

MADE EASY

India's Best Institute for IES, GATE & PSUs

Test Centres: Delhi, Hyderabad, Bhopal, Jaipur, Bhubaneswar, Pune, Kolkata

ESE 2024: Prelims Exam | GS & ENGINEERING | CLASSROOM TEST SERIES | APTITUDE

Test 1

Section A: Reasoning & Aptitude [All Topics]Section B: Engineering Mathematics [All Topics]

ANSWER KEY										
	1.	(d)	11.	(b)	21.	(d)	31.	(a)	41.	(a)
	2.	(b)	12.	(a)	22.	(c)	32.	(b)	42.	(a)
	3.	(a)	13.	(c)	23.	(a)	33.	(d)	43.	(a)
	4.	(a)	14.	(c)	24.	(c)	34.	(a)	44.	(a)
	5.	(d)	15.	(a)	25.	(a)	35.	(d)	45.	(b)
	6.	(c)	16.	(d)	26.	(c)	36.	(b)	46.	(c)
	7.	(a)	17.	(c)	27.	(b)	37.	(c)	47.	(b)
	8.	(c)	18.	(c)	28.	(b)	38.	(d)	48.	(a)
	9.	(d)	19.	(b)	29.	(c)	39.	(a)	49.	(b)
	10.	(a)	20.	(d)	30.	(c)	40.	(c)	50.	(b)

DETAILED EXPLANATIONS

1. (d)

Then,

$$x = 6q + 3$$

$$x^{2} = (6q + 3)^{2} = 36q^{2} + 36q + 9$$

$$= 6(6q^{2} + 6q + 1) + 3$$

Thus, when x^2 is divided by 6, then remainder = 3.

2. (b)

L.C.M. of 5, 6, 7,
$$8 = 840$$

 \therefore Required number is the form 840k + 3

Least value of k for which (840k + 3) is divisible by 9 is k = 2.

 $\therefore \qquad \text{Required number = } 840 \times 2 + 3 = 1683$

3. (a)

Average speed =
$$\frac{\text{Total distance}}{\text{Total time}} = \frac{10 + 8 + 12}{\frac{1}{4} + \frac{1}{4} + \frac{1}{4}}$$

= $\frac{30}{3/4} = 40 \text{ km/hour}$

4. (a)

$$\frac{1}{1 \times 2 \times 3} + \frac{1}{2 \times 3 \times 4} + \frac{1}{3 \times 4 \times 5} + \frac{1}{4 \times 5 \times 6} = \frac{4 \times 5 \times 6 + 5 \times 6 + 2 \times 6 + 2 \times 3}{1 \times 2 \times 3 \times 4 \times 5 \times 6}$$
$$= \frac{120 + 30 + 12 + 6}{720} = \frac{168}{720}$$
$$= \frac{7}{30}$$

5. (d)

Let the number of papers be x.

Then,

$$63x + 20 + 2 = 65x$$
$$2x = 22$$

x = 11

6. (c)

Let the numbers be x, y and z.

$$x + y = 45$$

$$y + z = 55$$

$$3x + z = 90$$

$$y = 45 - x, z = 55 - y$$

$$z = 55 - (45 - x)$$

$$z = 10 + x$$

$$\ddot{\cdot}$$

$$3x + 10 + x = 90$$

$$y = 45 - 20 = 25$$

and $z = 10 + 20 = 30$
 \therefore Third number = 30

When a person sells two similar items (same selling price) one at a gain of say, x% and the other at a loss of x%, then seller always incurs a loss given by;

$$\% \text{ loss} = \frac{x^2}{100}$$

$$\text{Loss\%} = \frac{5^2}{100} = 0.25\% \text{ loss}$$

8. (c)

:.

Let the initial investments of A and B be 3x and 5x.

$$A:B:C = (3x \times 12):(5x \times 12):(5x \times 6)$$

= 36:60:30
= 6:10:5

9. (d)

Originally, let there be x men

Less men, more days (Indirect proportion)

$$(x - 10) : x :: 100 : 110$$

$$(x - 10) \times 110 = x \times 100$$

$$10x = 1100$$

$$x = 110$$

10. (a)

Let 1 woman's 1 day's work = x

Then, 1 man's 1 day's work = $\frac{x}{2}$

and 1 child's 1 day's work = $\frac{x}{4}$

So,
$$\frac{3x}{2} + 4x + \frac{6x}{4} = \frac{1}{7}$$
$$\frac{6x + 16x + 6x}{4} = \frac{1}{7}$$
$$\frac{28x}{4} = \frac{1}{7}$$
$$x = \frac{1}{7} \times \frac{4}{28} = \frac{1}{49}$$

:. 1 woman alone can complete the work in 49 days.

So, to complete the work in 7 days, number of women required = $\frac{49}{7}$ = 7

The area of the triangle formed by joining the middle points of the sides of a triangle is equal to one-fourth area of the given triangle.

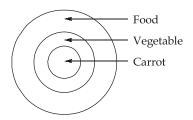
Let area of
$$15^{th} \Delta = A$$

Then area of
$$18^{th} \Delta = \frac{A}{64}$$

So, required ratio =
$$\frac{64}{1}$$
 = 64

12. (a)

All carrot are vegetable and all vegetable are food.



13. (c)

Total population,
$$P = 5000$$

Let the number of males be M

Number of females
$$= 5000 - M$$

New number of males =
$$M \times \left(1 + \frac{10}{100}\right) = 1.1 \text{ M}$$

New number of females =
$$(5000 - M)(1 + \frac{15}{100}) = (5000 - M)1.15$$

Total population =
$$1.1 \text{ M} + (5000 - \text{M})(1.15) = 5600$$

$$5750 + (1.1 - 1.15)M = 5600$$

$$(1.15 - 1.1)M = 5750 - 5600$$

$$0.05 \text{ M} = 150$$

$$M = \frac{150}{0.05} = \frac{30}{0.01} = 3000$$

14. (c)

Difference between CI and SI for two years $(\text{CI-SI})_{2y} = P\left(\frac{R}{100}\right)^2$ (which is interest on first year interest)

$$(\text{CI-SI})_{2y} = 400 \left(\frac{12}{100}\right)^2 = \text{Rs. } 5.76$$

$$N = 1 \underbrace{9^{17}}_{\text{odd power}} \times 24^{71} + 3 \underbrace{3^{92}}_{\text{odd power}} + n \text{ power}$$
of 9 of 4 of 3

Unit digit
$$9 \times 4 + 1 = 7 \text{ unit digit}$$

$$|x-6| = 11$$
 $\Rightarrow x-6 = 11, x = 17$
or $x-6 = -11, x = -5$
 $|2y-12| = 8$ $2y-12 = 8, y = 10$
 $2y-12 = -8, y = 2$

Possible values of $\frac{y}{x}$ are

$$\frac{10}{17}$$
, $\frac{10}{-5}$, $\frac{2}{17}$, $\frac{2}{-5}$, hence minimum value is $\frac{10}{-5} = -2$

17. (c)

Series follows ($-3 \div 2$); so, 46 is the odd number.

18. (c)

For a number to be divisible by 4 its last two digit have to be divisible by 4.

[T] and [u] can be filled in given 8 ways.

[H] can be filled in now only 4 ways as two digits are already occupied in [T] and [u].

[Th] can be filled in remaining 3 ways.

Total possible numbers = $3 \times 4 \times 8 = 96$

19. (b)

5! onwards every factorial will be a multiple of 120. Hence will be divisible by 24. So, remainder will be due to

$$1 \times 1! + 3 \times 3! = 19$$

$$S = \log_2 2 + \log_2 2^3 + \log_2 2^5 \dots \log_2 2^{13} = 1 + 3 + 5 + 7 \dots + 13 = 49$$

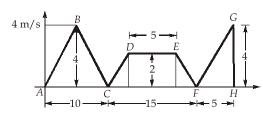
(Sum of odd numbers = n^2)

Alternative method:

$$S_{AP} = \frac{n}{2} [1^{\text{st}} \text{ term} + \text{last term}]$$
$$S = \frac{7}{2} [1 + 13] = 49$$

21. (d)

:.



Average speed =
$$\frac{\text{Total distance}}{\text{Total time}} = \frac{\text{Area under } (s-t) \text{ graph}}{\text{Total time}}$$

Total area = $Ar(\Delta ABC)$ + Ar (Trapezium *CDEF*) + Ar (ΔFGH)

= $\frac{1}{2} \times 10 \times 4 + \frac{1}{2} (15+5) \times 2 + \frac{1}{2} \times 5 \times 4$

= 50 m

Average speed =
$$\frac{\text{Total distance}}{\text{Total time}} = \frac{50}{30} = 1.66 \text{ m/sec.}$$

22. (c)

Different types of rectangles are:

$$1 \times 1$$
, 1×2 , 1×3 , 1×4 , 1×5 , $1 \times 6 \rightarrow 6$ types

$$2 \times 2$$
, 2×3 , 2×4 , 2×5 , $2 \times 6 \rightarrow 5$ types

$$3 \times 3$$
, 3×4 , 3×5 , $3 \times 6 \rightarrow 4$ types

$$4 \times 4$$
, 4×5 , $4 \times 6 \rightarrow 3$ types

Total different types of rectangles are 3 + 4 + 5 + 6 = 18

Note: Remember (1×2) and (2×1) is regarded same type of rectangle.

23. (a)

Let the work lasted for t days

Raman's 2 days work + Ashok's (t - 3) days work + Satish's t days work = Total work done

$$\frac{2}{8} + \frac{t-3}{16} + \frac{t}{32} = 1$$

$$\frac{1}{4} + \frac{t - 3}{16} + \frac{t}{32} = 1$$

$$\frac{8+2(t-3)+t}{32} = 1$$

$$3t + 2 = 32$$

$$3t = 30$$
$$t = 10 \text{ days}$$

Quantity of pure alcohol in 400 ml solution = $\frac{15}{100} \times 400 = 60$ ml

Quantity of water in solution = 340 ml

According to the question

Let amount of alcohol to be added be x

$$\frac{60 + x}{400 + x} = 0.32$$
$$x = 100 \text{ ml}$$

25. (a)

Probability of getting at least 6 heads = Probability of getting 2 tails + Prob. of getting 1 tail + Prob. of getting no tail

$$= {}^{8}C_{2} \times \frac{1}{256} + {}^{8}C_{1} \times \frac{1}{256} + {}^{8}C_{0} \times \frac{1}{256} = \frac{37}{256}.$$

$$\left[1 + \left(\frac{dy}{dx}\right)^2\right]^2 = 4^3 \left(\frac{d^3y}{dx^3}\right)^3$$

:. Order and degree of this equation, are both 3.

 \Rightarrow Option (c) is correct.

27. (b)

Let
$$I = \int_{0}^{1} \int_{0}^{x} (x+y) \, dy dx$$

$$= \int_{0}^{1} \left[xy + \frac{y^{2}}{2} \right]_{0}^{x} dx = \int_{0}^{1} \left(x^{2} + \frac{x^{2}}{2} \right) dx$$

$$= \int_{0}^{1} \frac{3x^{2}}{2} \, dx = \frac{3}{2} \left[\frac{x^{3}}{3} \right]_{0}^{1}$$

$$= \frac{1}{2} = 0.5 \, \text{sq.units}$$

$$u = (x^2 + y^2 + z^2)^{1/2}$$

$$\frac{\partial u}{\partial x} = \frac{2x}{2(x^2 + y^2 + z^2)^{1/2}} = \frac{x}{u}$$

$$\frac{\partial^2 u}{\partial x^2} = -\frac{1}{u^2} \times \frac{x}{u} \times x + \frac{1}{u} = \frac{y^2 + z^2}{u^3}$$

Similarly,

$$\frac{\partial^2 u}{\partial y^2} = \frac{x^2 + z^2}{u^3} \text{ and}$$

$$\frac{\partial^2 u}{\partial z^2} = \frac{y^2 + x^2}{u^3}$$

$$\therefore \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = \frac{2(x^2 + y^2 + z^2)}{(x^2 + y^2 + z^2)^{3/2}} = \frac{2}{(x^2 + y^2 + z^2)^{1/2}} = \frac{2}{u}$$

 \Rightarrow Option (b) is correct.

29. (c)

PI =
$$\frac{1}{D^3 + 1}\cos(2x - 1)$$
 (Put $D^2 = -2^2 = -4$)
= $\frac{1}{D(-4) + 1}\cos(2x - 1) = \frac{1 + 4D}{(1 - 4D)(1 + 4D)}\cos(2x - 1)$
= $1 + 4D \times \frac{1}{1 - 16D^2}\cos(2x - 1)$

Put $D^2 = -2^2 = -4$

$$= (1+4D) \times \frac{1}{1-16(-4)} \cos(2x-1)$$

$$= \frac{1}{65} [\cos(2x-1) + 4D\cos(2x-1)]$$

$$= \frac{1}{65} [\cos(2x-1) - 8\sin(2x-1)]$$

 \Rightarrow Option (c) is correct.

30. (c)

$$\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cos \theta$$

$$\vec{a} \times \vec{b} = |\vec{a}| \cdot |\vec{b}| \sin \theta \, \hat{n}$$

$$|\vec{a} \times \vec{b}|^2 + |\vec{a} \cdot \vec{b}|^2 = |\vec{a}|^2 \cdot |\vec{b}|^2 (\sin^2 \theta + \cos^2 \theta) = |\vec{a}|^2 \cdot |\vec{b}|^2$$

31. (a)

Comparing with general partial differential equation,

$$A\frac{\partial^2 f}{\partial x^2} + B\frac{\partial^2 f}{\partial x \partial t} + C\frac{\partial^2 f}{\partial t^2} + D\frac{\partial f}{\partial x} + E\frac{\partial f}{\partial t} + F = 0$$

$$A = 1$$
, $B = 0$, $C = 0$, $E = -1$

Now, since,

$$B^2 - 4AC = 0$$

- :. Given partial differential equation is parabolic.
- \Rightarrow Option (a) is correct.

The total area under the curve for any pdf is always equal to 1, hence

$$\int_{-\infty}^{\infty} f_x(x) dx = 1$$

$$\int_{0}^{\infty} \frac{e^{-2x}}{k} dx = 1$$

$$\frac{1}{k} \left(\frac{e^{-2x}}{(-2)} \right)_{0}^{\infty} = 1$$

$$-\frac{1}{2k} (e^{-2x})_{0}^{\infty} = 1$$

$$-\frac{1}{2k} (0 - 1) = 1$$

$$k = 0.5$$

33. (d)

:.

Rank of matrix A = 2

$$\Rightarrow |A| = 0$$

$$\Rightarrow \mu(6+4) + 1(-4) = 0$$

$$\Rightarrow 10\mu = 4$$

$$\mu = 2/5$$

34. (a)

The product of all eigenvalues of a matrix is equal to the determinant of the matrix. Since *A* is a singular matrix,

35. (d)

 \Rightarrow

The auxiliary equation for differential equation is given by

$$D^{3} - 3D + 2 = 0$$

$$(D - 1)(D^{2} + D - 2) = 0$$

$$(D - 1)^{2} (D + 2) = 0$$

$$D = 1, 1, -2$$

$$CF = (C_{1} + C_{2}x) e^{x} + C_{3}e^{-2x}$$

$$|z| = \left| \left(z - \frac{4}{z} \right) + \frac{4}{z} \right| \le \left| z - \frac{4}{z} \right| + \left| \frac{4}{z} \right|$$

$$\Rightarrow \qquad |z| \le 2 + \frac{4}{|z|}$$

$$\Rightarrow \qquad |z|^2 - 2|z| - 4 \le 0$$

$$\left[|z| - \left(\sqrt{5} + 1 \right) \right] \left[|z| - \left(1 - \sqrt{5} \right) \right] \le 0$$

$$1 - \sqrt{5} \le |z| \le \sqrt{5} + 1$$

37. (c)

The characteristic equation of the matrix A is

$$|A - \lambda I| = 0$$

$$\begin{vmatrix} -5 - \lambda & -3 \\ 2 & -\lambda \end{vmatrix} = 0$$

$$(-5 - \lambda)(-\lambda) + 6 = 0$$

$$\Rightarrow \lambda^2 + 5\lambda + 6 = 0$$

By Cayley-Hamilton theorem, every square matrix satisfies its own characteristic equation.

$$A^{2} + 5A + 6I = 0$$

$$A^{2} = -5A - 6I$$

$$A^{3} + 5A^{2} + 6A = 0$$

$$A^{3} = -5(-5A - 6I) - 6A$$

$$= 19A + 30I$$

38. (d)

$$\vec{\nabla} \cdot \vec{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}$$
$$= y^2 + 2x^2z - 6yz$$

At (1, -1, 1),

$$\vec{\nabla} \cdot \vec{F} = 9$$

39. (a)

By Cauchy's integral formula

$$\int_{C} \frac{z}{(z-1)^{3}} dz = \frac{2\pi i}{2!} \frac{d^{2}}{dz^{2}} f(z) \bigg|_{z=1}$$
where $f(z) = z$, $f'(z) = 1$, $f''(z) = 0$
So,
$$\int_{C} \frac{z}{(z-1)^{3}} dz = 0$$

$$\frac{dy}{dx} = e^{x+y} + x^2 e^{x^3 + y}$$

$$\frac{dy}{dx} = e^y \left[e^x + x^2 e^{x^3} \right]$$

$$\int \frac{1}{e^y} dy = \int \left(e^x + x^2 e^{x^3} \right) dx$$

$$-e^{-y} = e^x + \int x^2 e^{x^3} dx + c$$

Let
$$x^3 = t$$

$$\Rightarrow 3x^2 dx = dt$$

$$\Rightarrow x^2 dx = \frac{dt}{3}$$

$$-e^{-y} = e^{x} + \int e^{t} \frac{dt}{3} + c$$

$$-e^{-y} = e^{x} + \frac{1}{3}e^{t} + c$$

$$e^{x} + e^{-y} + \frac{e^{x^{3}}}{3} + c = 0$$

From figure,

$$r^2 = a^2 - (h - a)^2$$

 $r^2 = -h^2 + 2ah$

Now volume of cone,

$$V = \frac{1}{3}\pi r^2 h$$

$$V = \frac{\pi}{3}[-h^3 + 2ah^2]$$

For 'V' to be maximum,

$$\frac{dV}{dh} = \frac{\pi}{3}[-3h^2 + 4ah] = 0$$

 \Rightarrow

$$h = 0, \frac{4a}{3}$$

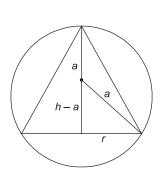
 $\frac{d^2V}{dh^2}$ < 0 for $h = \frac{4a}{3}$ indicating a maxima

 $\therefore \text{ Volume is maximum with } h = \frac{4a}{3}$

42. (a)

$$L[t^{2}u(t-3)] = e^{-3s}L[(t+3)^{2}u(t)]$$

= $e^{-3s}L[(t^{2}+6t+9)u(t)]$



$$= e^{-3s} \left(\frac{2}{s^3} + \frac{6}{s^2} + \frac{9}{s} \right)$$

$$L^{-1} \left[\frac{1}{s^2 - 5s + 6} \right] = L^{-1} \left[\frac{1}{s - 3} - \frac{1}{s - 2} \right]$$
$$= L^{-1} \left(\frac{1}{s - 3} \right) - L^{-1} \left(\frac{1}{s - 2} \right)$$
$$= (e^{3t} - e^{2t}) u(t)$$

44. (a)

Div
$$\vec{V}$$
 = $\nabla \cdot \vec{V}$
= $\frac{\partial}{\partial x} (xy \sin z) + \frac{\partial}{\partial y} (y^2 \sin x) + \frac{\partial}{\partial z} (z^2 \sin xy)$
= $y \sin z + 2y \sin x + 2z \sin xy$

Now, at the given point

$$x = 0, y = \frac{\pi}{2}, z = \frac{\pi}{2}$$

We have,

$$Div \vec{V} = \frac{\pi}{2} \sin \frac{\pi}{2} + 2 \times \frac{\pi}{2} \sin 0 + 2 \cdot \frac{\pi}{2} \cdot \sin 0$$
$$= \frac{\pi}{2}$$

45. (b)

For Newton Raphson's method

 $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$ $x = \sqrt{28}$

We have to find

$$x = \sqrt{28}$$

$$f(x) = x^{2} - 28$$

$$f'(x) = 2x$$

$$x_{1} = 5.6 - \frac{x^{2} - 28}{2x} \Big|_{x_{0}}$$

$$= 5.6 - \frac{5.6^{2} - 28}{2 \times 5.6} = 5.30$$

46. (c) Residue at z = 0 will be,

Residue =
$$\lim_{z \to 0} z \times \frac{1 + e^z}{z \left(\frac{\sin z}{z} + \cos z\right)} = \frac{1 + e^0}{1 + 1} = 1$$

Since *A* and *B* are independent, hence

Also
$$P(A \cap B) = P(A) \times P(B) = 0.15 \times P(B)$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$0.45 = 0.15 + P(B) - (0.15) \times P(B)$$

$$= 0.15 + P(B)(1 - 0.15)$$

$$= 0.15 + 0.85P(B)$$

$$\therefore \qquad 0.85P(B) = 0.45 - 0.15 = 0.30$$

$$\therefore \qquad P(B) = \frac{0.30}{0.85} = \frac{30}{85} = \frac{6}{17}.$$

48. (a)

Given, $x = b(2 - \cos\theta)$, $y = b(\sin\theta + \theta)$

$$\frac{dx}{d\theta} = b\sin\theta,$$

$$\frac{dy}{d\theta} = b(\cos\theta + 1)$$

$$\frac{dx}{dy} = \frac{dx/d\theta}{dy/d\theta} = \frac{b\sin\theta}{b(\cos\theta + 1)}$$

$$= \frac{2b\sin\left(\frac{\theta}{2}\right).\cos\left(\frac{\theta}{2}\right)}{b \times 2\cos^2\left(\frac{\theta}{2}\right)} = \tan\left(\frac{\theta}{2}\right)$$

49. (b)

$$\lim_{x \to 0} \frac{\ln(1+5x)}{e^{7x} - 1} \qquad \left(\frac{0}{0} \text{ indeterminate form}\right)$$

Applying L' Hospital's rule

$$\lim_{x \to 0} \frac{\ln(1+5x)}{e^{7x} - 1} = \lim_{x \to 0} \frac{5}{(1+5x)7e^{7x}} = \frac{5}{7}$$

50. (b)

Probability of first item being defective,

$$P_1 = \frac{15}{50}$$

Probability of second item being defective,

$$P_2 = \frac{14}{49}$$

Probability of third item being defective,

$$P_3 = \frac{13}{48}$$

Probability that all three are defective,

$$P = P_1 P_2 P_3 = \frac{15}{50} \times \frac{14}{49} \times \frac{13}{48} = \frac{13}{560}$$

$$\circ$$