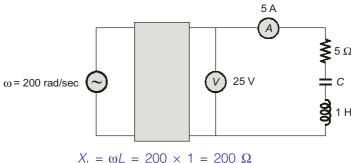
$$\therefore \qquad M(\omega) = Y(\omega) \cdot H(\omega) = T_s \cdot \frac{F(\omega)}{T_s} \quad \text{if} \quad T_s < \frac{\pi}{\omega_c}$$


$$M(\omega) = F(\omega) \text{ if } T_{s} < \frac{\pi}{\omega_{c}};$$

$$\Rightarrow \qquad \qquad m(t) = \text{LPF output} = \text{f(t) if } \ \textit{T}_{\text{S}} < \frac{\pi}{\omega_{\text{C}}}$$

End of Solution

In the circuit below, M_1 is an ideal AC voltmeter and M_2 is an ideal AC ammeter. The source voltage (in Volts) is $v_s(t) = 100\cos(200t)$.


What should be the value of the variable capacitor C such that the RMS readings on M_1 and M_2 are 25 V and 5 A, respectively?

- (a) $25 \mu F$
- (c) $0.25 \mu F$

- (b) $4 \mu F$
- (d) Insufficient information to find C

(a) Ans.

$$X_L = \omega L = 200 \times 1 = 200 \ \Omega$$

$$Z = \frac{V}{I} = \frac{25}{5} = 5\Omega$$

$$Z = R + j(X_L - X_C)$$

$$X_L = X_C$$

$$X_L = X_C$$
$$X_L = X_C = 200 \ \Omega$$

Corporate Office: 44-A/1, Kalu Sarai, New Delhi - 110016 | **Ph:** 9021300500

Page

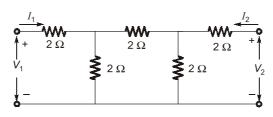
15-02-2025

Afternoon Session

$$\frac{1}{\omega C} = 200$$

$$\frac{1}{200 \times C} = 200$$

$$C = \frac{1}{200 \times 200} = 25\mu F$$

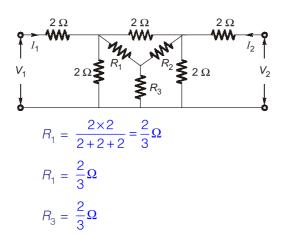

End of Solution

Q.40 The *Z*-parameter matrix of a two port network relates the port voltages and port currents as follows:

$$\begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = Z \begin{bmatrix} I_1 \\ I_2 \end{bmatrix}$$

The Z-parameter matrix (with each entry in Ohms) of the network shown below is

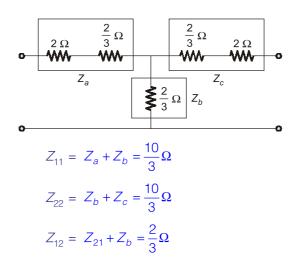
____·


(a)
$$\begin{bmatrix} \frac{10}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{10}{3} \end{bmatrix}$$

(b)
$$\begin{bmatrix} \frac{2}{3} & \frac{10}{3} \\ \frac{10}{3} & \frac{2}{3} \end{bmatrix}$$

(c)
$$\begin{bmatrix} 10 & 2 \\ 2 & 10 \end{bmatrix}$$

(d)
$$\begin{bmatrix} \frac{10}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{10}{3} \end{bmatrix}$$


Ans. (a)

15-02-2025

Afternoon Session

End of Solution

Q.41 A source transmits symbol S that takes values uniformly at random from the set $\{-2, 0, 2\}$. The receiver obtains Y = S + N, where N is a zero-mean Gaussian random variable independent of S. The receiver uses the maximum likelihood decoder to estimate the transmitted symbol S.

Suppose the probability of symbol estimation error P_{e} is expressed as follows:

$$P_e=\alpha P(N>1),$$

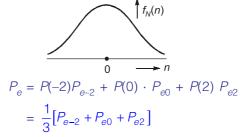
where P(N > 1) denotes the probability that N exceeds 1.

What is the value of α ?

(a)
$$\frac{1}{3}$$

(c)
$$\frac{2}{3}$$

(d)
$$\frac{4}{3}$$


Ans. (d)

S takes the values uniformly at random from the set {-2, 0, 2}

$$P(-2) = P(0) = P(2) = \frac{1}{3}$$

$$Y = S + N$$

Given N is zero mean Gaussian R.V

For $S = -2 \rightarrow Y = -2 + N$

Total 10 Tests (Total 1125 Questions)

5 Part Syllabus Tests + 5 Full Syllabus Tests

Paper Pattern:

- → Each question carries 2 Marks
- → There is a penalty of 0.66 Mark for every wrong answer.

Test Series Features:

- → Quality questions as per UPPSC-AE standard and pattern.
- Step by step detailed solutions for tough questions.
- Detailed performance analysis report.

Stream: CE, ME, EE

Test Series Schedule

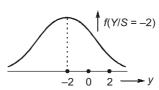
Test No.	Activate Date	Total Questions	Total Time	Test Type	Syllabus Covered
1	20 th Feb 2025	75 Qs	1 Hour	Part Syllabus Test	General Principles of Design and Drawing, Industrial Safety and Safety Standards, Engineering Materials, Quality Control, Types of Machinery and Maintenance, Production and Construction, Handling and Storage of Products
2	27 th Feb 2025	75 Qs	1 Hour	Part Syllabus Test	Basics of project Management, Information and communication technologies, Ethics and values in engineering profession, intellectual property rights, Role of science and technology in daily life, recent developments in applied sciences, basics of artificial intelligence and robotics
3	6 th Mar 2025	75 Qs	1 Hour	Part Syllabus Test	Green Energy, Energy conversion principles, Climate change, Disaster Management, Basics of thermodynamics, Water resources and conservation processes, Basics of measurement and instrumentation, Human health and sanitation
4	13 th Mar 2025	75 Qs	1 Hour	Part Syllabus Test	General Hindi
5	20 th Mar 2025	75 Qs	1 Hour	Part Syllabus Test	Indian History, Indian Polity, Geography, GK & Miscellaneous and Current Affairs
6	27 th Mar 2025	150 Qs	2 Hours	Full Syllabus Test	Full Syllabus Test (100 Qs. Engineering Aptitude + 25 Hindi + 25 General Studies)
7	3 rd Apr 2025	150 Qs	2 Hours	Full Syllabus Test	Full Syllabus Test (100 Qs. Engineering Aptitude + 25 Hindi + 25 General Studies)
8	5 th Apr 2025	150 Qs	2 Hours	Full Syllabus Test	Full Syllabus Test (100 Qs. Engineering Aptitude + 25 Hindi + 25 General Studies)
9	8 th Apr 2025	150 Qs	2 Hours	Full Syllabus Test	Full Syllabus Test (100 Qs. Engineering Aptitude + 25 Hindi + 25 General Studies)
10	11 th Apr 2025	150 Qs	2 Hours	Full Syllabus Test	Full Syllabus Test (100 Qs. Engineering Aptitude + 25 Hindi + 25 General Studies)

₹1000/-Fee: For Non-MADE EASY

₹500/-For MADE EASY GATE & ESE Batch Students (Old/Current)

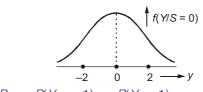
For MADE EASY AE/JE Batch Students (Old/Current)

₹500/-


Nil For UPPSC-AE Batch Students

15-02-2025

Afternoon Session

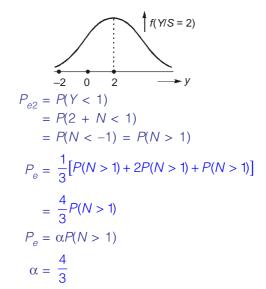


Since ML decoder is used $\rightarrow P_{e-2} = P(Y > -1)$

$$V_{th} = \frac{a_1 + a_2}{2} = \frac{-2 + 0}{2} = -1$$

$$P_{e-2} = P(-2 + N > -1) = P(N > 1)$$
For $S = 0 \rightarrow Y = N$

For
$$S = 0 \rightarrow Y = N$$



$$P_{e0} = P(Y < -1) \text{ or } P(Y > 1)$$

= $P(Y < -1) + P(Y > 1)$
= $P(N < -1) + P(N > 1)$

Since N is zero mean GRV, P(N < -1) = P(N > 1)

$$P_{e0} = 2P(N > 1)$$

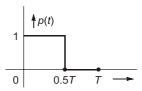
$$P_{e0} = 2P(N > 1)$$
Let $S = 2 \rightarrow Y = 2 + N$

Given,

End of Solution

Consider a real-valued random process

$$f(t) = \sum_{n=1}^{N} a_n \, p(t - nT),$$


where T > 0 and N is a positive integer. Here, p(t) = 1 for $t \in [0, 0.5T]$ and 0 otherwise. The coefficients a_n are pairwise independent, zero-mean unit-variance random variables. Read the following statements about the random process and choose the correct option.

- (i) The mean of the process f(t) is independent of time t.
- (ii) The autocorrelation function $E[f(t)|f(t+\tau)]$ is independent of time t for all τ . (Here, $E[\cdot]$ is the expectation operation.)
- (a) (i) is TRUE and (ii) is FALSE
- (b) Both (i) and (ii) are TRUE
- (c) Both (i) and (ii) are FALSE
- (d) (i) is FALSE and (ii) is TRUE

Ans. (a)

Given Random process $f(t) = \sum_{n=1}^{N} a_n p(t - nT)$

 $\{a_n\}$ specifies set of independent random variables each having zero mean and unit variance.

Mean:

$$E[f(t)] = \sum_{n=1}^{N} E[a_n] p(t - nT)$$

Given that $E[a_n] = 0$

$$E[f(t)] = 0$$

E[f(t)] is independent of t.

ACF:

$$ACF[f(t)] = \sum_{n=1}^{n} ACF[a_n] \cdot ACF[p(t-nT)]$$

Let p(t - nT) = g(t) where g(t) is a deterministic signal.

$$ACF[p(t-nT)] = ACF[g(t)] = \int_{-\infty}^{\infty} g(t) \cdot g(t+\tau)dt$$

From observation ACF[g(t)] is function of t. i.e., ACF[f(t)] is function of t.

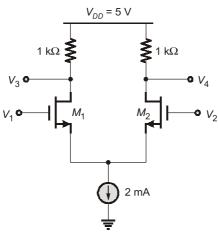
End of Solution

Q.43 The identical MOSFETs M_1 and M_2 in the circuit given below are ideal and biased in the saturation region. M_1 and M_2 have a transconductance g_m of 5 mS.

The input signals (in Volts) are:

$$V_1 = 2.5 + 0.01 \sin \omega t$$

$$V_2 = 2.5 - 0.01 \sin \omega t$$



Exam held on:

15-02-2025

Afternoon Session

The output signal V_3 (in Volts) is _

(a) 3 + 0.05 sin ωt

(b) $3 - 0.1 \sin \omega t$

(c) $4 + 0.1 \sin \omega t$

(d) $4 - 0.05 \sin \omega t$

Ans. (d)

$$I_{DS} = \frac{2}{2} = 1 \,\text{mA}$$

$$\frac{V_d}{2} = 0.01 \sin \omega t$$

$$V_d = 0.02 \sin \omega t$$

$$V_{CM} = 2.5 \text{ V}$$

Given,

$$g_m = 5 \text{ ms}$$

$$A_{DM} = \frac{V_0}{V_{cl}} = -\frac{g_m \times R_D}{2} = -\frac{5 \times 1}{2} = -2.5$$

$$V_0 = -2.5 \times V_d = -2.5 \times 0.02 \sin \omega t$$

 $V_0 = -0.05 \sin \omega t$
 $V_0 = 5 - 1 \times I_{DS} = 4 \text{ V}$

AC voltage,

$$V_0 = -0.05 \sin \omega t$$

DC voltage,

$$V_0 = 5 - 1 \times I_{DS} = 4 \$$

In given circuit,

$$A_{CM} = 0$$

Hence, common mode input effect is cancelled.

$$V_0 = -0.05 \sin \omega t + 4$$

End of Solution

A 10-bit analog-to-digital converter (ADC) has a sampling frequency of 1 MHz and a Q.44 full scale voltage of 3.3 V.

For an input sinusoidal signal with frequency 500 kHz, the maximum SNR (in dB, rounded off to two decimal places) and the data rate (in Mbps) at the output of the ADC are ____, respectively.

(a) 61.96 and 10

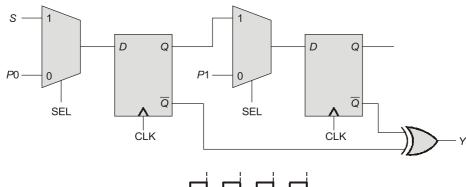
(b) 61.96 and 5

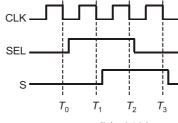
(c) 33.36 and 10

(d) 33.36 and 5

Exam held on:

15-02-2025

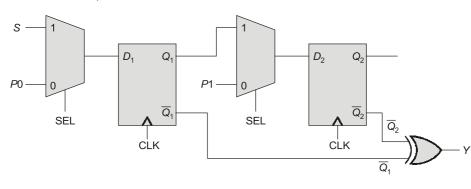

Afternoon Session


```
Ans.
         (a)
         Given
                                      n = 10
                                      f_s = 1 \text{ MHz}
                 Full scale voltage = 3.3 V
                                     f_{m} = 500 \text{ kHz}
                                  SNR = 1.76 + 6.02n
                                        = 1.76 + 6.02 \times 10 = 61.96 \text{ dB}
                                    R_b = nf_s = 10 \text{ Mbps}
```

End of Solution

Q.45 A positive-edge-triggered sequential circuit is shown below. There are no timing violations in the circuit. Input P0 is set to logic '0' and P1 is set to logic '1' at all times. The timing diagram of the inputs SEL and S are also shown below.

The sequence of output Y from time T_0 to T_3 is ______



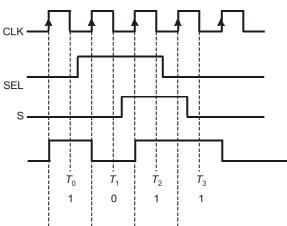
- (a) 1011
- (c) 0010

- (b) 0100
- (d) 1101

Ans. (a)

Given: P0 = 0; P1 = 1

Corporate Office: 44-A/1, Kalu Sarai, New Delhi - 110016 | Ph: 9021300500 ☑ info@madeeasy.in | 🔊 www.madeeasy.in


Exam held on:

15-02-2025

Afternoon Session

Timing Diagram:

End of Solution

- Q.46 The intrinsic carrier concentration of a semiconductor is 2.5×10^{16} /m³ at 300 K. If the electron and hole mobilities are 0.15 m²/Vs and 0.05 m²/Vs, respectively, then the intrinsic resistivity of the semiconductor (in k Ω .m) at 300 K is _____. (Charge of an electron $e = 1.6 \times 10^{-19}$ C.)
 - (a) 1.65

(b) 1.25

(c) 0.85

(d) 1.95

Ans. (b)

Intrinsic resistivity,
$$\rho_i = \frac{1}{n_i q(\mu_p + \mu_n)}$$

$$= \frac{1}{2.5 \times 10^{16} \times 1.6 \times 10^{-19} (0.15 + 0.05)}$$

$$= \frac{1}{2.5 \times 10^{16} \times 1.6 \times 10^{-19} (0.2)}$$

$$\rho_i = 1.25 \text{ k}\Omega\text{-m}$$

End of Solution

Q.47 In the circuit shown, the identical transistors Q1 and Q2 are biased in the active region with β =120. The Zener diode is in the breakdown region with V_Z = 5 V and I_Z = 25 mA. If I_L = 12 mA and V_{EB1} = V_{EB2} = 0.7 V, then the values of R_1 and R_2 (in k Ω , rounded off to one decimal place) are ______, respectively.

POSTAL Packages

- CSE
- ESE
- GATE
- UPPSC-AE
- SSC-JE
- RRB-JE

Our Postal Book Packages cater to the needs of college-going students, working professionals, and individuals unable to join classroom courses. These books, offered by MADE EASY, are designed to be compact, comprehensive, and easily understandable. We have put our efforts to ensure error-free content, incorporating smart and shortcut techniques specifically tailored for solving numerical problems.

Revised and updated study materials

Helpline: 8860378004

Salient Features of Postal Study Package

- Complete syllabus coverage aligned with latest pattern/syllabus.
- Detailed theory and practice exercises.
- Latest and updated study material
- Step by step solutions
- Ample no. of practice auestions with PYOs.
- Emphasis on technical and non technical sections both.
- Subject-wise theory objective and conventional practice sets.
- Proven track record of student success.

For online purchase, Visit:

www.madeeasypublications.org

For offline purchase, visit in-person at any MADE EASY center. Books will be sent to your provided address.

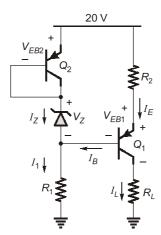
Note 1: Books are usually sent in two or more packages. **Note 2:** Current Affairs for ESE will be sent 1 month prior to the examination. **10**% Discount Launching Offer

ESE 2026 GATE 2026

ESE + GATE 2026

Valid till 31st March, 2025

Address: 44-A/4, Kalu Sarai, Near Hauz Khas Metro Station, New Delhi-110016


www.madeeasypublications.org

Exam held on:

15-02-2025

Afternoon Session

- (a) 0.6 and 0.4
- (c) 14.0 and 25.0

- (b) 1.4 and 2.5
- (d) 6.0 and 4.0

Ans. (a)

$$I_{C2} = I_L = 12 \text{ mA}$$

$$I_{B2} = \frac{I_{C2}}{\beta} = \frac{12}{120} \text{mA} = 0.1 \text{ mA}$$

KCL:
$$I_1 = I_Z + I_{B2} = 25.1 \text{ mA}$$

KVL:
$$20 = 0.7 + 5 + I_1 \times R_1$$

$$R_1 = 0.5697 \text{ k}\Omega \cong 0.6 \text{ k}\Omega$$

$$I_2 = I_{E2} = (1 + \beta) I_{B2} = 12.1 \text{ mA}$$

KVL:
$$20 = I_2 R_2 + 0.7 + I_1 \times R_1$$

$$R_2 = \frac{20 - 0.7 - 14.3}{12.1} = 0.4 \text{ k}\Omega$$

End of Solution

Q.48 The electron mobility μ_n in a non-degenerate germanium semiconductor at 300 K is $0.38 \text{ m}^2/\text{Vs}$.

The electron diffusivity D_n at 300 K (in cm²/s, rounded off to the nearest integer) is

(Consider the Boltzmann constant $k_B = 1.38 \times 10^{-23} \, \mathrm{J/K}$ and the charge of an electron $e = 1.6 \times 10^{-19} \text{ C.}$

(a) 26

(b) 98

(c) 38

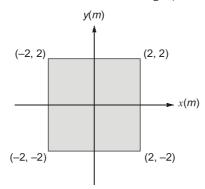
(d) 10

Ans. (b)

Given, $\mu_n = 0.38 \text{ m}^2/\text{V-sec}$

$$D_n = \mu_n V_T$$
= 0.38 \times \frac{T}{11600}
= 0.38 \times \frac{300}{11600}

15-02-2025


Afternoon Session

=
$$0.02586 \times 0.38$$

= $0.09826 \text{ m}^2/\text{sec}$
 $D_0 = 98.26 \text{ cm}^2/\text{sec}$

End of Solution

A square metal sheet of 4 m × 4 m is placed on the x-y plane as shown in the figure Q.49

If the surface charge density (in μ C/m²) on the sheet is $\rho_s(x, y) = 4|y|$, then the total charge (in μ C, rounded off to the nearest integer) on the sheet is ______.

- (a) 16
- (c) 64

- (b) 85
- (d) 256

$$Q_{\text{enc}} = \int_{S} \rho_{s} ds = \int_{S} 4 |y| dx dy$$

$$\Rightarrow$$

$$Q_{enc} = 4 \int_{y=-2}^{2} |y| dy \int_{x=-2}^{2} dx = 4 * 2 * \int_{0}^{2} y dy \cdot x \Big|_{-2}^{2}$$

$$\Rightarrow$$

$$Q_{enc} = 8.\frac{y^2}{2}\Big|_{0}^{2} \cdot 4 = 64 \,\mu\text{C}$$

End of Solution

Q.50 An electric field of 0.01 V/m is applied along the length of a copper wire of circular crosssection with diameter 1 mm. Copper has a conductivity of 5.8×10^7 S/m.

The current (in Amperes, rounded off to two decimal places) flowing through the wire

(a) 0.46

(b) 1.82

(c) 0.58

(d) 1.12

Ans. (a)

$$E = 0.01 \text{ V/m}$$

$$\sigma = 5.8 \times 10^7 \text{ s/m}$$

$$D = 1 \text{ mm}$$

15-02-2025

Afternoon Session

As we know that

$$I = \frac{V}{R} = \frac{E.I}{\frac{I}{\sigma A}} = E \cdot \sigma A$$

 \Rightarrow

$$I = 0.01 \times 5.8 \times 10^7 \times \frac{\pi}{4} (1 \times 10^{-3})^2 = 0.46 \text{ A}$$

End of Solution

Q.51 Consider a non-negative function f(x) which is continuous and bounded over the interval [2, 8]. Let M and m denote, respectively, the maximum and the minimum values of f(x) over the interval.

Among the combinations of α and β given below, choose the one(s) for which the inequality

$$\beta \le \int_2^8 f(x) dx \le \alpha$$

is guaranteed to hold.

- (a) $\beta = 5$ m, $\alpha = 7$ M
- (b) $\beta = 6$ m, $\alpha = 5$ M
- (c) $\beta = 7 \text{ m}, \ \alpha = 6 \text{ M}$
- (d) $\beta = 7$ m, $\alpha = 5$ M

Ans. (a)

 $f(x) \ge 0$ given in [2, 8] = [a, b] by F.T.I.C

$$m(b-a) \le \int_{a}^{b} f(x)dx \le M(b-a)$$

$$m(8-2) \le \int_{2}^{8} f(x)dx \le M(8-2)$$

$$6m \le \int_{2}^{8} f(x)dx \le 6M$$

- $f(x) \ge 0$
- \Rightarrow m and $M \ge 0$
- :. The possible answer is

$$5m \le \int_{2}^{8} f(x) dx \le 7 M$$

End of Solution

- Q.52 Which of the following statements involving contour integrals (evaluated counter-clockwise) on the unit circle *C* in the complex plane is/are TRUE?
 - (a) $\oint_C e^z dz = 0$

(b) $\oint_C z^n dz = 0$, where *n* is an even integer

(c) $\oint_C \cos z \, dz \neq 0$

(d) $\oint_C \sec z dz \neq 0$

10 Full Syllabus Tests (Total 1500 Questions)

Commenced from 11th FEB 2025 Stream: CE, ME, EE, EC

Paper Pattern:

- → Each question carries 1 Mark.
- → There will be a negative marking of 1/3rd Mark for every wrong answer.

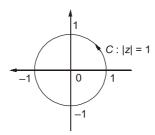
Test Series Features:

- → Questions crafted to align with the RRB-JE syllabus and exam format.
- → Comprehensive, step-by-step solutions for tough questions.
- → Detailed performance analysis report to track your progress.

	Subject	No. of Questions	Marks	Duration		
RRB JE	General Awareness	15	15			
CBT 2	Physics & Chemistry	15	15			
Exam	Basics of Computers and Applications	10	10	120 Mins		
Pattern	Basics of Environment and Pollution Control	10	10			
2024	Technical Abilities (CE/ME/EE/EC)	100	100			
	Total	150	150			

	Test No.	Activate Date	Total Marks Total Questions		Total Time	
	1	11 th Feb 2025	150 Marks	150 Qs	2 Hours	
	2	14 th Feb 2025	150 Marks	150 Qs	2 Hours	
	3	18 th Feb 2025	150 Marks	150 Qs	2 Hours	
Test	4	21 st Feb 2025	150 Marks	150 Qs	2 Hours	
Series	5	25 th Feb 2025	150 Marks	150 Qs	2 Hours	
Schedule	6	28 th Feb 2025	150 Marks	150 Qs	2 Hours	
	7	4 th Mar 2025	150 Marks	150 Qs	2 Hours	
	8	7 th Mar 2025	150 Marks	150 Qs	2 Hours	
	9	11 th Mar 2025	150 Marks	150 Qs	2 Hours	
	10	14 th Mar 2025	150 Marks	150 Qs	2 Hours	

Fee: ₹500/-



15-02-2025

Afternoon Session

Ans. (a, b)

Given C: |z| = 1

- (a) $f = e^z$ is always analytic
 - ∴ by C.I.T
 - $\oint_C f(z)dz = 0$ (a) is true
- (b) $f(z) = z^n$ is always analytic
 - ∴ by C.I.T
- $\oint_C z^n dz = 0$ (b) is true
- (c) $f(z) = \cos z$ is also always analytic
 - ∴ by C.I.T

$$\oint_C \cos z \, dz = 0$$

- ∴ (c) is false.
- (d) $f(z) = \sec z$,

Singularities are given by $\cos z = 0 \implies z = (2n+1)\frac{\pi}{2}$

$$z = \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \dots$$

- : all poles lies out 'C'
- ∴ by C.I.T $\oint_C \sec z \, dz = 0$ (∴ (d) is false)

End of Solution

Q.53 Consider a system where $x_1(t)$, $x_2(t)$, and $x_3(t)$ are three internal state signals and u(t)is the input signal. The differential equations governing the system are given by

$$\frac{d}{dt} \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} U(t).$$

Which of the following statements is/are TRUE?

- (a) The signals $x_1(t)$, $x_2(t)$, and $x_3(t)$ are bounded for all bounded inputs.
- (b) There exists a bounded input such that at least one of the signals $x_1(t)$, $x_2(t)$, and $x_3(t)$ is unbounded.
- (c) There exists a bounded input such that the signals $x_1(t)$, $x_2(t)$ and $x_3(t)$ are unbounded.
- (d) The signals $x_1(t)$, $x_2(t)$ and $x_3(t)$ are unbounded for all bounded inputs.

Exam held on:

15-02-2025

Afternoon Session

Ans. (b)

From the given matrix, the eigen values are 2, -2, 0

Hence system $x_1(t)$ whose eigen value is positive, it is unbounded for bounded input. Similarly system $x_3(t)$ is also unbounded for bounded input.

Only system $x_2(t)$ is bounded for bounded input (since its eigen value is negative).

End of Solution

Q.54 The random variable X takes values in $\{-1, 0, 1\}$ with probabilities

$$P(X = -1) = P(X = 1)$$
 and α and $P(X = 0) = 1 - 2\alpha$, where $0 < \alpha < \frac{1}{2}$.

Let $g(\alpha)$ denote the entropy of X (in bits), parameterized by α .

Which of the following statements is/are TRUE?

(a)
$$g(0.4) > g(0.3)$$

(b)
$$g(0.3) > g(0.4)$$

(c)
$$g(0.3) > g(0.25)$$

(d)
$$g(0.25) > g(0.3)$$

Ans. (b, c)

$$X \in \{-1, 0, 1\}$$

$$P(X = -1) = P(X = 1) = \alpha \text{ and } P(X = 0) = 1 - 2\alpha \text{ where } 0 < \alpha < \frac{1}{2}$$

$$g(\alpha) = \text{Entropy of } X$$

$$= -\sum_{i} P(x_i) \log_2 P(x_i)$$

$$= -\{\alpha \log_2 \alpha + \alpha \log_2 \alpha + (1 - 2\alpha) \log_2 (1 - 2\alpha)\}$$

$$g(\alpha) = -\{2\alpha \log_2 \alpha + (1 - 2\alpha) \log_2 (1 - 2\alpha)\}$$

$$g(0.25) = -\{0.5 \log_2 0.25 + 0.5 \log_2 0.5\} = 1.5$$

$$g(0.3) = -\{0.6 \log_2 0.3 + 0.4 \log_2 0.4\} = 1.57$$

$$g(0.4) = -\{0.8 \log_2 0.4 + 0.2 \log_2 0.2\} = 1.52$$

$$g(0.3) > g(0.4) > g(0.25)$$

End of Solution

Q.55 Let f(t) be a periodic signal with fundamental period $T_0 > 0$. Consider the signal $y(t) = f(\alpha t)$, where $\alpha > 1$.

The Fourier series expansions of f(t) and y(t) are given by

$$f(t) = \sum_{k=-\infty}^{\infty} c_k e^{j\frac{2\pi}{T_0}kT} \quad \text{and} \quad y(t) = \sum_{k=-\infty}^{\infty} d_k e^{j\frac{2\pi}{T_0}\alpha kT}.$$

Which of the following statements is/are TRUE?

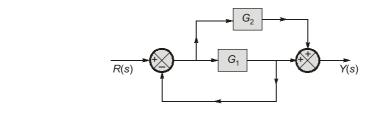
- (a) $c_k = d_k$ for all k
- (b) y(t) is periodic with a fundamental period αT_0
- (c) $c_k = d_k/\alpha$ for all k
- (d) y(t) is periodic with a fundamental period T_0/α

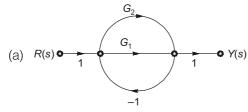
Ans. (a, d)

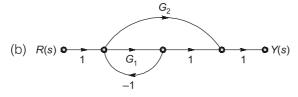
Given,
$$f(t) \longrightarrow c_k$$
 $c_k = \int_{\text{FTP: } T_0} d_k$

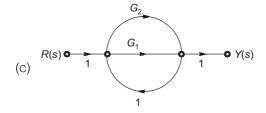
and $y(t) = f(\alpha t)$

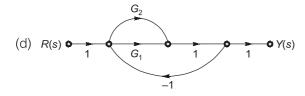
By time-scaling property of FS,


 $d_k = c_k$ if a is positive


Given that, $\alpha > 1$


 $\therefore \qquad \qquad d_k = c_k \text{ for all '}k'$


End of Solution


Q.56 Consider a system represented by the block diagram shown below. Which of the following signal flow graphs represent(s) this system? Choose the correct option(s).

Ans. (b)

From given block diagram,

$$\frac{C(s)}{R(s)} = \frac{G_1 + G_2}{1 + G_1}$$

UPPSC-AE 2024 EXAM Postal Package

On the latest UPPSC-AE syllabus & pattern

Only Prelims Package

•CE •ME •EE •AE (Common for all)

Prelims + Mains Package

• CE • ME • EE (Seperate)

Prelims Package: 13 Books (12 Printed + 1 E-book)

- 6 Volumes of Engg. Aptitude Books (covering 22 subjects): Contain theory solved examples and practice questions.
- 1 Practice Book of Engg. Aptitude containing solved practice Qs.
- 1 Book each containing theory, PYQs and practice questions of : Geography | Indian Polity | Indian History | GK & Misc.
- 1 book of General Hindi containing theory, PYQs and practice Qs.
- E-copy of Current Affairs covering latest developments along-with practice questions.

Prelims + Mains Package

• 6 Volumes of Engg. Aptitude Books (covering 22 subjects): Contain theory solved examples and practice questions.

4,000/-

- 1 Practice Book of Engg. Aptitude containing solved practice Qs.
- 1 Book each of : Geography Indian Polity Indian History GK & Misclleanous; containing theory, PYQs and practice Qs.
- 1 Book of General Hindi containing theory, PYQs and practice Qs.
- E-copy of Current Affairs covering latest developments along-with practice questions.
- **Technical Theory Books :** Contain theory, solved examples and practice questions.
- 1 Practice Book of Technical Subjects: Contains 2000+ Questions with detailed solutions.
- 1 PYQ of Technical Papers: Contains subjectwise/yearwise step by step solutions.

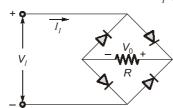
Address: 44-A/4, Kalu Sarai, Near Hauz Khas Metro Station, New Delhi-110016

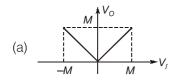
Exam held on:

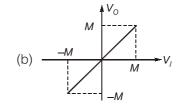
15-02-2025

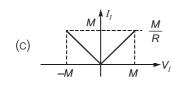
Afternoon Session

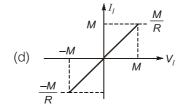
and in options, from option (a),

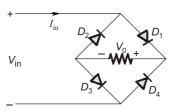

$$\frac{Y(s)}{R(s)} = \frac{G_1 + G_2}{1 + G_1}$$


:. Option (b) only satisfies.

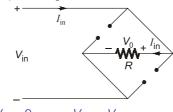

End of Solution


Q.57 All the diodes in the circuit given below are ideal.


Which of the following plots is/are correct when V_r (in Volts) is swept from -M to M?



Ans. (a, d)



Given, $V_{\rm in}$ is steep of -M to +M

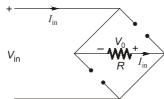
For V_0 versus V_{IN} :

 $V_{IN} = +M$

In the bridge rectifier, D_1 and D_3 are forward bias, and D_2 and D_4 are reverse bias,

$$V_{in} - V_0 = 0 \implies V_{in} = V_0$$

15-02-2025


Afternoon Session

$$\therefore \quad \text{For } V_{\text{in}} = +M \implies V_0 = M$$

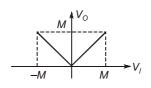
$$-V_{\text{in}} + I_{\text{in}} \ R = 0$$

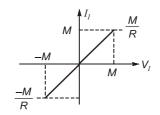
$$I_{\text{in}} = \frac{V_{\text{in}}}{R} = \frac{M}{R}$$

Let $V_{IN} = -M$

 D_1 and D_3 are reverse bias,

 D_2 and D_4 are forward bias.




$$V_{in} + V_{0} = 0$$

$$V_{o} = -V_{in} = -[-M] = M$$

$$-V_{in} + I_{in} \times R = 0$$

$$I_{in} = \frac{V_{in}}{R} = \frac{-M}{R}$$

End of Solution

Q.58 Two fair dice (with faces labeled 1, 2, 3, 4, 5, and 6) are rolled. Let the random variable *X* denote the sum of the outcomes obtained.

The expectation of X is _____ (rounded off to two decimal places).

Ans. (7.0) (7.0 to 7.0)

Sum of two dice = $\{2, 3, 4, 5, \dots, 12\}$

х	2	3	4	5	6	7	8	9	10	11	12
P(x)	1	2	3	4	5	6	5	4	3	2	1
	36	36	36	36	36	36	36	36	36	36	36

$$E(X) = \sum x \cdot P(x)$$

$$= 2 \times \frac{1}{36} + 3 \times \frac{2}{36} + 4 \times \frac{3}{36} + 5 \times \frac{4}{36} + 6 \times \frac{5}{36} + 7 \times \frac{6}{36}$$

$$+ 8 \times \frac{5}{36} + 9 \times \frac{4}{36} + 10 \times \frac{3}{36} + 11 \times \frac{2}{36} + 12 \times \frac{1}{36}$$

$$= \frac{252}{36} = 7$$

End of Solution

15-02-2025

Afternoon Session

Q.59 Consider the vectors

$$a = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, b = \begin{bmatrix} 0 \\ 3\sqrt{2} \end{bmatrix}.$$

For real-valued scalar variable x, the value of

$$\min \|ax - b\|_2$$

is _____ (rounded off to two decimal places).

 $\|\cdot\|_2$ denotes the Euclidean norm, i.e., for $y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$, $\|y\|_2 = \sqrt{y_1^2 + y_2^2}$.

Ans. (3.0) (3.0 to 3.0)

Let,

$$ax - b = \begin{bmatrix} x \\ x - 3\sqrt{2} \end{bmatrix}$$

$$\begin{vmatrix} x \\ x - 3\sqrt{2} \end{vmatrix} = f(x) = \text{norm}$$

$$f(x) = \sqrt{x^2 + (x - 3\sqrt{2})^2}$$

$$= \sqrt{x^2 + x^2 + 18 - 6\sqrt{2}x}$$

$$f(x) = \sqrt{2x^2 - 6\sqrt{2}x + 18}$$

$$g(x) = 2x^2 - 6\sqrt{2}x + 18$$

$$g'(x) = 4x - 6\sqrt{2} = 0$$

$$x = \frac{6\sqrt{2}}{4} = \frac{3\sqrt{2}}{2} = \frac{3}{\sqrt{2}}$$
Point of minima = $\frac{3}{\sqrt{2}}$

End of Solution

Q.60 *X* and *Y* are Bernoulli random variables taking values in {0, 1}. The joint probability mass function of the random variables is given by:

 $=\sqrt{9-18+18}=3$

$$P(X = 0, Y = 0) = 0.06$$

$$P(X = 0, Y = 1) = 0.14$$

$$P(X = 1, Y = 0) = 0.24$$

$$P(X = 1, Y = 1) = 0.56$$

The mutual information I(X; Y) is _____ (rounded off to two decimal places).

Ans. (0) (0.0 to 0.0)

Given,
$$P(X = 0, Y = 0) = 0.06$$

 $P(X = 0, Y = 1) = 0.14$
 $P(X = 1, Y = 0) = 0.24$

15-02-2025

Afternoon Session

$$P(X = 1, Y = 1) = 0.56$$

$$[P(X, Y)] = \begin{array}{c} X = 0 \\ X = 1 \\ \\ P(Y=0)=0.3 \end{array} \xrightarrow{Y=1} \begin{array}{c} P(X=0) = 0.2 \\ 0.24 \\ 0.256 \\ P(Y=1)=0.7 \end{array}$$

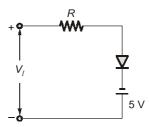
From above

$$P(X = 0, Y = 0) = P(X = 0) \cdot P(Y = 0)$$

$$P(X = 0, Y = 1) = P(X = 0) \cdot P(Y = 1)$$

$$P(X = 1, Y = 0) = P(X = 1) \cdot P(Y = 0)$$

$$P(X = 1, Y = 1) = P(X = 1) \cdot P(Y = 1)$$


We conclude that X and Y are independent.

So that I(X; Y) = 0

End of Solution

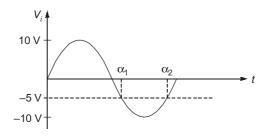
Q.61 The diode in the circuit shown below is ideal. The input voltage (in Volts) is given by $V_1 = 10 \sin 100 \pi t$, where time t is in seconds.

The time duration (in ms, rounded off to two decimal places) for which the diode is forward biased during one period of the input is ______.

Ans. (13.33) (13.32 to 13.34)

Given,

$$2\pi ft = 100\pi t$$
$$f = 50 \text{ Hz}$$


$$T_0 = \frac{1}{f} = 20 \text{ msec}$$

$$V_i = 10 \sin(100\pi t) = 10 \sin\alpha,$$

$$\alpha = 100\pi t$$

Diode conducts if $V_i > -5$ V

Diode is OFF if $V_i < -5$ V

10 $\sin \alpha = -5$

Corporate Office: 44-A/1, Kalu Sarai, New Delhi - 110016 | Ph: 9021300500

☐ info@madeeasy.in | www.madeeasy.in

Foundation Courses for **JE and AE Exams**

Mode: Live-Online

Civil Engineering

Mechanical Engineering

Electrical Engineering

Non-technical Section

These foundation batches are taught comprehensively which cover the requirements of technical and non-technical syllabus of Junior Engineer and Assistant Engineer level exams.

Duration of Foundation Course: 1 Year

Features

Classes by renowned faculties

Comprehensive coverage of all subjects

Class PDF notes

Doubt Sessions on Telegram

Lectures will be in Hinglish

1 Year Course validity

Concept Practice
Book in PDF

Dedicated for all AE and JE Exams

Technical and Non-Technical

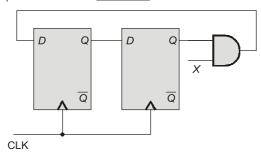
Monthly LIVE
Guidance Session

Get Physical books and Study material (Optional)

700+ teaching hours

www.madeeasyprime.com

15-02-2025


Afternoon Session

$$\alpha = \sin^{-1}\!\left(\frac{-5}{10}\right)$$

$$\alpha = \frac{7\pi}{6}, \frac{11\pi}{6}$$

$$100\pi \ t_1 = \frac{7\pi}{6}$$

$$t_1 = 11.66 \ \mathrm{msec}$$

$$\alpha_2 = 100\pi t_2 = \frac{11\pi}{6}$$

$$t_2 = 18.33 \ \mathrm{msec}$$
 Diode is OFF from t_1 to t_2
$$t_{\mathrm{OFF}} = t_2 - t_1 = 6.66 \ \mathrm{msec}$$

$$t_{\mathrm{ON}} = T_0 - t_{\mathrm{OFF}} = 13.33 \ \mathrm{msec}$$

End of Solution

In the circuit shown below, the AND gate has a propagation delay of 1 ns. The edge-Q.62 triggered flip-flops have a set-up time of 2 ns, a hold-time of 0 ns, and a clock-to-Q delay of 2 ns.

The maximum clock frequency (in MHz, rounded off to the nearest integer) such that there are no setup violations is

Ans. (200) (200 to 200)

$$\begin{aligned} t_{pd} &= 2n \sec \\ t_{\text{setup}} \left(t_s \right) &= 2n \sec \\ t_{\text{comb}} &= 1n \sec \\ T_{\text{clk}_{D1}} &= t_p + t_s + t_{\text{comb}} = 2 + 2 + 1 = 5n \sec \\ T_{\text{clk}_{D2}} &= t_s + t_p = 2 + 2 = 4n \sec \end{aligned}$$

Time required for clock,

$$\begin{split} T_{\text{clk}} &= \text{Max} \left\{ T_{\text{clk}D1}, T_{\text{clk}D2} \right\} \\ &= \text{Max} \left[5 \text{ns}, 4 \text{ ns} \right] \\ &= 5 \text{ ns} \end{split}$$

Maximum frequency, $f_{\text{mx}} = \frac{1}{T_{\text{c/k}}} = \frac{1}{5ns} = 200 \text{ MHz}.$

End of Solution

Corporate Office: 44-A/1, Kalu Sarai, New Delhi - 110016 | Ph: 9021300500

- Q.63 An ideal p-n junction germanium diode has a reverse saturation current of 10 μ A at 300 K. The voltage (in Volts, rounded off to two decimal places) to be applied across the junction to get a forward bias current of 100 mA at 300 K is _____. (Consider the Boltzmann constant $k_B = 1.38 \times 10^{-23}$ J/K and the charge of an electron $e = 1.6 \times 10^{-19}$ C.)
- Ans. (0.23) (0.23 to 0.24)

Given.

Reverse saturation current, $I_0 = 10 \mu A$

Temperature, T = 300 K

Forward bias current, $I_f = 100 \text{ mA}$

Boltzmann constant, $K_B = 1.38 \times 10^{-23} \text{ J/K}$

Charge of electron, $e = 1.6 \times 10^{-19} \text{ C}$

We know that,

the forward bias current, $I_f = I_0 \left[e^{V/V_T} - 1 \right]$

where, $V_T = \frac{T}{11600} = \frac{300}{11600} = 25.86 \text{ mV}$

 $100 \times 10^{-3} = 10 \times 10^{-6} \left[e^{\frac{V}{25.86 \times 10^{-3}}} - 1 \right]$

 $10^4 = e^{25.86 \times 10^{-3}}$

 $9999 = e^{\frac{V}{25.86 \times 10^{-3}}}$

 $V = 25.86 \times 10^{-3} \ln(9999)$

V = 0.23

End of Solution

- **Q.64** A 50 Ω lossless transmission line is terminated with a load Z_L of (50 j75) Ω . If the average incident power on the line is 10 mW, then the average power delivered to the load (in mW, rounded off to one decimal place) is ______.
- Ans. (6.4) (6.3 to 6.5)

:.

 $Z_0 = 50 \ \Omega$, $Z_L = 50 - j75 \ \Omega$; $P_{in} = 10 \ \text{mW}$

 $\Gamma = \frac{Z_L - Z_0}{Z_L + Z_0} = \frac{50 - j75 - 50}{50 - j75 + 50} = \frac{-j75}{100 - j75} = \frac{-j3}{4 - j3}$

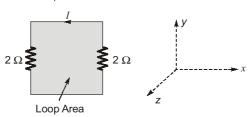
 $\Rightarrow \qquad |\Gamma| = \frac{3}{5} = 0.6$

 $P_{del} = \{1 - |\Gamma|^2\} P_i$ $= [1 - (0.6)^2] * 10 \text{ mW} = 6.4 \text{ mW}$

End of Solution

GATE 2025 Electronics Engineering

Detailed Solutions


Exam held on:

15-02-2025

Afternoon Session

Q.65 Two resistors are connected in a circuit loop of area 5 m², as shown in the figure below. The circuit loop is placed on the x-y plane.

When a time-varying magnetic flux, with flux-density B(t) = 0.5t (in Tesla), is applied along the positive z-axis, the magnitude of current I (in Amperes, rounded off to two decimal places) in the loop is ______.

Ans. (0.63) (0.62 to 0.63)

Given,

$$B(t) = 0.5t$$

$$\therefore V_{\text{emf}} = -\frac{d\phi}{dt} = \frac{-dB(t)}{dt} \times A = -A\frac{d}{dt}(0.5t) = -A \times 0.5$$

$$I = \frac{V_{emf}}{R} = \frac{-0.5 \times 5}{4} = -0.625$$

Hence, magnitude of $I = 0.625 \text{ A} \approx 0.63 \text{ A}$

End of Solution