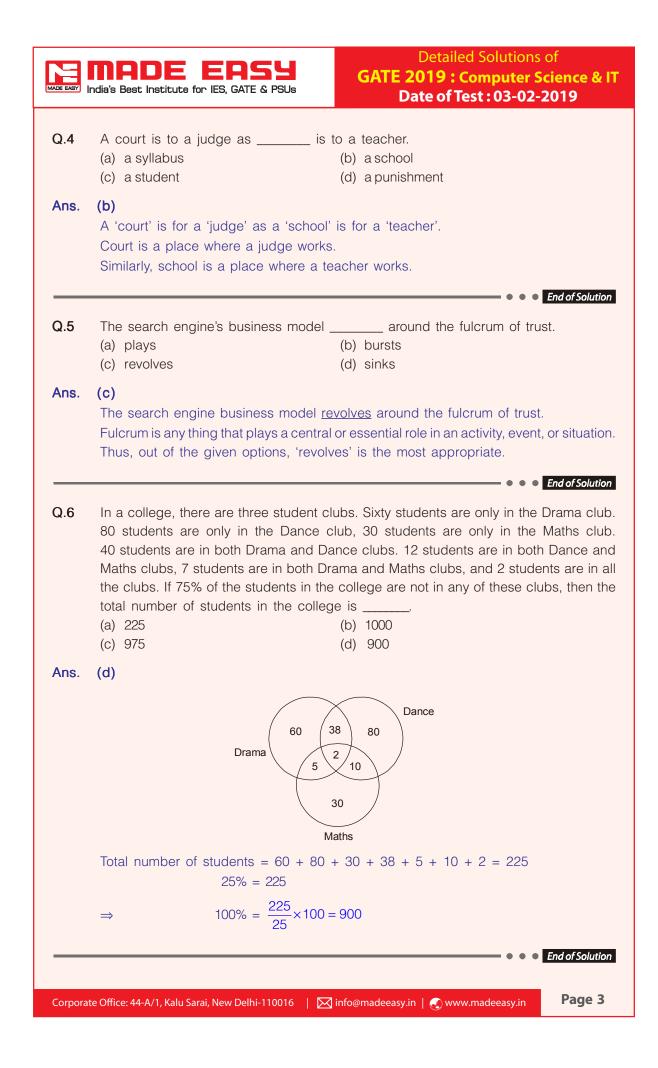
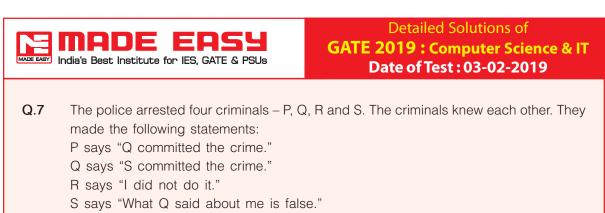


GATE 2019 Computer Science & IT

Click here for Questions and Solutions


Date of Exam : 3/2/2019


Scroll down to view

Delhi | Hyderabad | Noida | Bhopal | Jaipur | Lucknow | Indore | Pune | Bhubaneswar | Kolkata | Patna

	India's Best Institute for IES, GATE & PSUs	Detailed Solutions of GATE 2019 : Computer Science & I Date of Test : 03-02-2019
	GENERAL /	
Q.1	Two cars start at the same time from the The speed of the first car is 50 km/h and number of hours it takes for the distance	e same location and go in the same direction d the speed of the second car is 60 km/h. The between the two cars to be 20 km is (b) 2 (d) 6
Ans.	(b) Speed of car A = 50 km/hr Speed of car B = 60 km/hr Since, both cars A and B are moving in = 10 km/hr Distance required between them = 20	n same direction, the relative speed = 60 – 5 km
	$\therefore \qquad \text{Time} = \frac{\text{Distance}}{\text{Speed}} = \frac{1}{1000}$	$\frac{20}{10} = 2$ hrs
Q.2	The expenditure on the project Rs. 12 lakhs, and contingency Rs.3 la (a) break (c) breaks down	 End of Solution as follows; equipments Rs. 20 lakhs, salarie akhs. (b) breaks (d) break down
Ans.	(c) 'Breaks down' is a transitive phrasal ve a total amount into separate parts. Option (c) is most appropriate.	rb which means to divide something such a
Q.3		 End of Solution cost of buying a gift for their teacher. Whe each of the other friends had to pay Rs. 15 (b) 6000 (d) 666
Ans.	(b) Let share of each student = x Total cost of gift = $10 \times x$ x = 8(x + 150) x = 600	
	Total cost = $10 \times 600 =$	6000 • End of Solution
Corpora	te Office: 44-A/1, Kalu Sarai, New Delhi-110016 🏾 🏻 🖂 i	nfo@madeeasy.in 🔊 www.madeeasy.in Page 2

Assume only one of the arrested four committed the crime and only one of the statements made above is true. Who committed the crime?

(a) R	(b) F
(c) S	(d) (

c)	S			(d)	Q

Ans. (a)

Suffix C as criminal, NC as not criminal.

Case I:

Criminals	Р	Q	R	S
Assumption	Т	F	F	F
Result	Q _C	S _{NC}	R_{C}	S _C

Q and R are criminal in the result is impossible because only one person committed the crime.

Case II:

Criminals	Р	Q	R	S
Assumption	F	Т	F	F
Result	Q _{NC}	S _C	R _C	S _C

S and R are criminal in the result is impossible because only one person committed the crime.

Case III:

Criminals	Р	Q	R	S
Assumption	F	F	Т	F
Result	Q _{NC}	S _{NC}	R _{NC}	S _C

 S_{NC} and S_{C} in the result which is contradiction. [S committed crime and same time not committed crime which is contradiction]

Case IV:

Criminals	Р	Q	R	S
Assumption	F	F	F	Т
Result	Q _{NC}	S _{NC}	R_{C}	S _{NC}

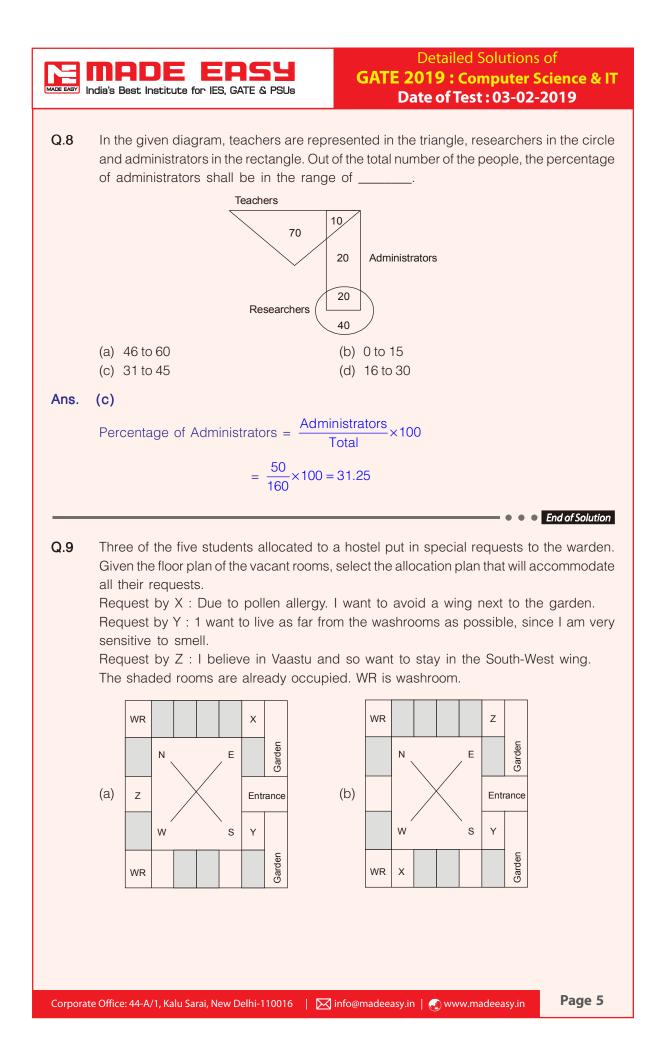
R is criminal in the result.

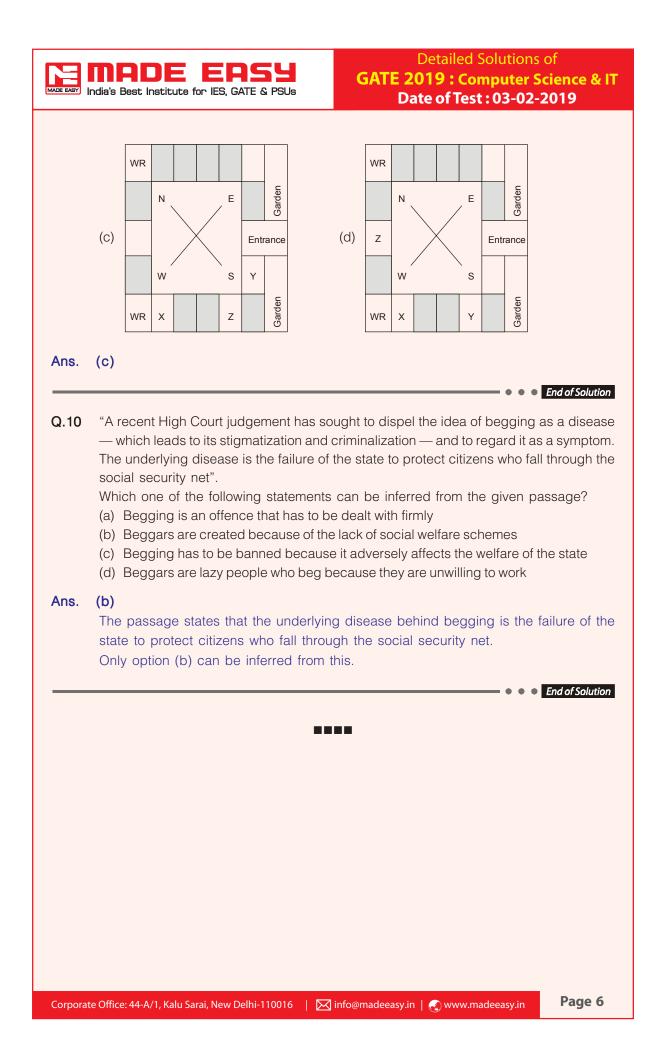
Hence this case satisfies only one person committed the crime. So option (a) is correct.

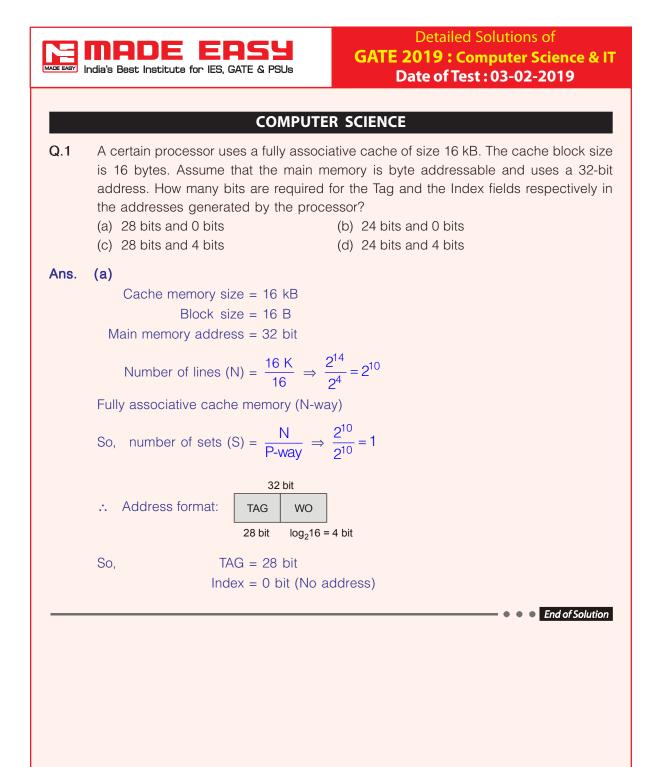
End of Solution

Page 4

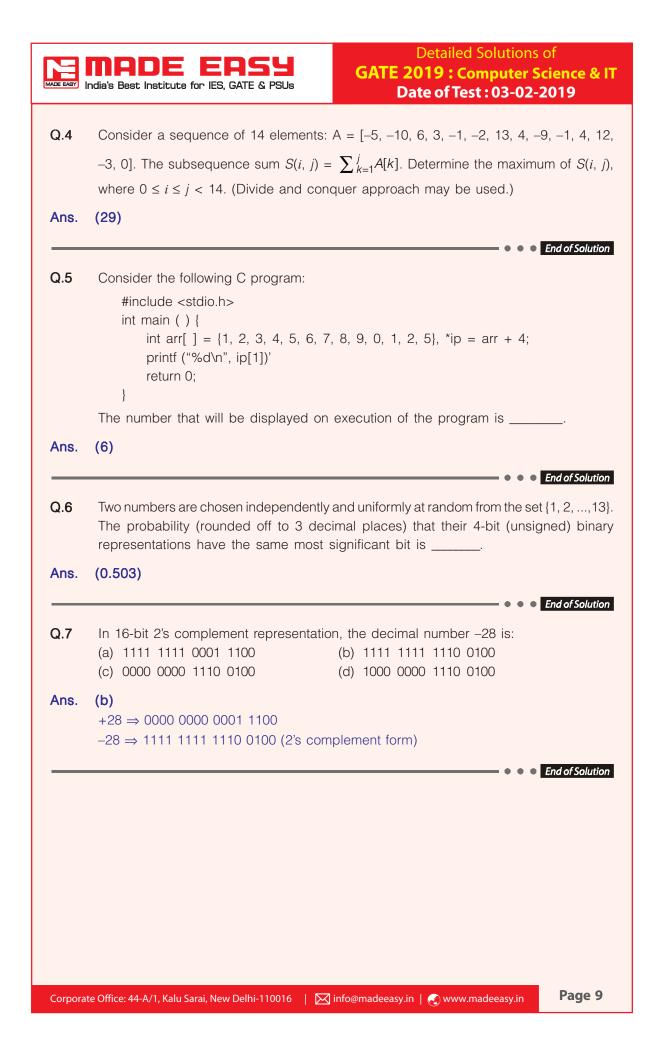
Features :


- Very useful to develop numerical solving approach & improving writing skills.
- Special focus on improving answer layout specially for theory questions.
- Classes will be delivered by senior faculties.
- Updated Mains workbook for every subject having varied practice question sets.
- Test series will be conducted on every Sunday in synchronisation with the subject taught in class.
- Discussion on probable questions.
- Comprehensive and in-depth discussion on variety of conventional questions, thus strengthening fundamental concepts.


Batch Details		Course Duration 90 days 300 - 350 hours		Class Duration 5-6 days a week and 6-7 hours a day	
Streams	Batch Code	Batch Comme	encing Date	Venue (Delhi)	Timing
ME	A	20-Feb	2019	Ghitorni Centre	7:30 AM to 1:30 PM
ME	В	20-Feb-2019		Ghitorni Centre	3:00 PM to 9:00 PM
ME	С	20-Feb-2019		Saket Centre	7:30 AM to 1:30 PM
CE	A	21-Feb·	2019	Ignou Road Centre	7:30 AM to 1:30 PM
CE	В	21-Feb·	2019	Kalu Sarai Centre	3:00 PM to 9:00 PM
EE	A	22-Feb	2019	Lado Sarai Centre	7:30 AM to 1:30 PM
EE	В	22-Feb	2019	Kalu Sarai Centre	3:00 PM to 9:00 PM
EC	A	22-Feb-	2019	Lado Sarai Centre	7:30 AM to 1:30 PM


Fee Structure	Program	Ex. MADE EASY Students Enrolled in Postal, Rank Improvement, Mains, GS, Post-GATE, ESE+ GATE, GATE Batches	Non MADE EASY students	
	Mains Exclusive Batch (Inclusive of ESE-2019 Mains Offline Test Series)	₹ 18,500	₹ 22,500	
	ESE 2019 Mains Offline Test Series	Rs. 3,500/- Rs. 2,500/-	Rs. 4,500/- Rs. 3,500/-	
		Rs. 1000/- Discount on test series va	alid till 15-02-2019	

Corporate office : 44-A/1, Kalu Sarai, New Delhi - 1100 16 🕓 011-45124612, 9958995830


Click here to enroll

Let G be an undirected complete graph, on n vertices, where n	
of different Hamiltonian cycles in G is equal to (a) $n!$ (b) $(n-1)!$	> 2. Then, the numbe
(c) 1 (d) $\frac{(n-1)!}{2}$	
(d) In a complete graph we can traverse the <i>n</i> vertices in any order are vertex and form a Hamiltonian cycle. The number of such cycle However, since circular rotations will have to ignored. Since for ex $\{1, 2, 3, 4\}$, the cycle 1-2-3-4 is same as 2-3-4-1 is same as 3-only $(n-1)!$ distinct Hamiltonian cycles. Further, the cycle 1-2-3-same (clockwise and anticlockwise).	cles will be <i>n</i> ! xample K ₄ with vertice 4-1-2 etc. we now go
So ignoring this orientation also we finally get $\frac{(n-1)!}{2}$ distinct Ha	miltonian cycles whic
is option (d).	
Consider the grammar given below: $S \rightarrow Aa$ $A \rightarrow BD$ $B \rightarrow b \in$ $D \rightarrow d \in$ Let a, b, d and \$ be indexed as follows: a b d \$ 3 2 1 0	
Compute the FOLLOW set of the non-terminal B and write the symbols in the FOLLOW set in the descending order. (For examples {a, b, d, \$}, then the answer should be 3210)	
(31) $S \rightarrow Aa$ $A \rightarrow BD$ $B \rightarrow b \epsilon$ $D \rightarrow d \epsilon$ Follow (B) = {d, a}	
	(c) 1 (d) In a complete graph we can traverse the <i>n</i> vertices in any order at vertex and form a Hamiltonian cycle. The number of such cycle However, since circular rotations will have to ignored. Since for ex- [1, 2, 3, 4], the cycle 1-2-3-4 is same as 2-3-4-1 is same as 3- only $(n - 1)!$ distinct Hamiltonian cycles. Further, the cycle 1-2-3- same (clockwise and anticlockwise). So ignoring this orientation also we finally get $\frac{(n - 1)!}{2}$ distinct Ha- is option (d). Consider the grammar given below: $S \rightarrow Aa$ $A \rightarrow BD$ $B \rightarrow b \epsilon$ $D \rightarrow d \epsilon$ Let a, b, d and \$ be indexed as follows: Compute the FOLLOW set of the non-terminal B and write the symbols in the FOLLOW set in the descending order. (For exam- is [a, b, d, \$], then the answer should be 3210) (31) $S \rightarrow Aa$ $A \rightarrow BD$ $B \rightarrow b \epsilon$ $D \rightarrow d \epsilon$

- Quality Teaching
- Comprehensive Study Material
- Well Planned Curriculum
- Professionally Managed

Announcing

NEW BATCHES for **ESE 2020** & **GATE 2020**

1 Yr/2Yrs CLASSROOM COURSES

···· Early start ···· Extra edge

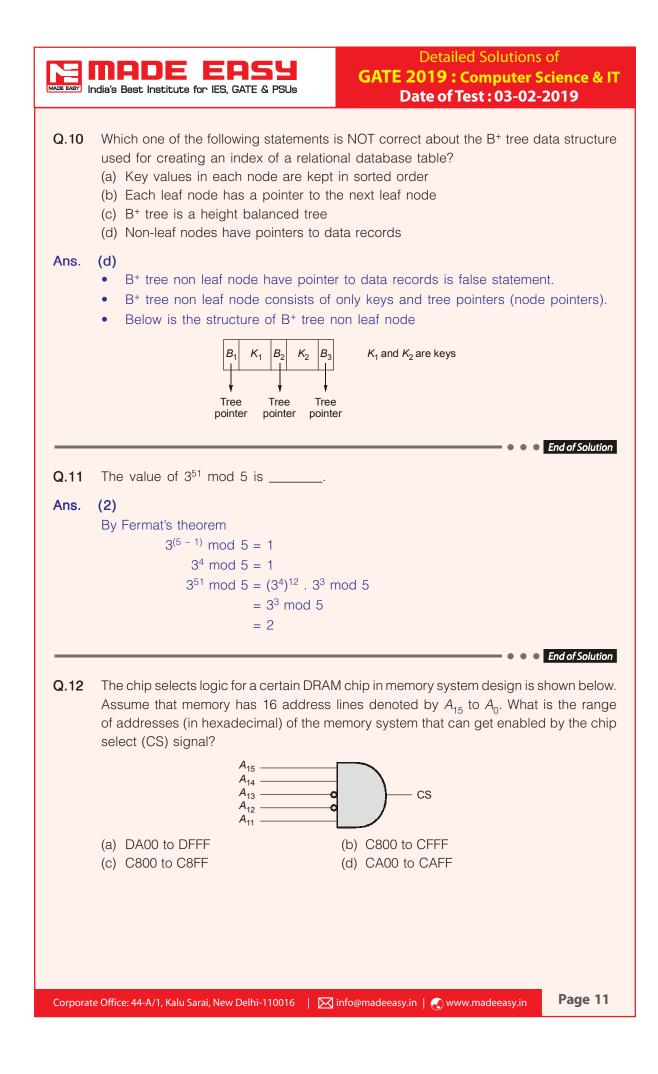
Batches Commencement Dates

Regu	lar Batches	Weekend Batches			
Delhi		Delhi		Noida	
CE	14-Feb-2019	CE			
ME	14-Feb-2019	ME	NA	03-Feb-2019	
EE	18-Feb-2019		23-Feb-2019		
EC	Mid-Feb, 2019		23-Feb-2019	16-Feb-2019	
CS	16-May-2019		17-Feb-2019		

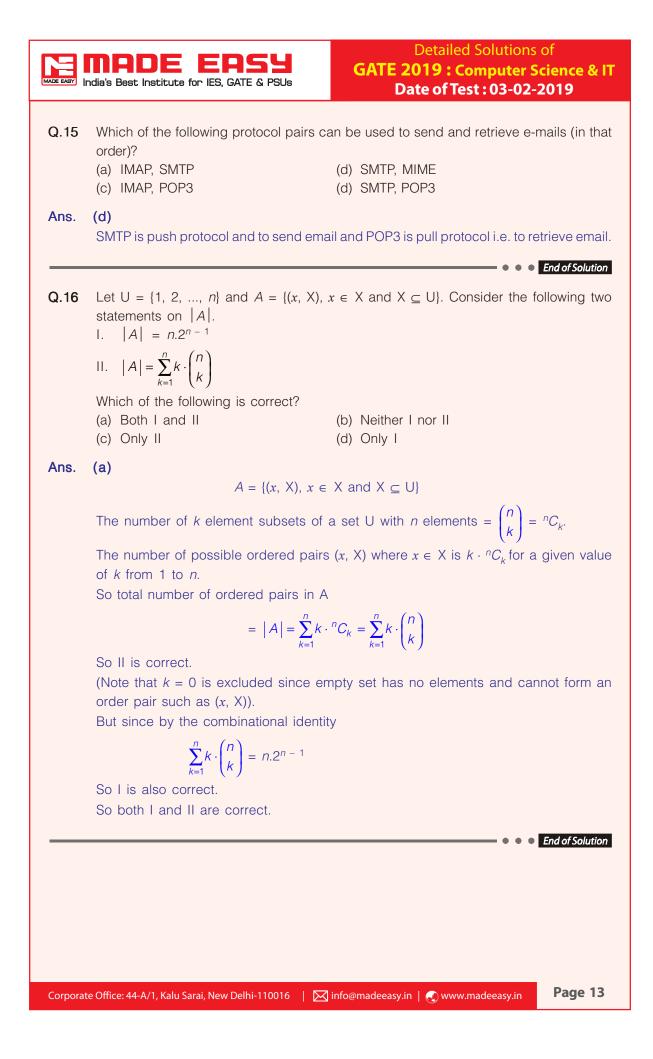
Rest of India (Regular Batches)

Patna 25-Feb'19	Lucknow	Bhopal	Indore	Jaipur
	20-Feb'19	25-Feb'19	20-Feb'19	17-Feb'19
Pune	Hyderabad	Bhubaneswar	Kolkata	
11-Feb'19	17-Feb'19	25-Feb'19	2-Mar'19	

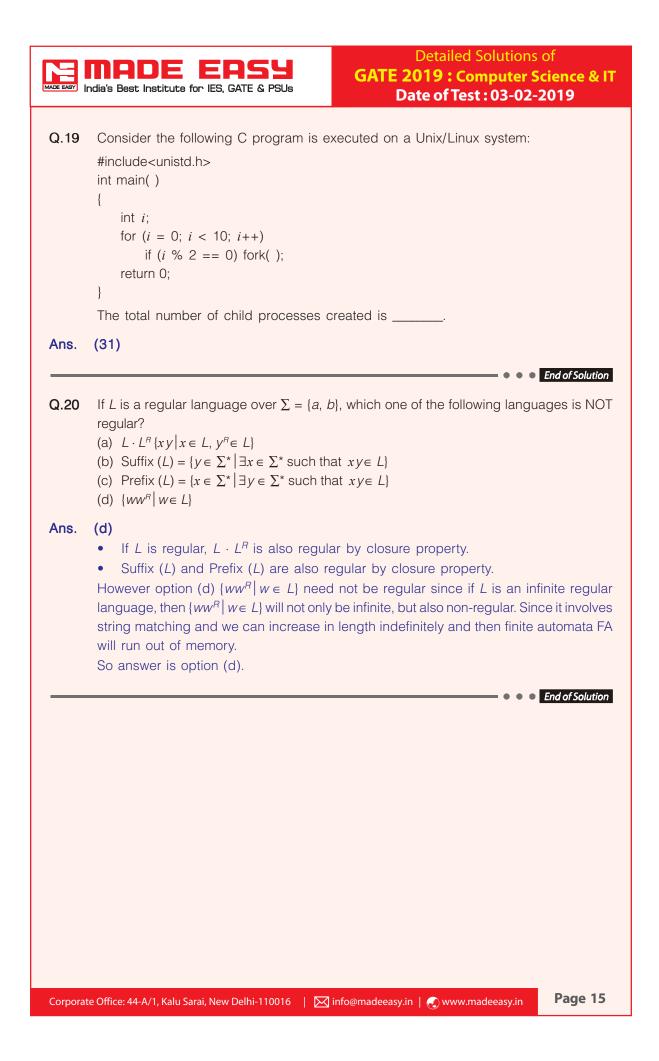
Admission open

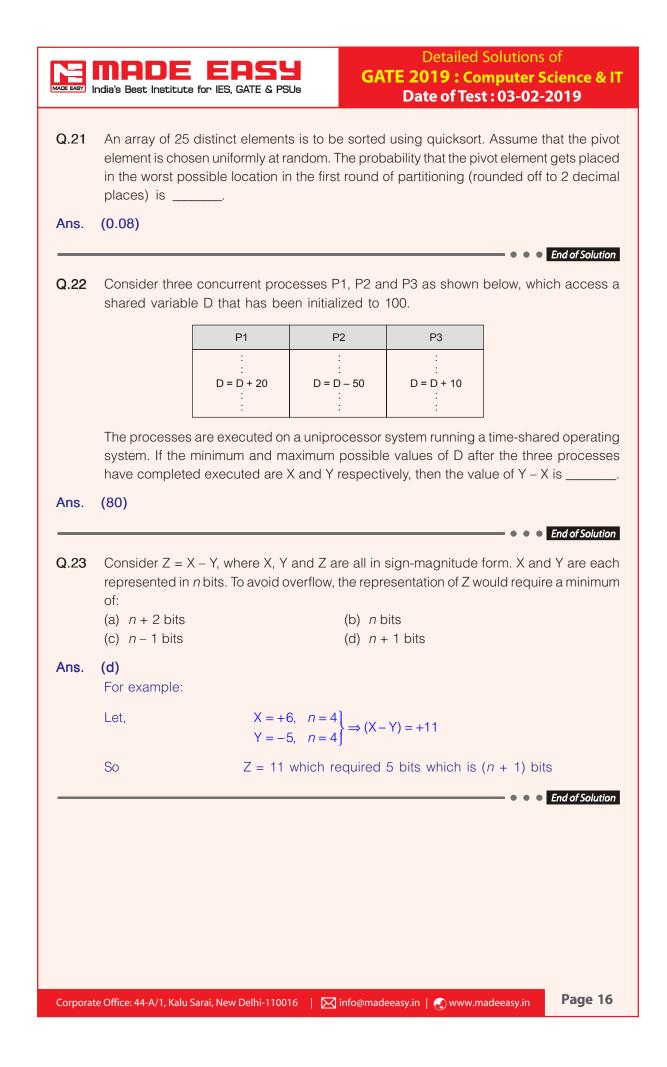

Corporate office : 44-A/1, Kalu Sarai, New Delhi - 1100 16 🕓 011-45124612, 9958995830 Bhopal Lucknow Indore Bhubaneswar Delhi Hyderabad Noida Jaipur Pune Kolkata Patna Centres) 011-45124612

09919111168 0731-4029612


0612-2356615

040-66774612


MADE EASY	MAD India's Best Inst	E ERSY itute for IES, GATE & PSUs	Detailed Solutions GATE 2019 : Computer S Date of Test : 03-02-	cience & IT
Q.8	(a) <i>x</i> ⊕ <i>y</i>		valid identity? (b) $x \oplus y = x + y$, if $xy = 0$ (d) $(x + y) \oplus z = x \oplus (y + z)$	
Ans.	(d)			
	(a)	$x \oplus y = (xy + x'y')'$		
		$= (x \odot y)'$		
		$= x \oplus y$, it i	s valid.	
	(b)	$x \oplus y = (x+y)(\overline{x} +$	\overline{y})	
		$= (x+y)\overline{xy}$		
		$= (x + y)\overline{0}$		
	(C)	$= (x + y), s$ $(x \oplus y) \oplus z = x \oplus (y \oplus$		
		ty is true on Ex-OR opera		
	(d)	$(x + y) \oplus Z = \overline{(x + y)} \cdot Z +$	$-(x+y)\overline{Z}$	
		$= \overline{x} \overline{y} Z + x \overline{Z}$		
		1 4,6	·	
		$= \sum m(1, 2, 4)$ $x \oplus (y + z) = \overline{x}(y + z) + 4$		
		$x \oplus (y + 2) = x(y + 2) +$ $= \overline{x}y + \overline{x}Z +$		
		2,3 1,3		
		$= \sum m(1, 2, 3)$		
	So option	$(x + y) \oplus Z \neq x \oplus (y + y)$ (d) is invalid.	Z)	
Q.9	(a) Rightm	lost	derivation is used by LR parsers? (b) Rightmost in reverse	End of Solution
		ct	(d) Leftmost in reverse	
	(c) Leftmo	51	(d) Leitmost inteverse	

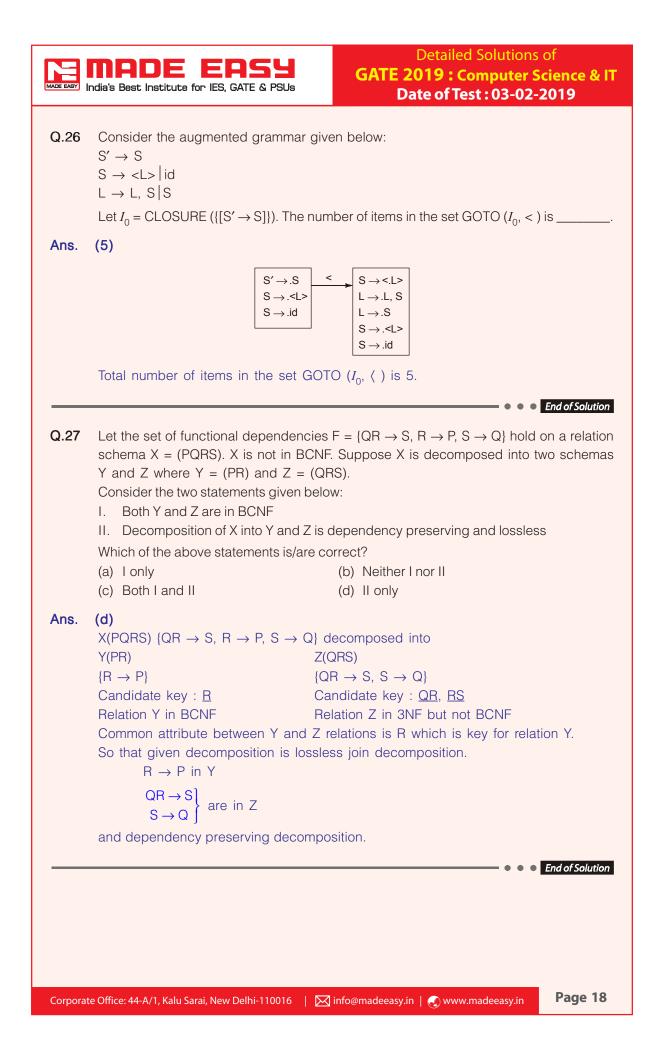


"	Detailed Solutions of GATE 2019 : Computer Science & IT Date of Test : 03-02-2019
Ans.	(b) $A_{15} A_{14} A_{13} A_{12} A_{11} A_{10} A_{9} \dots A_{0}$ $1 1 0 0 1 0 0 \cdots 0$ $Chip \text{ select (CS)} \qquad 1 1 \cdots 1$ [C800 to CFFF]
Q.13	 Let X be a square matrix. Consider the following two statements on X. I. X is invertible. II. Determinant of X is non-zero. Which one of the following is TRUE? (a) I implies II; II does not imply I. (b) II implies I; I does not imply II. (c) I and II are equivalent statements. (d) I does not imply II; II does not imply I.
Ans.	(c) Both I and II are equivalent statements.
Q.14	<pre>Consider the following C program: #include <stdio.h> int jumble(int x, int y) { x = 2 * x + y; return x; } int main () { int x = 2, y = 5; y = jumble(y, x); x = jumble(y, x); printf("%d\n", x); return 0; } The value printed by the program is</stdio.h></pre>
Ans.	(26)

	MADE EASY ndia's Best Institute for IES, GATE & PSUs	Detailed Solutions GATE 2019 : Computer S Date of Test : 03-02-	cience & l
Q.17	 Consider the following two statements I. Strict two-phase locking protocol g also recoverable. II Timestamp-ordering concurrency conview serializable schedules that are 	enerates conflict serializable sched	ules that are
	Which of the above statements is/are TF (a) Neither I nor II (c) II only	RUE? (b) I only (d) Both I and II	
Ans.	 (d) I. Strict 2PL guaranteed conflict serial recoverable. II. Thomas Write time stamp ordering stamp ordering allowed to execute based on time stamp ordering. 	g ensures serializable. Thomas wi	rite rule time
Q.18	For $\Sigma = \{a, b\}$, let us consider the reg $k \ge 0\}$. Which one of the following can by the pumping lemma) for <i>L</i> ? (a) 9 (c) 3		
Ans.	(b) $L = \{a^2 + 3k \text{ or } a^2 (a^3)^* \text{ or } b^2\}$	$b^{10 + 12k}$ for $k \ge 0$	
	The pumping length is p , than for any s i.e. such a string must be breakable into indefinitely, which is same as saying The minimum pumping length in this la has no repetition number, so upto 10 Minimum pumping length is 11. Any nu serve as a pumping length. The only nu So correct answer is option (b).	string $w \in L$ with $ w \ge p$ must have $w = xyz$ such that $ y \ge 0$ and y can $xyz \in L \Rightarrow xy^*z \in L$. Inguage is clearly 11, since b^{10} is a no number can serve as a pum mber at or above minimum pumpin	string which ping length g length car
		•••	End of Solution
Corporat	te Office: 44-A/1, Kalu Sarai, New Delhi-110016 🏾 🔀	info@madeeasy.in 🜏 www.madeeasy.in	Page 14

	MADE EASY ndia's Best Institute for IES, GATE & PSUs	Detailed Solutions of GATE 2019 : Computer Science & IT Date of Test : 03-02-2019
Q.24	Compute $\lim_{x \to 3} \frac{x^4 - 81}{2x^2 - 5x - 3}$	
	(a) $\frac{108}{7}$	(b) $\frac{53}{12}$
	(a) <u>7</u> (c) 1	12
Ans.	(a)	(d) Limit does not exists
	$\lim_{x \to 3} \frac{x^4 - 81}{2x^2 - 5x - 3} = \frac{0}{0}$ form. S	o apply L'H rule
	$\lim_{x \to 3} \frac{4x^3}{4x - 5} = \frac{108}{7}$	
		• • End of Solution
Q.25	Let <i>G</i> be an arbitrary group. Consider $R_1: \forall a, b \in G, a R_1 b$ if and only if $\exists g \in R_2: \forall a, b \in G, a R_2 b$ if and only if $a = 0$	\in G such that $a = g^{-1}bg$
	Which of the above is/are equivalence (a) R_1 and R_2 (c) R_2 only	relation/relations? (b) R_1 only (d) Neither R_1 nor R_2
Ans.	(b)	
	R ₁ : $\forall a, b \in G, a R_1 b$ if and only if $\exists g \in$ Reflexive : $a = g^{-1}ag$ can be satisfind a group. So reflexive	\in <i>G</i> such that $a = g^{-1}bg$ fied by putting $g = e$, identity " <i>e</i> " always exists
	Symmetric: $aRb \Rightarrow a = g^{-1}bg$ for $\Rightarrow b = gag^{-1} = g^{-1}$ g^{-1} always exists for every $g \in G$	$(g^{-1})^{-1} ag^{-1}$
	So symmetric Transitive: <i>aRb</i> and <i>bRc</i> \Rightarrow <i>a</i> = $\frac{1}{2}$ Now <i>a</i> = $g_1^{-1} g_2^{-1} cg_2 g_1 = (g_2 g_1)^{-1}$	$g_1^{-1}bg_1$ and $b = g_2^{-1}cg_2$ for some $g_1g_2 \in G$. cg_2g_1
	$g_1 \in G$ and $g_2 \in G \Rightarrow g_2 g_1 \in G$ since transitive Clearly R_1 is equivalence relation.	nce group is closed so aRb and $aRb \Rightarrow aRc$
		be reflexive, since $aR_2 a \Rightarrow a = a^{-1} \forall a$ which
	R_1 is equivalence relation is the correct	
		End of Solution
Corpora	te Office: 44-A/1, Kalu Sarai, New Delhi-110016 \mid 🔀	info@madeeasy.in 🕢 www.madeeasy.in Page 17

Admission Open in Classroom Course for RRB-JE (CBT-1)


Classroom Centres : Delhi Lucknow Patna

Batches commencing from 15th Feb, 2019 All streams are eligible

	Fee St	ructure : Classr	oom Course (RR	B-JE)
Exam	Course Duration	Timing	Freshers	Ex. MADE EASY Students Enrolled in any classroom/postal courses
CBT 1 (only)	50 Days (180-200 hours)	7 days a week 4 hours per day	Rs. 10,170 + GST = Rs. 12,000/-	Rs. 7,628 + GST = Rs. 9,000/-

Delhi : 7303231082, 7303212325 Lucknow: 09919111168, 08400029422 **Patna :** 0612-2356615, 9955991166

www.madeeasy.in

	MADE EASY ndia's Best Institute for IES, GATE & PSUs	Detailed Solutions of GATE 2019 : Computer Science & IT Date of Test : 03-02-2019
Q.28	Consider the following statements: I. The smallest element in a max-head II. The second largest element in a reaction III. A max-heap can be constructed for IV. A binary search tree can be constructed Which of the above statements are TF (a) II, III and IV (c) I, III and IV	max-heap is always a child of the root node. rom a binary search tree in $\Theta(n)$ time. tructed from a max-heap in $\Theta(n)$ time.
Ans.	(b)	
Q.29	Which one of the following languages (a) $\{a^n b^i i \in \{n, 3n, 5n\}, n \ge 0\}$ (c) $\{ww^R w \in \{a, b\}^*\}$	
Ans.	 under union guarantees that resul (b) {waⁿw^R bⁿ w ∈ {a, b}*, n ≥ 0} is because after pushing w, we need being matched with w^R. If we dor with bⁿ. So this language is not a (c) {ww^R w ∈ {a, b}*} is a CFL (d) {waⁿ bⁿ w^R w ∈ {a, b}*, n ≥ 0} is 	

	India's Best Institute for IES, GATE & PSUs	Detailed Solutions of GATE 2019 : Computer Science & IT Date of Test : 03-02-2019
Q.30	Consider the following C function:	
	void convert (int <i>n</i>) {	
	if (<i>n</i> < 0) printf("%d", <i>n</i>);	
	else {	
	convert (<i>n</i> /2);	
	printf("%d", <i>n</i> % 2);	
	}	
	Which one of the following will happer positive integer <i>n</i> as argument?	n when the function convert is called with any
	(a) It will print the binary representation	of <i>n</i> in the reverse order and terminate.
	(b) It will print the binary representation	
	(c) It will not print anything and will not	
	(d) It will print the binary representation	of <i>n</i> and terminate.
Ans.	(*)	
		End of Solution

Q.31 A relational database contains two tables Student and Performance as shown below:

S	tudent
Roll_no.	Student_name
1	Amit
2	Priya
3	Vinit
4	Rohan
5	Smita

	Performance	
Roll_no.	Student_code	Marks
1	А	86
1	В	95
1	С	90
2	А	89
2	С	92
3	С	80

The primary key of the Student table is Roll_no. For the Performance table, the columns Roll_no. and Subject_code together from the primary key. Consider the SQL query given below:

SELECT S.Student_name, sum(P.Marks) FROM Student S, Performance P WHERE P.Marks > 84 GROUP BY S.Student_name;

The number of rows returned by the above SQL query is _____.

Page 20

Ans.	(5)							
	(0)	S	tudent			Performance		
		Roll_no.	Student_name] [Roll_no.	Student_code	Marks]
		1	Amit		1	A	86	
		2	Priya		1	В	95	
		3	Vinit	$ $ \times $ $	1	С	90	
		4	Rohan		2	А	89	
		5	Smita		2	С	92	
				l	3	С	80	
J.32	addresse and the translatic	es are 48 b word size i on path has	its long. The n s 4 bytes. The 128 valid entri	nemory is Translatio ies. At mo	word add on Look-a	s are 64 bits long Iressable. The p side Buffer (TLI ny distinct virtu	page siz B) in the	ze is 8 e addre
	be trans (a) 16 × (c) 4 × 2		ut any ilo mi	(b)	8×2^{20} 256 × 2 ¹⁰			
Ans.	(a) 16×	2 ¹⁰		(b) (d)				
Ans.	(a) 16× (c) 4×2	2 ¹⁰	1 word = 4 lage size = 8 l	(b) (d) bytes	256 × 2 ¹⁰			
Ans.	(a) 16 ×(c) 4 × 2(d)	2 ¹⁰ ²⁰	1 word = 4	(b) (d) bytes kB = 2 ¹³	256 × 2 ¹⁰			
Ans.	 (a) 16 × (c) 4 × 2 (d) Number TLB can 	2 ¹⁰ P of words ir hold 128 va FLB miss.	1 word = 4 lage size = 8 n 1 page = $\frac{2^1}{2^2}$ lid entries so, a	(b) (d) bytes $kB = 2^{13}$ $\frac{3}{2} = 2^{11}$ at most 12	256 × 2 ¹⁰ B	mory address c	can be a	ddress
Ans.	 (a) 16 × (c) 4 × 2 (d) Number TLB can without 1 	2 ¹⁰ P of words ir hold 128 va FLB miss.	1 word = 4 Page size = 8 In 1 page = $\frac{2^1}{2^2}$ Id entries so, a 128 × 2 ¹¹ = 25	(b) (d) bytes $kB = 2^{13}$ $\frac{3}{2} = 2^{11}$ at most 12	256 × 2 ¹⁰ B	mory address c	can be a	ddress
Ans.	 (a) 16 × (c) 4 × 2 (d) Number TLB can without 1 	2 ¹⁰ ²²⁰ of words ir hold 128 va FLB miss.	1 word = 4 Page size = 8 In 1 page = $\frac{2^1}{2^2}$ Id entries so, a 128 × 2 ¹¹ = 25	(b) (d) bytes $kB = 2^{13}$ $\frac{3}{2} = 2^{11}$ at most 12	256 × 2 ¹⁰ B	mory address o		ddress dofSoluti
Ans.	 (a) 16 × (c) 4 × 2 (d) Number TLB can without 1 	2 ¹⁰ ²²⁰ of words ir hold 128 va FLB miss.	1 word = 4 Page size = 8 In 1 page = $\frac{2^1}{2^2}$ Id entries so, a 128 × 2 ¹¹ = 25	(b) (d) bytes $kB = 2^{13}$ $\frac{3}{2} = 2^{11}$ at most 12	256 × 2 ¹⁰ B	mory address c		
Ans.	 (a) 16 × (c) 4 × 2 (d) Number TLB can without 1 	2 ¹⁰ ²²⁰ of words ir hold 128 va FLB miss.	1 word = 4 Page size = 8 In 1 page = $\frac{2^1}{2^2}$ Id entries so, a 128 × 2 ¹¹ = 25	(b) (d) bytes $kB = 2^{13}$ $\frac{3}{2} = 2^{11}$ at most 12	256 × 2 ¹⁰ B	mory address c		
Ans.	 (a) 16 × (c) 4 × 2 (d) Number TLB can without 1 	2 ¹⁰ ²²⁰ of words ir hold 128 va FLB miss.	1 word = 4 Page size = 8 In 1 page = $\frac{2^1}{2^2}$ Id entries so, a 128 × 2 ¹¹ = 25	(b) (d) bytes $kB = 2^{13}$ $\frac{3}{2} = 2^{11}$ at most 12	256 × 2 ¹⁰ B	mory address o		

Г

 Ans. (a) Q.34 Let G be any connected, weighted, undirected graph: G has a unique minimum spanning tree, if no two edges of G have the same weight edge crossing the cut. Which of the above two statements is/are TRUE? (a) Neither I nor II (b) I only (c) II only (d) Both I and II Ans. (d) If no two edges of G have same weight surely G will have unique spanning tree is So I is true Also if, for every cut of G, there is a unique minimum weight edge crossing the then G will have unique spanning tree is also true. So II is true 			≤ ρ, k≠ q} ≠ ρ, k≠ q}
 Q.34 Let G be any connected, weighted, undirected graph: G has a unique minimum spanning tree, if no two edges of G have the same weight edge crossing the cut. Which of the above two statements is/are TRUE? (a) Neither I nor II (b) I only (c) II only (d) Both I and II Ans. (d) If no two edges of G have same weight surely G will have unique spanning tree is So I is true Also if, for every cut of G, there is a unique minimum weight edge crossing the	Ans.	(a)	
Ans. (d) If no two edges of G have same weight surely G will have unique spanning tree is So I is true Also if, for every cut of G, there is a unique minimum weight edge crossing th	Q.34	 G has a unique minimum spanning f G has a unique minimum spanning t weight edge crossing the cut. Which of the above two statements is/ar (a) Neither I nor II 	tree, if no two edges of G have the same weigh tree, if for every cut G, there is a unique minimur re TRUE? (b) I only
[Note: The converse of II is not true, but that is not relevant to this question] So both I and II are true. Option (d) is correct.	Ans.	(d) If no two edges of G have same weight So I is true Also if, for every cut of G, there is a u then G will have unique spanning tree [Note: The converse of II is not true, So both I and II are true.	t surely G will have unique spanning tree is true unique minimum weight edge crossing the cu e is also true. So II is true

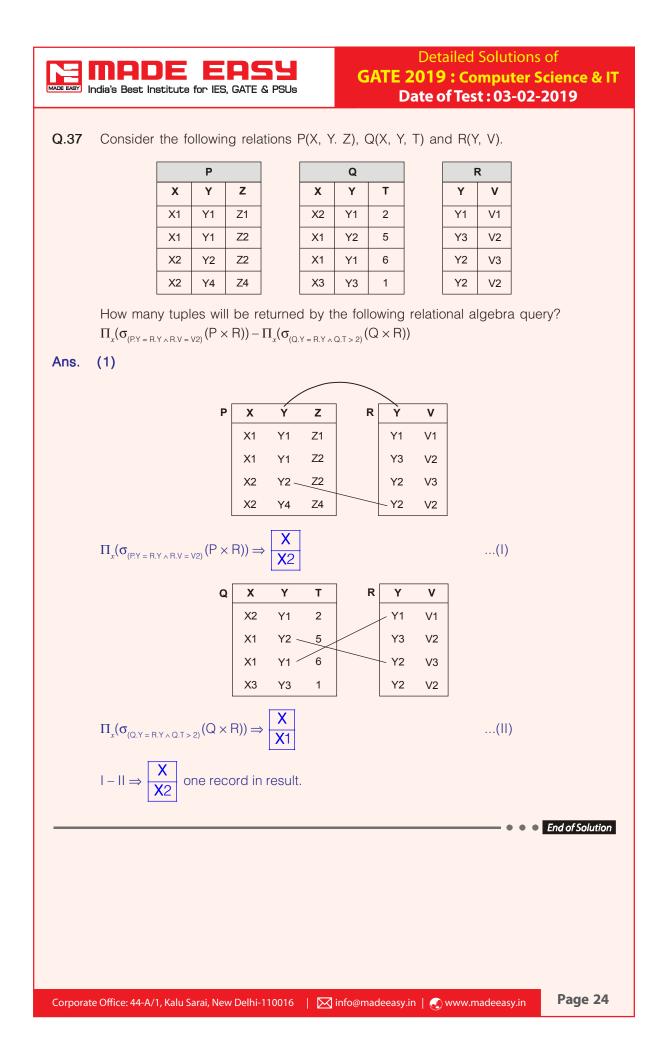
GATE 2019 RANK PREDICTOR

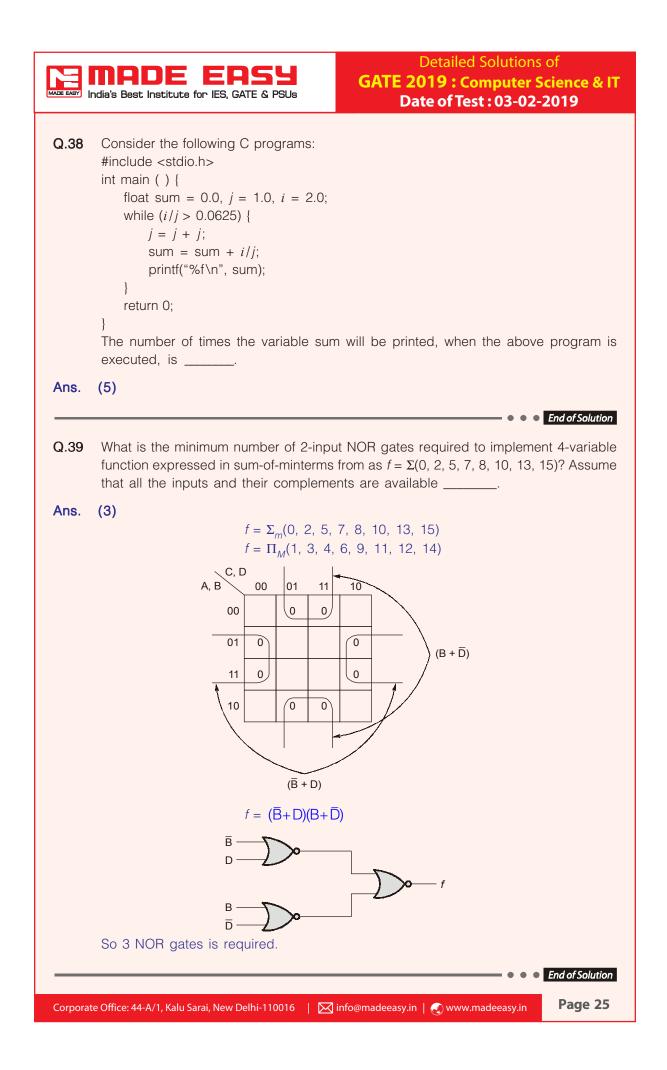
www.gaterankpredictor.madeeasy.in

Step 1 Select Your Stream

Step 2 Select the session you appeared for

Step 3 Paste the URL of your Response Sheet

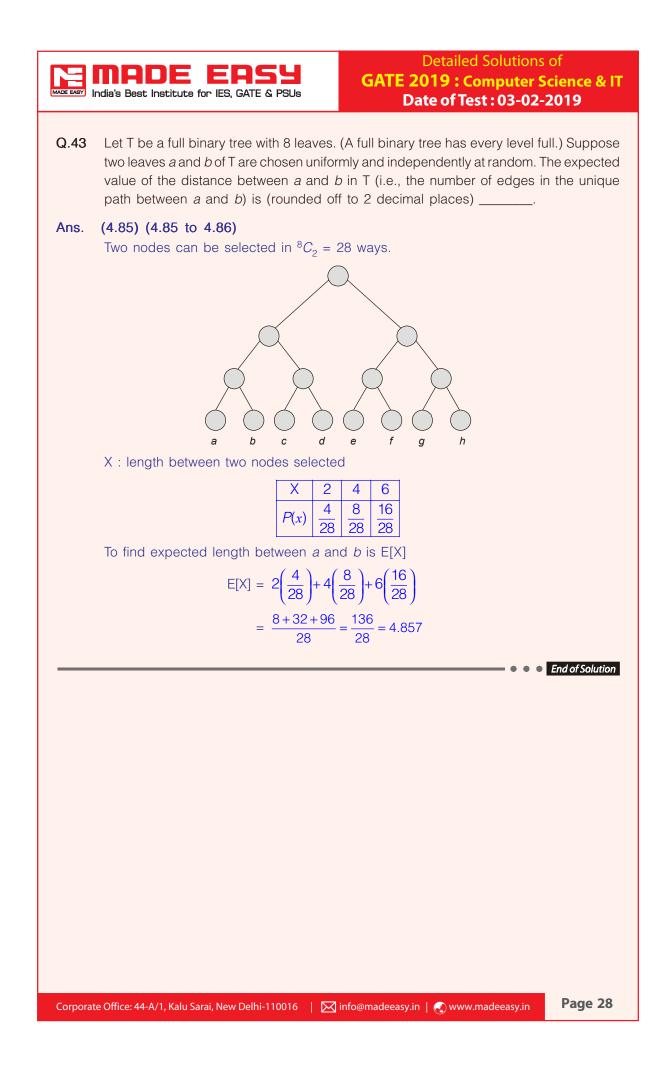

and predict your All India Rank Normalized Marks


Click here to redirect at MADE EASY GATE Rank Predictor

Q.35 Consider the following matrix: $F = \begin{bmatrix} 1 & 2 & 4 & 8 \\ 1 & 3 & 9 & 27 \\ 1 & 4 & 16 & 64 \\ 1 & 5 & 25 & 125 \end{bmatrix}$ The absolute value of the product of Eigen values of R is Ans. (12) Product of eigen values is same as the determinant of a matrix $\begin{bmatrix} 1 & 2 & 2^2 & 2^3 \\ 1 & 3 & 3^2 & 3^3 \\ 1 & 4 & 4^2 & 4^3 \\ 1 & 5 & 5^2 & 5^3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 2^2 & 2^3 \\ 0 & 3-2 & 3^2-2^2 & 3^3-2^3 \\ 0 & 3-2 & 3^2-2^2 & 3^3-2^3 \\ 0 & 3-2 & 3^2-2^2 & 3^3-2^3 \\ 0 & 5-2 & 5^2-2^2 & 5^3-2^3 \end{bmatrix}$ $= (3-2)(4-2)(5-2)\begin{bmatrix} 1 & 5 & 19 \\ 1 & 6 & 28 \\ 1 & 7 & 39 \end{bmatrix}$ $= 1 \cdot 2 \cdot 3 \begin{bmatrix} 1 & 5 & 19 \\ 0 & 1 & 9 \\ 0 & 2 & 20 \end{bmatrix}$ $= 1 \cdot 2 \cdot 3 \cdot 2 = 12$ So the product of eigen value is 12. Q.36 In an RSA cryptosystem, the value of the public modulus paral	of a matrix. 5 19 6 28 7 39 7 39 <i>End of Solution</i> Ilus parameter <i>n</i> is 3007. If it is
The absolute value of the product of Eigen values of R is Ans. (12) Product of eigen values is same as the determinant of a mat $ \begin{bmatrix} 1 & 2 & 2^2 & 2^3 \\ 1 & 3 & 3^2 & 3^3 \\ 1 & 4 & 4^2 & 4^3 \\ 1 & 5 & 5^2 & 5^3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 2^2 & 2^3 \\ 0 & 3-2 & 3^2-2^2 & 3^3-2^3 \\ 0 & 4-2 & 4^2-2^2 & 4^3-2^3 \\ 0 & 5-2 & 5^2-2^2 & 5^3-2^3 \end{bmatrix} $ $ = (3-2)(4-2)(5-2)\begin{bmatrix} 1 & 5 & 19 \\ 1 & 6 & 28 \\ 1 & 7 & 39 \end{bmatrix} $ $ = 1 \cdot 2 \cdot 3 \begin{bmatrix} 1 & 5 & 19 \\ 0 & 1 & 9 \\ 0 & 2 & 20 \end{bmatrix} $ $ = 1 \cdot 2 \cdot 3 \cdot 2 = 12 $ So the product of eigen value is 12.	of a matrix. 5 19 6 28 7 39 7 39 <i>End of Solution</i> Ilus parameter <i>n</i> is 3007. If it is
Ans. (12) Product of eigen values is same as the determinant of a mate $ \begin{bmatrix} 1 & 2 & 2^2 & 2^3 \\ 1 & 3 & 3^2 & 3^3 \\ 1 & 4 & 4^2 & 4^3 \\ 1 & 5 & 5^2 & 5^3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 2^2 & 2^3 \\ 0 & 3-2 & 3^2-2^2 & 3^3-2^3 \\ 0 & 4-2 & 4^2-2^2 & 4^3-2^3 \\ 0 & 5-2 & 5^2-2^2 & 5^3-2^3 \end{bmatrix} $ $ = (3-2)(4-2)(5-2)\begin{bmatrix} 1 & 5 & 19 \\ 1 & 6 & 28 \\ 1 & 7 & 39 \end{bmatrix} $ $ = 1 \cdot 2 \cdot 3\begin{bmatrix} 1 & 5 & 19 \\ 0 & 1 & 9 \\ 0 & 2 & 20 \end{bmatrix} $ $ = 1 \cdot 2 \cdot 3 \cdot 2 = 12 $ So the product of eigen value is 12.	of a matrix. 5 19 6 28 7 39 7 39 <i>End of Solution</i> Ilus parameter <i>n</i> is 3007. If it is
Product of eigen values is same as the determinant of a mat $ \begin{bmatrix} 1 & 2 & 2^2 & 2^3 \\ 1 & 3 & 3^2 & 3^3 \\ 1 & 4 & 4^2 & 4^3 \\ 1 & 5 & 5^2 & 5^3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 2^2 & 2^3 \\ 0 & 3-2 & 3^2-2^2 & 3^3-2^3 \\ 0 & 4-2 & 4^2-2^2 & 4^3-2^3 \\ 0 & 5-2 & 5^2-2^2 & 5^3-2^3 \end{bmatrix} $ $ = (3-2) (4-2) (5-2) \begin{bmatrix} 1 & 5 & 19 \\ 1 & 6 & 28 \\ 1 & 7 & 39 \end{bmatrix} $ $ = 1 \cdot 2 \cdot 3 \begin{bmatrix} 1 & 5 & 19 \\ 0 & 1 & 9 \\ 0 & 2 & 20 \end{bmatrix} $ $ = 1 \cdot 2 \cdot 3 \cdot 2 = 12 $ So the product of eigen value is 12.	5 19 6 28 7 39
$= (3 - 2) (4 - 2) (5 - 2) \begin{bmatrix} 1 & 5 & 19 \\ 1 & 6 & 28 \\ 1 & 7 & 39 \end{bmatrix}$ $= 1 \cdot 2 \cdot 3 \begin{bmatrix} 1 & 5 & 19 \\ 0 & 1 & 9 \\ 0 & 2 & 20 \end{bmatrix}$ $= 1 \cdot 2 \cdot 3 \cdot 2 = 12$ So the product of eigen value is 12.	5 19 6 28 7 39 ••• <i>End of Solution</i> lus parameter <i>n</i> is 3007. If it is
$\begin{bmatrix} 1 & 7 & 33 \end{bmatrix}$ = 1 . 2 .3 $\begin{bmatrix} 1 & 5 & 19 \\ 0 & 1 & 9 \\ 0 & 2 & 20 \end{bmatrix}$ = 1 . 2 . 3 . 2 = 12 So the product of eigen value is 12.	••• End of Solution lus parameter n is 3007. If it is
$= 1 \cdot 2 \cdot 3 \cdot 2 = 12$ So the product of eigen value is 12.	lus parameter n is 3007. If it is
So the product of eigen value is 12.	lus parameter n is 3007. If it is
0.36 In an RSA cryptosystem, the value of the public modulus para	lus parameter n is 3007. If it is
also known that $\phi(n) = 2880$, where $\phi()$ denotes Euler's Totient F factor of <i>n</i> which is greater than 50 is	
Ans. (97)	
$n = p \times q = 3007$	
$\phi(n) = (p - 1) (q - 1) = 2880$ Using RSA algorithm, $n = 31 \times 97$ in which 97 is prime factor	e factor which greater than 50.
So 97 is correct answer.	

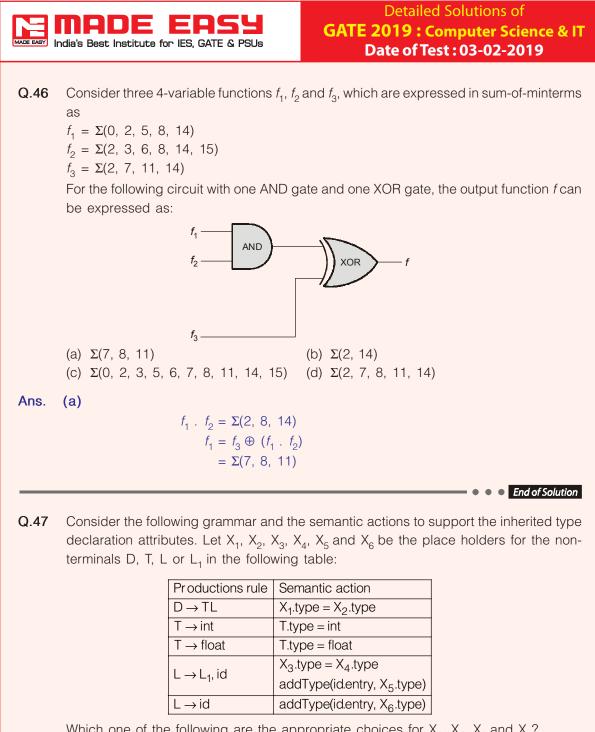
tailed Colutie

Г



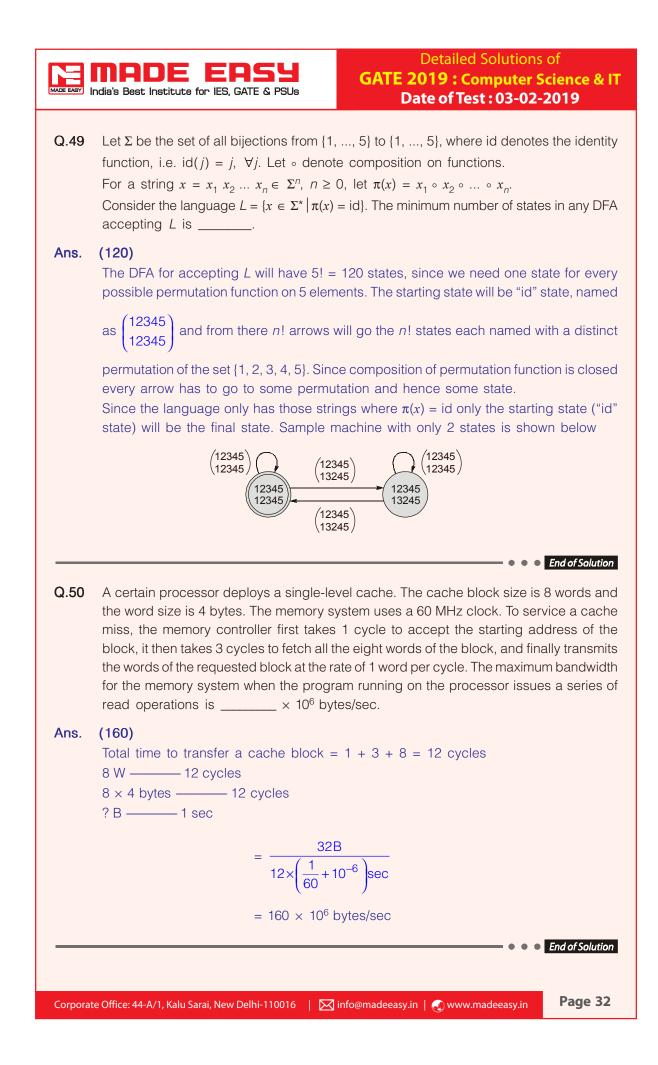
	MADE EASY ndia's Best Institute for IES, GATE & PSUs	Detailed Solutions of GATE 2019 : Computer Science & IT Date of Test : 03-02-2019
Q.40	Consider the following sets: S_1 : Set of all recursively enumerable lar S_2 : Set of all syntactically valid C progr S_3 : Set of all languages over the alphab S_4 : Set of all non-regular languages over	ams. vet {0, 1}.
	Which of the above sets are uncountable (a) S_1 and S_2 (c) S_1 and S_4	e? (b) S_3 and S_4 (d) S_2 and S_3
Ans.	machines. S_2 : Since syntactically valid C program a subset of set of Turing machine S_3 : Set of all languages = 2^{Σ^*} which is $\Rightarrow 2^{\Sigma^*}$ is uncountable.	known to be uncountable. Σ^* countably infinite cludes set $L_{\text{NOT RE}}$ which is uncountable infinite
Q.41	Consider the following four processes w of CPU burst (in milliseconds) as show	• • • End of Solution ith arrival times (in milliseconds) and their length vn below:

Process	<i>P</i> ₁	P ₂	P ₃	<i>P</i> ₄
Arrival time	0	1	3	4
CPU time	3	1	3	Ζ


These processes are run on a single processor using preemptive Shortest Remaining Time First scheduling algorithm. If the average waiting time of the processes is 1 millisecond, then the value of Z is _____.

MADE EASY	MAD ndia's Best Inst		EAS or IES, GATE &	PSUs	GATE 20	etailed Solut 19 : Compu e of Test : 03	ter Science & IT
Ans.	(2) Assume,		Z = 2	$P_1 P_2 P_1$	$\begin{array}{ c c c c c }\hline P_1 & P_4 & P_3 \\\hline 3 & 4 & 6 & 9 \\\hline \end{array}$		
	[Arrival time	CPU time	Completion time	Waiting time	
		P ₁ P ₂ P ₃ P ₄	0 1 3 4	3 1 3 <i>Z</i> = 2	4 2 9 6	1 0 3 0	
		aiting	time (WT) =	-	$\frac{+0}{-} = 1$ ms		
	Hence,		Z = 2	-			
Q.42 Ans.	<pre>#include<s (="")="" <="" for="" i="" int="" main(="" pre="" prin="" r(="" return="" static="" {="" }=""></s></pre>	int nu num -); r(ntf("% D;	m = 7; ;); r()) sd",r());	-	be displayed o (b) 630 (d) 52	n execution o	f the programs?
Corporat	e Office: 44-A/1,	Kalu Sa	rai, New Delhi-11	0016 🖂	info@madeeasy.in	www.madeeas	• • End of Solution

	NADE EASY ndia's Best Institute for IES, GATE & PSUs	Detailed Solutions of GATE 2019 : Computer Science & IT Date of Test : 03-02-2019
Q.44		ula: $\exists w \ (w > x) \land (\forall z \ z \ w \Rightarrow ((w = z) \lor (z = 1)))]$ here <i>a</i> and <i>b</i> are integers. Consider the following (b) S_2 and S_3 (d) S_1 and S_2
Ans. Q.45	(b) $\forall x [\forall z x \Rightarrow ((z = x) \lor (z = 1)) \Rightarrow \exists w$ The predicate φ simply says that if z another prime number is the set which Clearly φ is true in S_2 and S_3 since in s there is a prime number greater than However, in S_1 : {1, 2, 3,100} φ is far no prime number in the set which is g Suppose Y is distributed uniformly in t	et of all integers as well as all positive integers, any given prime number. Ilse since for prime number $97 \in S_1$ there exists
Ans.	(0.8) Polynomial $3x^2 + 6xY + 3Y + 6$ has c $b^2 - 4ax \ge 0$ $(6Y)^2 - 4(3) (3Y + 6) \ge 0$ $Y^2 - Y + 2 \ge 0$ $Y \in (-\infty, -1] \cap [2, \infty)$ $\Rightarrow Y \in [2, 6)$ Since y is uniformly distributed in (1, Probability distributed function $f(Y) = \frac{1}{5} 1 < y$	only real roots 6)
Corporat	$p(2 \le y < 6) = \int_{2}^{6} f(Y) dy$ $= \frac{1}{5} [Y]_{2}^{6} = \frac{4}{5}$ te Office: 44-A/1, Kalu Sarai, New Delhi-110016	= 0.8 • • • End of Solution info@madeeasy.in


ſ

Which one of the following are the appropriate choices for X_1 , X_2 , X_3 and X_4 ? (a) $X_1 = L$, $X_2 = T$, $X_3 = L_1$, $X_4 = L$ (b) $X_1 = L$, $X_2 = L$, $X_3 = L_1$, $X_4 = T$ (c) $X_1 = T$, $X_2 = L$, $X_3 = L_1$, $X_4 = T$ (d) $X_1 = T$, $X_2 = L$, $X_3 = T$, $X_4 = L_1$

Page 30

	Detailed Solutions of GATE 2019 : Computer Science & IT Date of Test : 03-02-2019
Ans.	 (a) SDT for inserting type information in the symbol table D → TL {L.idtype = T.stype} T → int {T.stype = int} T → float {T.stype = float} L → L₁, id {L₁.itype = L.itype} addtype(id.entry, L.itype) L → id addtype(id.entry, L.itype) Replace these attribute information in the given SDT. So option (a) is the correct answer.
Q.48	Consider three machines M, N and P with IP addresses 100.10.5.2, 100.10.5.5 and 100.10.5.6 respectively. The subnet mask is set to 255.255.255.252 for all the three machines. Which one of the following is true? (a) M, N and P all belong to the same subnet (b) Only N and P belong to the same subnet (c) M, N, and P belong to three different subnets (d) Only M and N belong to the same subnet
Ans.	(b)
	$\begin{split} M &\to \underbrace{\begin{array}{cccc} 100.10.5.2 \\ 255.255.255.252 \\ 194.56.10.0 \\ \end{array}}_{\begin{array}{c} 194.56.10.0 \\ \end{array}} & \underbrace{\begin{array}{c} 252 \\ 252 \\ 252 \\ 0 \\ 0 \\ 00000000 \\ \end{array}}_{\begin{array}{c} 0 \\ 0 \\ 00000000 \\ 0 \\ 00000000 \\ \end{array}} \\ N &\to \underbrace{\begin{array}{c} 100.10.5.5 \\ 255.255.255.252 \\ 194.56.10.4 \\ \end{array}}_{\begin{array}{c} 255.255.252 \\ 252 \\ 11111100 \\ \end{array}}_{\begin{array}{c} 4 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$
	• • • End of Solution

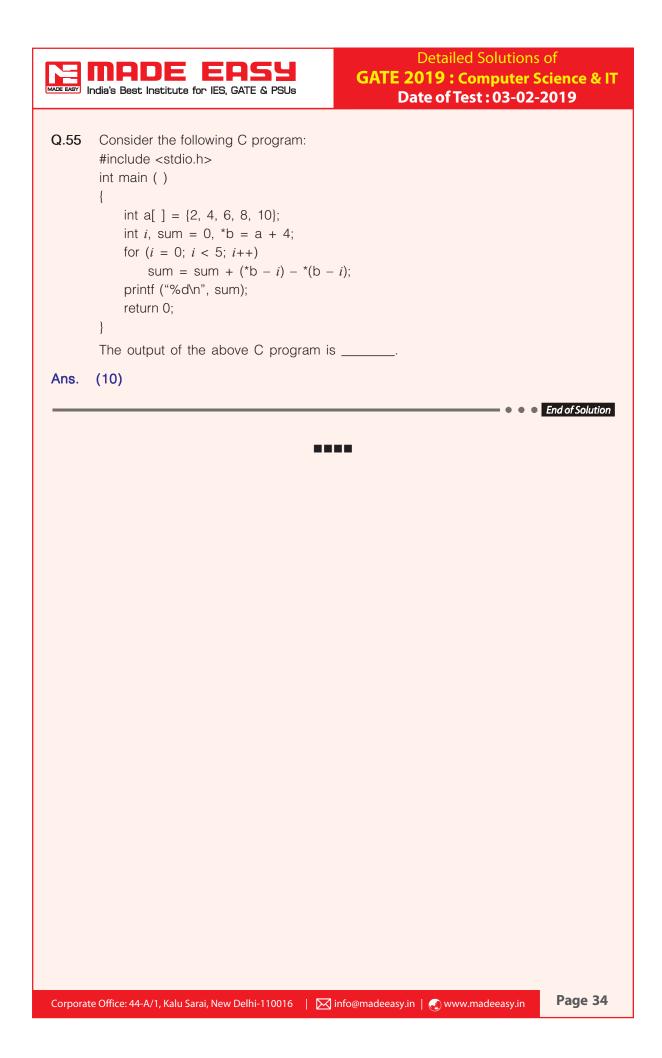
General Studies & Engineering Aptitude Batches for ESE 2020 (Preliminary Examination)

ADMISSION OPEN

Syllabus Covered

- 1. Current issues of national and international importance relating to social economic and industrial development.
- 2. Engineering Aptitude covering Logical reasoning and Analytical ability.
- 3. Engineering Mathematics and Numerical Analysis.
- 4. General Principles of Design, Drawing, Importance of Safety.
- 5. Standards and Quality practices in production, construction, maintenance and services.
- 6. Basic of Energy and Environment : Conservation, Environmental pollution and degradation, Climate Change, Environmental impact assessment.
- 7. Basic of Project Management.
- 8. Basics of Material Science and Engineering.
- 9. Information and Communication Technologies (ICT) based tools and their applications in Engineering such as networking, e-governance and technology based education.
- 10. Ethics and values in engineering profession.

Course Duration	Ì	Timings	i	Teaching Hours
Regular Batches : 2.5 months Weekend Batches : 4 months		Regular : 6 to 7 days a week and 4-6 hours a day Weekend : Sat, Sun & public holiday, 8 hours each day		250-300 hours


Batch Type	Commencing Dates	Venue	Timing
Regular Batch	20 th Feb, 2019	Ghitorni (Delhi)	8:00 AM to 12:00 PM
Weekend Batch	24 th Feb, 2019	Ghitorni (Delhi)	8:00 AM to 5:00 PM
Weekend Batch	24 th Feb, 2019	Noida Centre	8:00 AM to 5:00 PM

	Fee Structure
Non-MADE EASY Students	Ex. MADE EASY Students Enrolled in Postal, Rank Improvement, Mains, GS, GATE, GATE + ESE Batches
₹ 25,000 • GS & Engg Aptitude Books will be issued.	 • GS & Engg Aptitude Books will NOT be issued. • Interested students can avail books by paying the fee of Rs. 2,000/-

Corporate office : 44-A/1, Kalu Sarai, New Delhi - 1100 16 🕓 011-45124612, 9958995830

Noida office : D-28, Sector - 63, Noida, Uttar Pradesh - 201301 🕓 0120-6524612, 08860378009

	Detailed Solutions of GATE 2019 : Computer Science & I' Date of Test : 03-02-2019
Q.51	There are <i>n</i> unsorted arrays: $A_1, A_2,, A_n$. Assume that <i>n</i> is odd. Each of $A_1, A_2,, A_n$ contains <i>n</i> distinct elements. There are no common elements between any two arrays The worst-case time complexity of computing the median of the medians of $A_1, A_2,, A_n$ is
	(a) $O(n \log n)$ (b) $O(n^2)$ (c) $O(n)$ (d) $\Omega(n^2 \log n)$
Ans.	(b) • • • End of Solution
Q.52	Consider that 15 machines need to be connected in a LAN using 8-port Ethernet switches Assume that these switches do not have any separate uplink ports. The minimum number of switches needed is
Ans.	(3)3 switches of ethernet are required to connect 15 computers.
	• • • End of Solution The index node (inode) of a Unix-like file system has 12 direct, one single-indirect and
Q.53	one double-indirect pointers The disk block size is 4 kB and the disk block address is 32-bits long. The maximum possible file size is (rounded off to 1 decimal place) GB.
Q.53 Ans.	 is 32-bits long. The maximum possible file size is (rounded off to 1 decimal place) GB. (4.0)
	is 32-bits long. The maximum possible file size is (rounded off to 1 decimal place) GB.
Ans.	 is 32-bits long. The maximum possible file size is (rounded off to 1 decimal place) GB. (4.0) <i>End of Solution</i> Suppose that in an IP-over-Ethernet network, a machine X wishes to find the MAC address of another machine Y in its subnet. Which one of the following techniques can be used for this? (a) X sends an ARP request packet with broadcast IP address in its local subnet (b) X sends an ARP request packet to the local gateway's MAC address which then finds
Ans.	 is 32-bits long. The maximum possible file size is (rounded off to 1 decimal place) GB. (4.0) End of Solution Suppose that in an IP-over-Ethernet network, a machine X wishes to find the MAC address of another machine Y in its subnet. Which one of the following techniques can be used for this? (a) X sends an ARP request packet with broadcast IP address in its local subnet

