

MADE EASY

India's Best Institute for IES, GATE & PSUs

GATE 2022

ELECTRONICS ENGINEERING

Exam held on
06/02/2022

Questions & Solutions

Corporate Office : 44-A/1, Kalu Sarai, New Delhi - 110016

MADE EASY Centres : • Delhi • Hyderabad • Bhopal • Jaipur
• Lucknow • Pune • Bhubaneswar • Kolkata • Patna

9021300500

www.madeeasy.in

MADE EASY

India's Best Institute for IES, GATE & PSUs

- Quality Teaching
- Well Planned Curriculum
- Systematic Subject Sequence
- Comprehensive Study Materials

Under the guidance of

Mr. B. Singh

CMD, MADE EASY GROUP

Admission open in Foundation Courses

**GATE
2023**

**ESE 2023 +
GATE 2023**

<ul style="list-style-type: none">✓ Classes by experienced & renowned faculties.✓ Systematic subject sequence.✓ Efficient teaching with comprehensive coverage.✓ Concept practice through workbook solving.✓ Regular performance assessment through class tests.	<ul style="list-style-type: none">✓ Exam oriented learning ecosystem.✓ Timely completion of syllabus.✓ Similar teaching pedagogy in online & offline classes.✓ Comprehensive & updated theory & practice books.
--	--

OFFLINE CLASSES

Special Discount to Ex. MADE EASY
students in CLASSROOM COURSES :
50% OF FEE PAID
will be discounted (any course)

www.madeeasy.in

Regular Batches Commencement dates at Delhi Centre

CE & ME

- 23rd Feb, 2022 • 21st Mar, 2022
- 13th Apr, 2022 • 04th May, 2022 • 25th May, 2022

EE & EC

- 24th Feb, 2022 • 22nd Mar, 2022
- 14th Apr, 2022 • 05th May, 2022 • 26th May, 2022

CS

- 24th Feb, 2022 • 23rd Mar, 2022 • 06th May, 2022

CH

- 21st Feb, 2022 • 23rd Mar, 2022 • 11th May, 2022

Batches commencing in
Mar, April & May at all centres of MADE EASY.
For more details, visit our website.

LIVE ONLINE CLASSES

Download
the app
now

Android

iOS

www.madeeasyprime.com

New Batches Commencement Dates

Facility to CONVERT ONLINE to OFFLINE

Morning Batches

Medium : **Hinglish** | Time : **8:00 AM - 2:00 PM**
• **CE**: 3rd Feb & 8th Mar, 2022 • **ME**: 14th Feb & 8th Mar, 2022

Evening Batches

Medium : **Hinglish** | Time : **6:00 PM - 10:00 PM**
• **CE, ME, EE, EC** : 3rd Feb & 8th Mar, 2022
• **CH** : 3rd Feb & 8th Mar, 2022

Evening Batches

Medium : **English** | Time : **6:00 PM - 10:00 PM**
• **CE** : 17th Feb, 2022 & 8th Mar, 2022
• **ME** : 30th Jan, 2022 & 8th Mar, 2022
• **EE, EC, IN** : 7th Feb, 2022 & 8th Mar, 2022
• **CS** : 1st Feb, 2022 & 8th Mar, 2022

Corporate Office : 44-A/1, Kalu Sarai, Near Hauz Khas Metro Station, New Delhi-110016

MADE EASY Centres : Delhi | Hyderabad | Jaipur | Lucknow | Bhopal | Bhubaneswar | Pune | Patna | Kolkata

9021300500

www.madeeasy.in

Number of squares without hole

$$4 \times 4 - 1 = 16 - 1 = 15$$

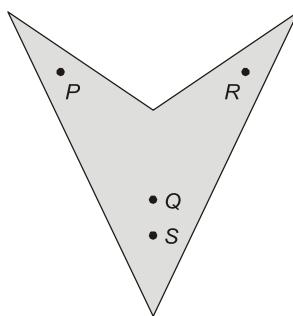
These are (1×1) squares

Now 2×2 squares = 5

Total number of squares = $15 + 5 = 20$

End of Solution

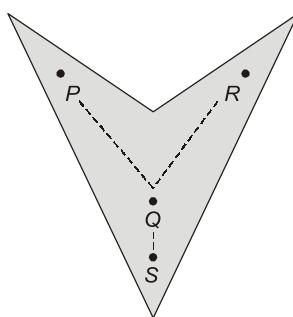
Q.5 An art gallery engages a security guard to ensure that the items displayed are protected. The diagram below represents the plan of the gallery where the boundary walls are opaque. The location the security guard posted is identified such that all the inner space (shaded region in the plan) of the gallery is within the line of sight of the security guard. If the security guard does not move around the posted location and has a 360° view, which one of the following correctly represents the set of ALL possible locations among the locations P, Q and S, where the security guard can be posted to watch over the entire inner space of the gallery.



(a) P and Q
(c) Q and S

(b) Q
(d) R and S

Ans. (c)



Security guard posting at Q and S can watch entire space of gallery.

End of Solution

Q.6 Mosquitoes pose a threat to human health. Controlling mosquitoes using chemicals may have undesired consequences. In Florida, authorities have used genetically modified mosquitoes to control the overall mosquito population. It remains to be seen if this novel approach has unforeseen consequences.

Which one of the following is the correct logical inference based on the information in the above passage?

- (a) Using chemicals to kill mosquitoes is better than using genetically modified mosquitoes because genetic engineering is dangerous.
- (b) Using genetically modified mosquitoes is better than using chemicals to kill mosquitoes because they do not have any side effects.
- (c) Both using genetically modified mosquitoes and chemicals have undesired consequences and can be dangerous.
- (d) Using chemicals to kill mosquitoes may have undesired consequences but it is not clear if using genetically modified mosquitoes has any negative consequence.

Ans. (d)

End of Solution

Q.7 Consider the following inequalities.

- (i) $2x - 1 > 7$
- (ii) $2x - 9 < 1$

Which one of the following expressions below satisfies the above two inequalities?

(a) $x \leq -4$	(b) $-4 < x \leq 4$
(c) $4 < x < 5$	(d) $x \geq 5$

Ans. (c)

$$\begin{array}{l|l} 2x - 1 > 7 & 2x - 9 < 1 \\ 2x > 8 & 2x < 10 \\ x > 4 & x < 5 \end{array}$$

$$\therefore 4 < x < 5.$$

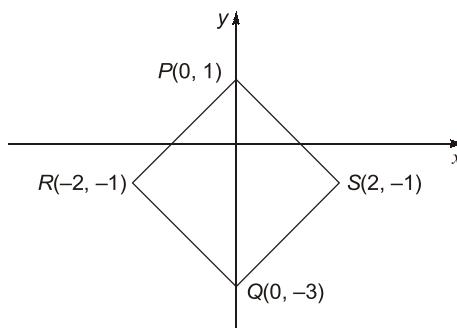
End of Solution

Q.8 Four points $P(0, 1)$, $Q(0, -3)$, $R(-2, -1)$, and $S(2, -1)$ represent the vertices of a quadrilateral.

What is the area enclosed by the quadrilateral?

(a) 4	(b) $4\sqrt{2}$
(c) 8	(d) $8\sqrt{2}$

Ans. (c)

According to data quadrilateral $PSQR$ 

$$PS = \sqrt{(2-0)^2 + (-1-1)^2} = \sqrt{8}$$

$$QS = \sqrt{(2-0)^2 + (-1+3)^2} = \sqrt{8}$$

$$QR = \sqrt{(0+2)^2 + (-3+1)^2} = \sqrt{8}$$

$$PR = \sqrt{(-2-0)^2 + (1+1)^2} = \sqrt{8}$$

∴ All sides are equal

Diagonals,

$$PQ = \sqrt{(0-0)^2 + (1+3)^2} = 4$$

$$PQ = \sqrt{(2+2)^2 + (-1+1)^2} = 4$$

Diagonals are equal

∴ It is a square

$$\text{Area of square} = (\sqrt{8}) \times (\sqrt{8}) = 8 \text{ square units}$$

End of Solution

Q.9 In a class of five students P, Q, R, S and T, only one student is known to have copied in the exam. The disciplinary committee has investigated the situation and recorded the statements from the students as given below.

Statement of P: R has copied in the exam.

Statement of Q: S has copied in the exam.

Statement of R: P did not copy in the exam.

Statement of S: Only one of us is telling the truth.

Statement of T: R is telling the truth.

The investigating team had authentic information that S never lies.

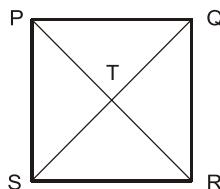
Based on the information given above, the person who has copied in the exam is

(a) R	(b) P
(c) Q	(d) T

Ans. (b)

End of Solution

Q.10 Consider the following square with the four corners and the center marked as P, Q, R, S and T respectively.



Let X, Y and Z represent the following operations:

X: rotation of the square by 180 degree with respect to the S-Q axis.

Y: rotation of the square by 180 degree with respect to the P-R axis.

Z: rotation of the square by 90 degree clockwise with respect to the axis perpendicular, going into the screen and passing through the point T.

Consider the following three distinct sequences of operation (which are applied in the left to right order).

- (1) XYZZ
- (2) XY
- (3) ZZZZ

Which one of the following statements is correct as per the information provided above?

- (a) The sequence of operations (1) and (2) are equivalent
- (b) The sequence of operations (1) and (3) are equivalent
- (c) The sequence of operations (2) and (3) are equivalent
- (d) The sequence of operations (1), (2) and (3) are equivalent

Ans. (b)

End of Solution

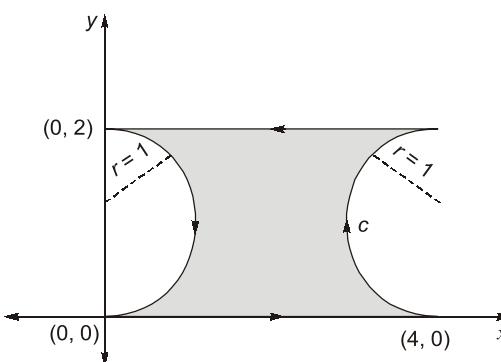
SECTION - B

TECHNICAL

Q.11 Consider the two-dimensional vector field $\vec{F}(x, y) = x\vec{i} + y\vec{j}$, where \vec{i} and \vec{j} denote the unit vectors along the x -axis and the y -axis, respectively. A contour C in the x - y plane, as shown in the figure, is composed of two horizontal lines connected at the two ends by two semicircular arcs of unit radius. The contour is traversed in the counter-clockwise sense. The value of the closed path integral

$$\oint_C \vec{F}(x, y) \cdot (dx\vec{i} + dy\vec{j})$$

is _____.



(a) 0
(b) 1
(c) $8 + 2\pi$
(d) -1

Ans. (a)

$$\begin{aligned} \oint_C \vec{F}(x, y) \cdot (dx\vec{i} + dy\vec{j}) \\ = \oint_C (x\vec{i} + y\vec{j}) \cdot (dx\vec{i} + dy\vec{j}) = \oint_C xdx + ydy \end{aligned}$$

By Green's theorem

$$\begin{aligned} &= \iint_R (0 - 0) dx dy \\ &= 0 \end{aligned}$$

End of Solution

Q.12 Consider a system of linear equations $Ax = b$, where

$$A = \begin{bmatrix} 1 & -\sqrt{2} & 3 \\ -1 & \sqrt{2} & -3 \end{bmatrix}, \quad b = \begin{bmatrix} 1 \\ 3 \end{bmatrix}.$$

This system of equations admits _____.

(a) a unique solution for x
(b) infinitely many solutions for x
(c) no solutions for x
(d) exactly two solutions for x

Ans. (c)

$$Ax = B$$

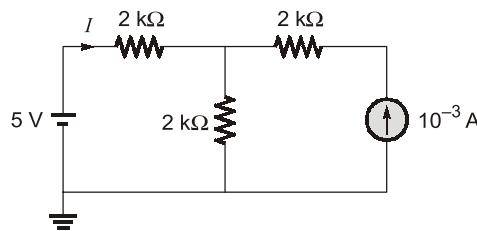
$$x - \sqrt{2}y + 3z = 1 \quad (\text{Inconsistent})$$

$$-x + \sqrt{2}y - 3z = 3 \Rightarrow x - \sqrt{2}y + 3z = -3 \neq 1 \quad (\text{Inconsistent})$$

∴ Both lines are parallel to each other.

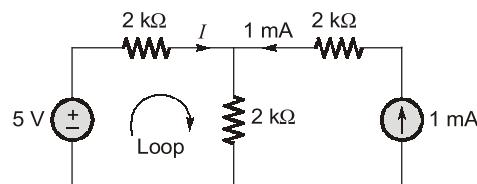
∴ It has no solution.

End of Solution

 Q.13 The current I in the circuit shown is _____.


(a) 1.25×10^{-3} A (b) 0.75×10^{-3} A
 (c) -0.5×10^{-3} A (d) 1.16×10^{-3} A

Ans. (b)



Applying KVL in the loop,

$$5 = 2kI + 2k(I + 10^{-3})$$

$$5 = I(4k) + 2 \times 10^3 \times 1 \times 10^{-3}$$

$$I(4k) = 5 - 2$$

$$I = \frac{3}{4k}$$

$$I = 0.75 \times 10^{-3}$$
 A

$$I = 0.75 \text{ mA}$$

End of Solution

MADE EASY

India's Best Institute for IES, GATE & PSUs

NST

NATIONAL SCHOLARSHIP TEST

For **ESE 2023 & GATE 2023**
LIVE-ONLINE & OFFLINE COURSES

NST-1

22nd Feb, 2022

For LIVE-ONLINE Courses

UP TO 50% SCHOLARSHIP
in Total Fee

Exam Mode : **ONLINE**

Time Duration : 45 Min | Total Question : 50
Total Marks : 100 | Negative Marking : 0.66 Marks

Note: 50% weightage will be given to marks obtained in B.Tech.
Merit list will be prepared on the basis of NST score & B. Tech marks.

NST-2

27th Feb, 2022

For CLASSROOM Courses

UP TO 100% SCHOLARSHIP
in Tuition Fee

Exam Mode : **OFFLINE**

Time Duration : 60 Min | Total Question: 50
Total Marks : 100 | Negative Marking : 0.66 Marks

Test Centres: Agra, Prayagraj, Bhilai, Chandigarh, Chennai, Mumbai, Visakhapatnam, Indore, Bengaluru, Nagpur, Jabalpur, Dehradun, Delhi, Bhopal, Bhubaneswar, Hyderabad, Jaipur, Kolkata, Lucknow, Patna & Pune

Last date to register online : 19th Feb, 2022

Register at : www.madeeasy.in

Scholarship applicable on batches commencing after **1st March, 2022**

Corporate Office : 44-A/1, Kalu Sarai, Near Hauz Khas Metro Station, New Delhi-110016

MADE EASY Centres : Delhi | Hyderabad | Jaipur | Lucknow | Bhopal | Bhubaneswar | Pune | Patna | Kolkata

9021300500

www.madeeasy.in

Apply duality property,

$$\frac{-4jt}{(1+t^2)^2} \xleftarrow{F.T} 2\pi(-\omega)e^{-j\omega t}$$

$$\frac{t}{(1+t^2)^2} \xleftarrow{F.T} \frac{-2\pi\omega e^{-j\omega t}}{-4j}$$

$$\frac{t}{(1+t^2)^2} \xleftarrow{F.T} \frac{\pi}{2j} \omega e^{-j\omega t}$$

End of Solution

Q.16 Consider a long rectangular bar of direct bandgap p-type semiconductor. The equilibrium hole density is 10^{17} cm^{-3} and the intrinsic carrier concentration is 10^{10} cm^{-3} . Electron and hole diffusion lengths are $2 \mu\text{m}$ and $1 \mu\text{m}$, respectively.

The left side of the bar ($x = 0$) is uniformly illuminated with a laser having photon energy greater than the bandgap of the semiconductor. Excess electron-hole pairs are generated ONLY at $x = 0$ because of the laser. The steady state electron density at $x = 0$ is 10^{14} cm^{-3} due to laser illumination. Under these conditions and ignoring electric field, the closest approximation (among the given options) of the steady state electron density at $x = 2 \mu\text{m}$, is _____.

(a) $0.37 \times 10^{14} \text{ cm}^{-3}$ (b) $0.63 \times 10^{13} \text{ cm}^{-3}$
 (c) $3.7 \times 10^{14} \text{ cm}^{-3}$ (d) 10^3 cm^{-3}

Ans. (a)

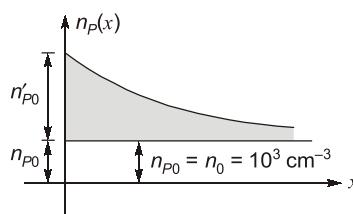
Given,

$$P = 10^{17} \text{ cm}^{-3} = P_0$$

$$n_0 = \frac{n_i^2}{P_0} = \frac{10^{20}}{10^{17}} = 10^3 \text{ cm}^{-3}$$

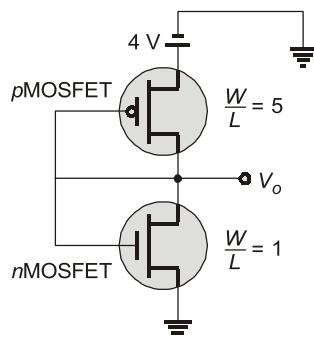
$$L_n = 2 \mu\text{m}$$

$$n'_{P0} = 10^{14} \text{ cm}^{-3}$$


 Excess electron concentration at any distance x is

$$\begin{aligned} \delta n_P(x) &= n'_{P0} e^{-x/L_n} \\ &= 10^{14} e^{-x/2} \\ &= 10^{14} e^{-1} \\ &= 3.67 \times 10^{13} \text{ cm}^{-3} \\ &= 0.367 \times 10^{14} \text{ cm}^{-3} \end{aligned}$$

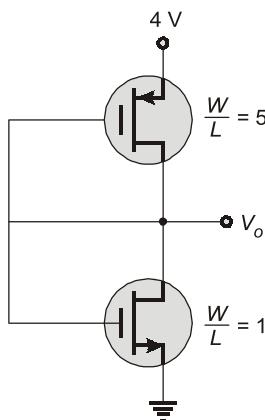
End of Solution



(a) equal to 0 V
 (b) more than 2 V
 (c) less than 2 V
 (d) equal to 2 V

Ans. (c)

Both MOSFETs are in saturation because drain is shorted to Gate.



$$I_{DSN} = I_{SDP}$$

$$\frac{\mu_n C_{ox}}{2} \times \left(\frac{W}{L}\right)_N (V_{GSN} - V_{TN})^2 = \frac{\mu_p C_{ox}}{2} \left(\frac{W}{L}\right)_P (V_{SGP} - |V_{TP}|)^2$$

$$300 \times 1 (V_0 - 1)^2 = 40 \times 5(4 - V_0 - 1)^2$$

$$3(V_0^2 + 1 - 2V_0) = 2(9 + V_0^2 - 6V_0)$$

$$\Rightarrow V_0^2 + 6V_0 - 15 = 0$$

$$V_0 = \frac{-6 \pm \sqrt{36 + 4 \times 15}}{2} = \frac{-6 \pm \sqrt{96}}{2}$$

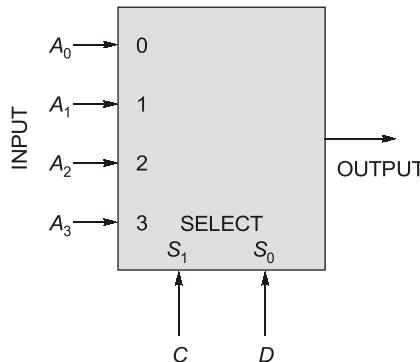
$$V_0 = 1.898 \text{ V}, -7.89 \text{ V}$$

V_0 cannot be negative because V_0 should lie between 0 and 4 V.

$$\therefore V_0 = 1.898 \text{ V}$$

End of Solution

Q.19 Consider the 2-bit multiplexer (MUX) shown in the figure. For OUTPUT to be the XOR of C and D, the values for A_0 , A_1 , A_2 and A_3 are _____.



(a) $A_0 = 0, A_1 = 0, A_2 = 1, A_3 = 1$ (b) $A_0 = 1, A_1 = 0, A_2 = 1, A_3 = 0$
 (c) $A_0 = 0, A_1 = 1, A_2 = 1, A_3 = 0$ (d) $A_0 = 1, A_1 = 1, A_2 = 0, A_3 = 0$

Ans. (c)

The output of MUX, F is

$$F = \bar{S}_1 \bar{S}_0 I_0 + \bar{S}_1 S_0 I_1 + S_1 \bar{S}_0 I_2 + S_1 S_0 I_3$$

$$F = \bar{C} \bar{D} A_0 + \bar{C} D A_1 + C \bar{D} A_2 + C D A_3$$

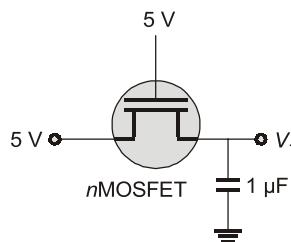
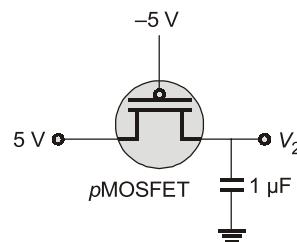
But output,

$$F = C \oplus D = \bar{C} D + C \bar{D}$$

\therefore Inputs of MUX are, $A_0 = 0, A_1 = 1, A_2 = 1, A_3 = 0$

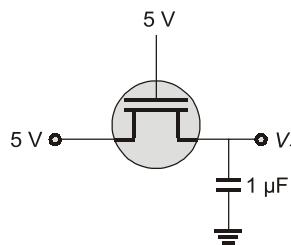
End of Solution

Q.20 The ideal long channel *n*MOSFET and *p*MOSFET devices shown in the circuits have threshold voltages of 1 V and -1 V, respectively. The MOSFET substrates are connected to their respective sources. Ignore leakage currents and assume that the capacitors are initially discharged. For the applied voltages as shown, the steady state voltages are _____.

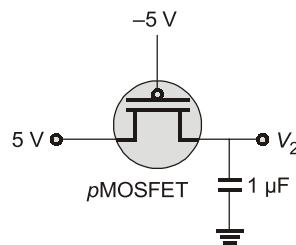


(a) $V_1 = 5$ V, $V_2 = 5$ V (b) $V_1 = 5$ V, $V_2 = 4$ V
 (c) $V_1 = 4$ V, $V_2 = 5$ V (d) $V_1 = 4$ V, $V_2 = -5$ V

Ans. (c)



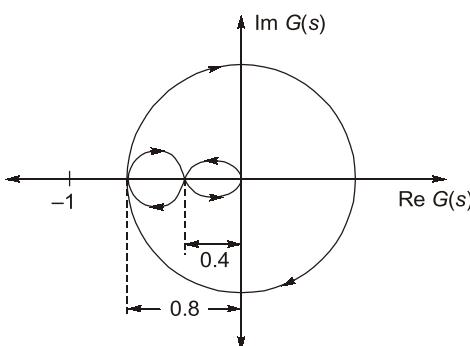
*n*MOSFET will provide
 $V_1 = 5 - V_T = 4$ V



*p*MOSFET will provide
 $V_2 = 5$ V

End of Solution

Q.21 Consider a closed-loop control system with unity negative feedback and $KG(s)$ in the forward path, where the gain $K = 2$. The complete Nyquist plot of the transfer function $G(s)$ is shown in the figure. Note that the Nyquist contour has been chosen to have the clockwise sense. Assume $G(s)$ has no poles on the closed right-half of the complex plane. The number of poles of the closed-loop transfer function in the closed right-half of the complex plane is _____.

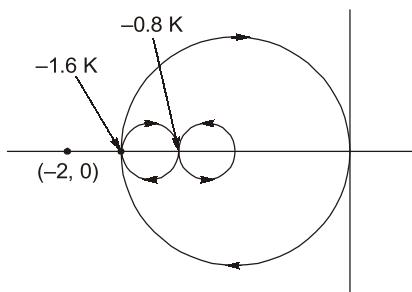


Ans. (c)

For, $K = 1$



For $K = 2$, the plot will be



N = No. of encirclement about $(-1, 0)$ in anticlockwise.

P = Total number of open loop poles, in R.H.S.

$$Z = P - N$$

$$N = -2, P = 0$$

$$Z = 0 - (-2) = 2$$

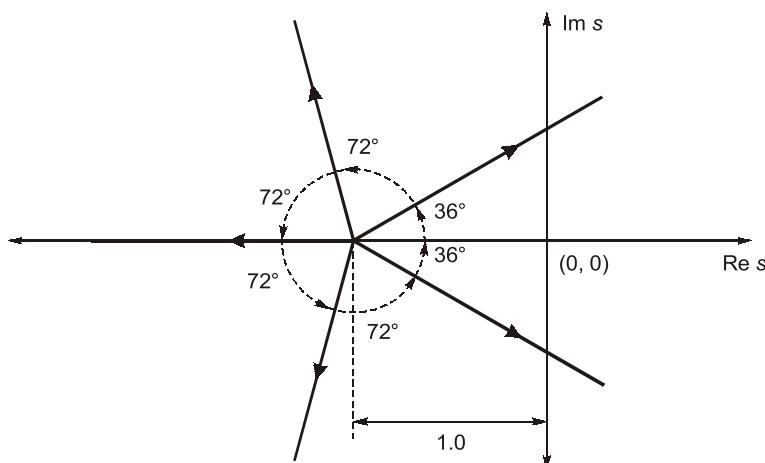
$$Z = 2$$

Two poles lies in right side.

End of Solution

Q.22 The root-locus plot of a closed-loop system with unity negative feedback and transfer function $KG(s)$ in the forward path is shown in the figure. Note that K is varied from 0 to ∞ .

Select the transfer function $G(s)$ that results in the root-locus plot of the closed-loop system as shown in the figure.



(a) $G(s) = \frac{1}{(s+1)^5}$

(b) $G(s) = \frac{1}{s^5 + 1}$

(c) $G(s) = \frac{s-1}{(s+1)^6}$

(d) $G(s) = \frac{s+1}{s^6 + 1}$

Ans. (a)

There are 5 root locus branches from the same point, so there are 5 real multiple poles.

So, correct option is $\frac{1}{(s+1)^5}$.

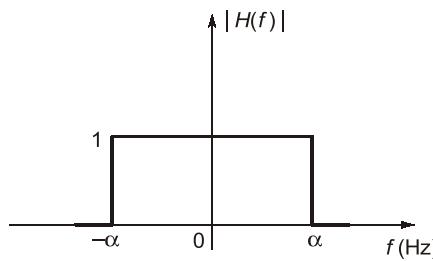
End of Solution

Q.23 The frequency response $H(f)$ of a linear time-invariant system has magnitude as shown in the figure.

Statement I: The system is necessarily a pure delay system for inputs which are bandlimited to $-\alpha \leq f \leq \alpha$.

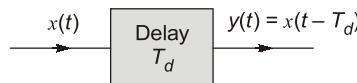
Statement II: For any wide-sense stationary input process with power spectral density $S_X(f)$, the output power spectral density $S_Y(f)$ obeys $S_Y(f) = S_X(f)$ for $-\alpha \leq f \leq \alpha$.

Which one of the following combinations is true?



- (a) Statement I is correct, Statement II is correct
- (b) Statement I is correct, Statement II is incorrect
- (c) Statement I is incorrect, Statement II is correct
- (d) Statement I is incorrect, Statement II is incorrect

Ans. (a)



$$Y(f) = X(f) \cdot e^{-j2\pi f T_d}$$

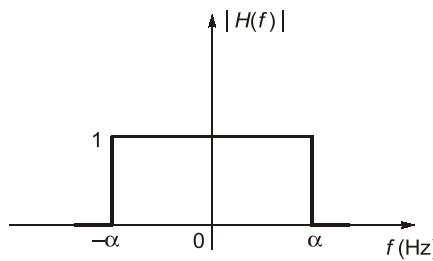
$$H(f) = \frac{Y(f)}{X(f)} = e^{-j2\pi f T_d}$$

$$|H(f)| = 1$$

$$\angle H(f) = -2\pi f T_d$$

Given that input is bandlimited to $-\alpha \leq f \leq \alpha$.

Magnitude response of the system given



ESE 2022 Mains Exclusive Batches

**Conventional Question Practice
Programme with Main Test Series**

OFFLINE BATCHES

3rd Mar, 2022

ONLINE BATCHES

Direct **LIVE** from Offline Classes

3rd Mar, 2022

Course Duration :
80 to 90 days

Teaching Hours :
300 to 350 hours

Class Duration :
5 to 6 days (6-7 hrs per day)

Key Features

- In-depth discussion on conventional questions.
- Beneficial to develop numerical question solving techniques.
- Helps to improve answer writing & presentation skills.
- Discussion on probable questions.
- Updated Mains workbook with wide range of practice questions sets.
- Test series will be conducted on every Sunday in synchronization with the subjects.

Register online at : www.madeeasy.in

Corporate Office : 44-A/1, Kalu Sarai, Near Hauz Khas Metro Station, New Delhi-110016

MADE EASY Centres : Delhi | Hyderabad | Jaipur | Lucknow | Bhopal | Bhubaneswar | Pune | Patna | Kolkata

⌚ 9021300500

🌐 www.madeeasy.in

Q.25 Consider the following partial differential equation (PDE)

$$a \frac{\partial^2 f(x, y)}{\partial x^2} + b \frac{\partial^2 f(x, y)}{\partial y^2} = f(x, y),$$

where a and b are distinct positive real numbers. Select the combination(s) of values of the real parameters ξ and η such that $f(x, y) = e^{(\xi x + \eta y)}$ is a solution of the given PDE.

(a) $\xi = \frac{1}{\sqrt{2a}}, \eta = \frac{1}{\sqrt{2b}}$ (b) $\xi = \frac{1}{\sqrt{a}}, \eta = 0$
 (c) $\xi = 0, \eta = 0$ (d) $\xi = \frac{1}{\sqrt{a}}, \eta = \frac{1}{\sqrt{b}}$

Ans. (b)

$$f(x, y) = e^{\xi x + \eta y}$$

Differentiating $f(x, y)$ two times w.r.t. x ,

$$\frac{\partial^2 f(x, y)}{\partial x^2} = \xi^2 e^{\xi x + \eta y}$$

Differentiating $f(x, y)$ two times w.r.t. y ,

$$\frac{\partial^2 f(x, y)}{\partial y^2} = \eta^2 e^{\xi x + \eta y}$$

$$\frac{a \partial^2 f(x, y)}{\partial x^2} + \frac{b \partial^2 f(x, y)}{\partial y^2} = (a\xi^2 + b\eta^2) f(x, y)$$

$$a\xi^2 + b\eta^2 = 1$$

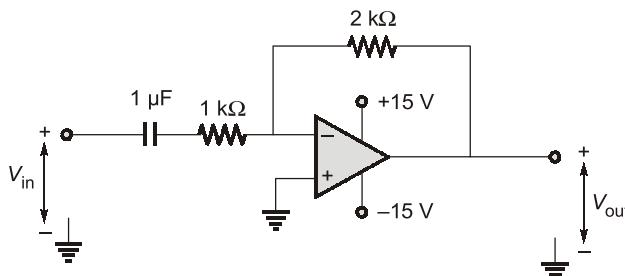
For

$$\xi = \frac{1}{\sqrt{a}}, \eta = 0$$

$$a \times \left(\frac{1}{\sqrt{a}}\right)^2 + b \times 0 = \frac{a}{a} = 1$$

End of Solution

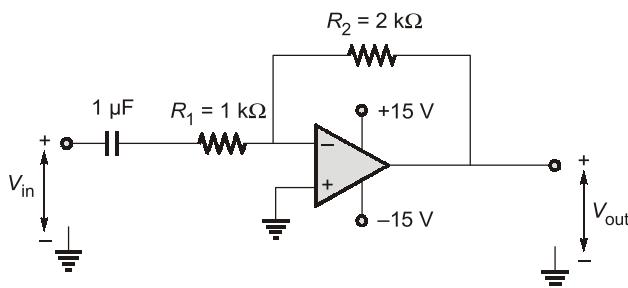
Q.26 An ideal OPAMP circuit with a sinusoidal input is shown in the figure. The 3 dB frequency is the frequency at which the magnitude of the voltage gain decreases by 3 dB from the maximum value. Which of the options is/are correct?



(a) The circuit is a low pass filter. (b) The circuit is a high pass filter.
 (c) The 3 dB frequency is 1000 rad/s. (d) The 3 dB frequency is $\frac{1000}{3}$ rad/s.

Ans. (b, c)

Given circuit is a high pass filter.



$$\omega_c = \frac{1}{R_1 C_1} = \frac{1}{10^3 \times 10^{-6}} = 1000 \text{ rad/sec}$$

Hence, options (b) and (c) is correct.

End of Solution

Q.27 Select the Boolean function(s) equivalent to $x + yz$, where x , y , and z are Boolean variables, and $+$ denotes logical OR operation.

Ans. (b, c)

Given :

$$f = x + yz$$

(a) $x + xy + xz = x(1 + y) + xz = x + xz = x$
 (b) $(x + y)(x + z) = x + yz$
 (c) $x + xy + yz = x(1 + y) + yz = x + yz$
 (d) $xy + yz = y(x + z)$

So, option (b, c) are correct.

End of Solution

Q.28 Select the correct statement(s) regarding CMOS implementation of NOT gates.

- (a) Noise Margin High (NM_H) is always equal to the Noise Margin Low (NM_L), irrespective of the sizing of transistors.
- (b) Dynamic power consumption during switching is zero.
- (c) For a logical high input under steady state, the nMOSFET is in the linear regime of operation.
- (d) Mobility of electrons never influences the switching speed of the NOT gate.

Ans. (c)

$$\begin{aligned}
 (a) \quad NM_L &= V_{IL} - V_{OL} \\
 NM_H &= V_{OH} - V_{IH} \\
 \text{when,} \quad V_{TN} &= |V_{TP}| \\
 \text{and} \quad K_n &= K_p \\
 V_{IT} &= \frac{V_{DD}}{2} \quad \text{and} \quad [1]
 \end{aligned}$$

So, that,

$$H(X) \leq \log_2 K$$

Option (a) is correct.

Given option (b),

$$H(X) \leq H(2X)$$

Let,

$X \in \{x_i\}$	-1	0	1
$P_X(x_i)$	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$

$$\begin{aligned} H(X) &= \sum_i P_X(x_i) \log_2 \frac{1}{P_X(x_i)} \\ &= \frac{1}{4} \log_2 4 + \frac{1}{2} \log_2 2 + \frac{1}{4} \log_2 4 \end{aligned}$$

$$H(X) = 1.5 \frac{\text{bits}}{\text{symbol}}$$

Let,

$$Y = 2X$$

X	Y	$P(Y)$
-1	-2	1/4
0	0	1/2
1	2	1/4

$Y \in \{y_i\}$	-2	0	2
$P_Y(y_i)$	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$

$$H(2X) = H(Y) = \sum_i P_Y(y_i) \log_2 \frac{1}{P_Y(y_i)} = 1.5 \frac{\text{bits}}{\text{symbol}}$$

For $Y = 2X$, distant X values results in distinct 'Y' values so that $H(X) = H(Y)$.

So, option (b) is true i.e., $H(X) = H(2X)$

Given option (c),

$$H(X) \leq H(X^2);$$

Let $Y = X^2$,

X	Y	$P(Y)$
-1	1	1/4
0	0	1/2
1	1	1/4

$Y \in (y_i)$	0	1
$P(Y = y_i)$	$\frac{1}{2}$	$\frac{1}{2}$

$$\begin{aligned} H(X^2) &= H(Y) = \sum_i P_Y(y_i) \log_2 \frac{1}{P_Y(y_i)} \\ &= \frac{1}{2} \log_2 2 + \frac{1}{2} \log_2 2 = 1 \frac{\text{bit}}{\text{symbol}} \end{aligned}$$

whereas,

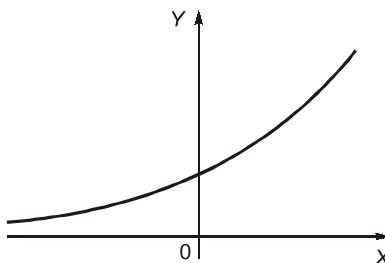
$$H(X) = 1.5 \frac{\text{bits}}{\text{symbol}}$$

Option (c) is incorrect.

Given option (d)

$$H(X) \leq H(2^X)$$

Let $Y = 2^X$



Here distinct 'X' values results in distinct 'Y' values.

So that,

$$H(X) = H(Y)$$

i.e.

$$H(X) = H(2^X)$$

Option (d) is true.

End of Solution

Q.30 Consider the following wave equation,

$$\frac{\partial^2 f(x, t)}{\partial t^2} = 10000 \frac{\partial^2 f(x, t)}{\partial x^2}$$

Which of the given options is/are solution(s) to the given wave equation?

(a) $f(x, t) = e^{-(x-100t)^2} + e^{-(x+100t)^2}$ (b) $f(x, t) = e^{-(x-100t)} + 0.5e^{-(x+100t)}$
 (c) $f(x, t) = e^{-(x-100t)} + \sin(x+100t)$ (d) $f(x, t) = e^{j100\pi(-100x+t)} + e^{j100\pi(100x+t)}$

Ans. (a, c)

Given wave equation,

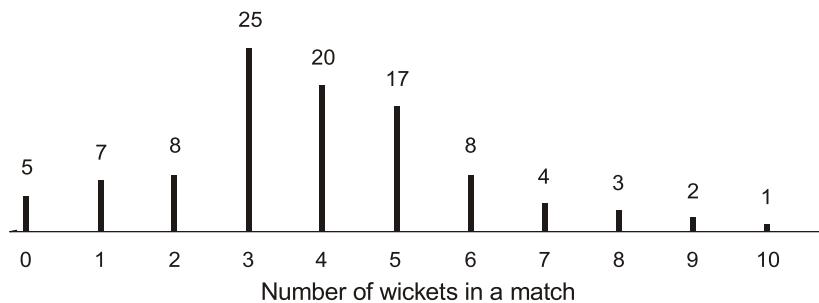
$$\frac{\partial^2 f(x, t)}{\partial t^2} = c^2 \frac{\partial^2 f}{\partial x^2}; c = 100$$

Solution is given as $F = f(x \pm ct)$.

Hence, (a) and (c) satisfies the above solution.

End of Solution

Q.31 The bar graph shows the frequency of the number of wickets taken in a match by a bowler in her career. For example, in 17 of her matches, the bowler has taken 5 wickets each. The median number of wickets taken by the bowler in a match is _____ (rounded off to one decimal place).



Ans. (4)

$$\sum f = 5 + 7 + 8 + 25 + 20 + 17 + 8 + 4 + 3 + 2 + 1 \\ = 100$$

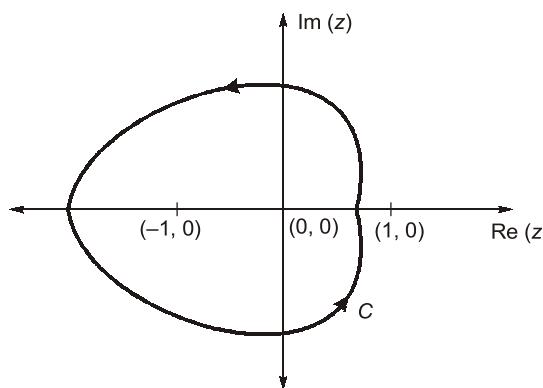
Median = Average of 50th and 51st mathces
= 4

End of Solution

Q.32 A simple closed path C in the complex plane is shown in the figure. If

$$\oint_C \frac{2^z}{z^2 - 1} dz = -i\pi A,$$

where $i = \sqrt{-1}$, then the value of A is _____ (rounded off to two decimal places).



Ans. (0.5)

Poles are given as,

$$z^2 - 1 = 0 \\ z = \pm 1$$

$$\therefore \oint_C f(z) dz = 2\pi i [\text{Residue at } -1] \\ = 2\pi i \frac{2^{-1}}{(-1-1)} = \frac{-2\pi i}{2 \times 2} \\ = -\frac{\pi i}{2}$$

Comparing with $-\pi i A$

$$A = \frac{1}{2}$$

End of Solution

Q.33 Let $x_1(t) = e^{-t} u(t)$ and $x_2(t) = u(t) - u(t-2)$, where $u(\cdot)$ denotes the unit step function.

If $y(t)$ denotes the convolution of $x_1(t)$ and $x_2(t)$, then $\lim_{t \rightarrow \infty} y(t) = \text{_____}$ (rounded off to one decimal place).

Ans. (0)

Given that,

$$x_1(t) = e^{-2t} u(t)$$

$$x_2(t) = u(t) - u(t-2)$$

$$y(t) = x_1(t) * x_2(t)$$

By applying Laplace transform

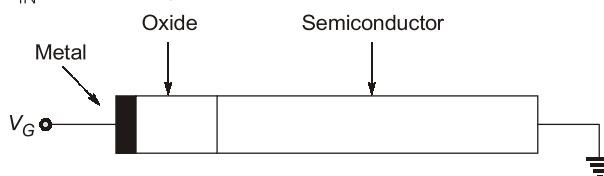
$$Y(s) = X_1(s) \cdot X_2(s) = \frac{1}{(s+1)} \cdot \frac{(1-e^{-2s})}{s}$$

By applying final value theorem,

$$y(t) \Big|_{t=\infty} = \lim_{s \rightarrow 0} sY(s) = \lim_{s \rightarrow 0} \left(\frac{1-e^{-2s}}{s+1} \right) \\ = 0$$

End of Solution

Q.34 An ideal MOS capacitor (*p*-type semiconductor) is shown in the figure. The MOS capacitor is under strong inversion with $V_G = 2$ V. The corresponding inversion charge density (Q_{IN}) is $2.2 \mu\text{C}/\text{cm}^2$. Assume oxide capacitance per unit area as $C_{ox} = 1.7 \mu\text{F}/\text{cm}^2$. For $V_G = 4$ V, the value of Q_{IN} is $\text{_____} \mu\text{C}/\text{cm}^2$ (rounded off to one decimal place).



Ans. (5.6)

$$Q_{in} = C_{ox}(V_{GS} - V_T) \quad \text{or} \quad C_{ox}(V_G - V_T)$$

$$\frac{Q_{in}}{C_{ox}} = V_G - V_T$$

$$V_T = V_G - \frac{Q_{in}}{C_{ox}} = 2 - \frac{2.2}{1.7} = 2 - 1.294$$

$$V_T = 0.706 \text{ volt}$$

Now,

$$Q_{in} \text{ at } V_G = 4 \text{ V}$$

$$Q_{in} = C_{ox}(V_G - V_T) \\ = 1.7 \times 10^{-6} \times (4 - 0.706) \\ Q_{in} = 5.5998 \mu\text{C}/\text{cm}^2 \\ \simeq 5.6 \mu\text{C}/\text{cm}^2$$

End of Solution

Announcing

SUPER TALENT BATCHES

for **ESE 2023 & GATE 2023**

Batches commencing from

27th April, 2022

CE, ME

28th April, 2022

EE, EC

- **Course duration :** 6-7 months
- **Teaching hours :** 1000-1200

Note : These batches will be conducted only at Delhi Centre.

Key Features

- Highly competitive environment.
- Classes by senior faculty members.
- Focus on problem solving techniques.
- Meritorious students group.
- In-depth coverage of syllabus.

Register online at : www.madeeasy.in

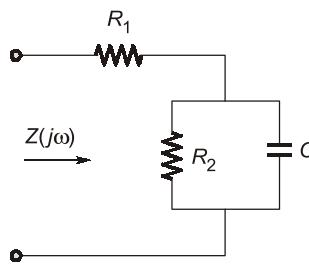
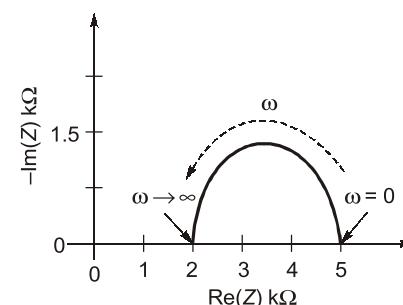
Corporate Office : 44-A/1, Kalu Sarai, Near Hauz Khas Metro Station, New Delhi-110016

MADE EASY Centres : Delhi | Hyderabad | Jaipur | Lucknow | Bhopal | Bhubaneswar | Pune | Patna | Kolkata

9021300500

www.madeeasy.in

Q.38 For the circuit shown, the locus of the impedance $Z(j\omega)$ is plotted as ω increases from zero to infinity. The values of R_1 and R_2 are:

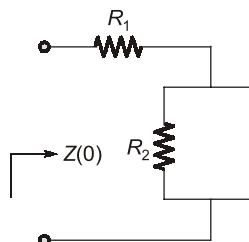


(a) $R_1 = 2 \text{ k}\Omega$, $R_2 = 3 \text{ k}\Omega$
 (b) $R_1 = 5 \text{ k}\Omega$, $R_2 = 2 \text{ k}\Omega$
 (c) $R_1 = 5 \text{ k}\Omega$, $R_2 = 2.5 \text{ k}\Omega$
 (d) $R_1 = 2 \text{ k}\Omega$, $R_2 = 5 \text{ k}\Omega$

Ans. (a)

At $\omega = 0 \text{ rad/s}$,

$$X_C = \frac{1}{\omega C} = \infty$$



$$\text{Impedance, } Z(0) = R_1 + R_2$$

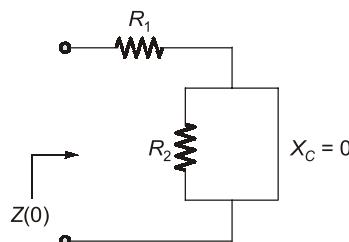
With the help of graph at $\omega = 0$,

$$Z(0) = 5 \text{ k}\Omega$$

$$R_1 + R_2 = 5 \text{ k}\Omega$$

At $\omega = \infty \text{ rad/s}$, $X_C = \frac{1}{\omega C}$

$$X_C = 0$$



$$\text{Impedance, } Z(\infty) = R_1 = 2 \text{ k}\Omega$$

$$R_1 + R_2 = 5 \text{ k}\Omega$$

$$R_2 = 3 \text{ k}\Omega$$

End of Solution

Ans. (c)

$$V_{GS} = [2 - \sin 2t] \text{ Volt}$$

$$V_{GS\min} = 2 - 1 = 1 \text{ V}$$

$$V_{GS\max} = 2 - (-1) = 3 \text{ V}$$

$$V_{DS} = 1 \text{ V}$$

$$V_{DS} < V_{GS} - V_t \text{ (Linear)}$$

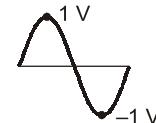
$$I_D = \mu_n C_{ox} \frac{W}{L} \left\{ (V_{GS} - V_t) V_{DS} - \frac{1}{2} V_{DS}^2 \right\}$$

$$I_{D\max} = \mu_n C_{ox} \frac{W}{L} \left[(V_{GS\max} - V_t) V_{DS} - \frac{1}{2} V_{DS}^2 \right]$$

$$= 1 \text{ mA/V}^2 \times 10 \left[(3 - 1)1 - \frac{1}{2} \times 1 \right]$$

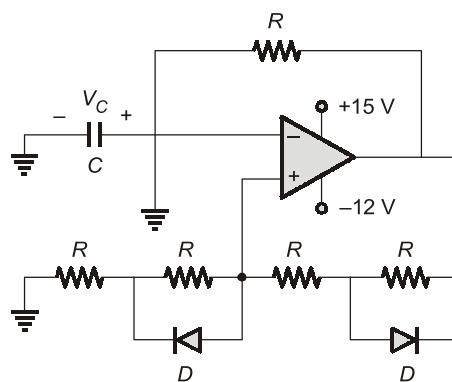
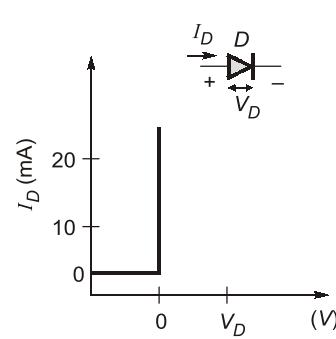
$$= 10[1.5]$$

$$= 15 \text{ mA}$$



End of Solution

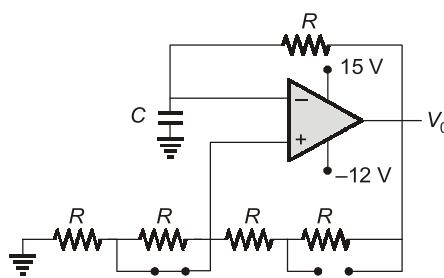
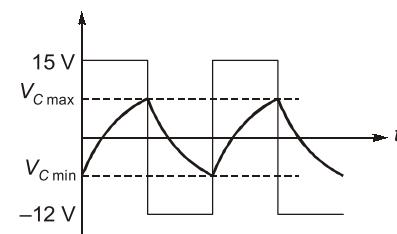
Q.41 For the following circuit with an ideal OPAMP, the difference between the maximum and the minimum values of the capacitor voltage (V_c) is _____.



(a) 15 V
 (b) 27 V
 (c) 13 V
 (d) 14 V

Ans. (c)

$$\text{If } V_0 = +15 \text{ V}$$

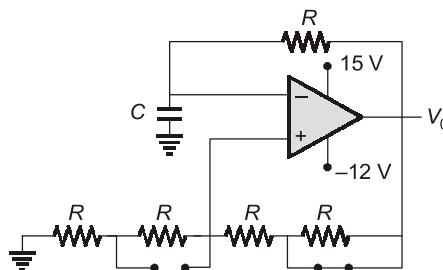
 $D_1 \text{ is ON}$
 $D_2 \text{ is OFF}$


Capacitor charge upto V_{UT} ,

$$V_{C \max} = V_{UT} = \frac{15 \times R}{R + 2R} = 5 \text{ V}$$

 If $V_0 = -12 \text{ V}$
 D_1 is OFF

 D_2 is ON

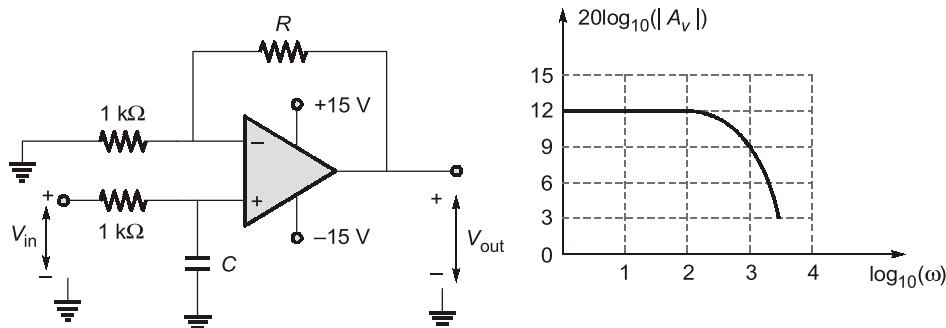
 Capacitor discharges upto V_{LT}


$$V_{C \min} = V_{LT} = \frac{-12 \times 2R}{2R + R} = -8 \text{ V}$$

$$V_{C \max} - V_{C \min} = 5 - (-8) = 13 \text{ V}$$

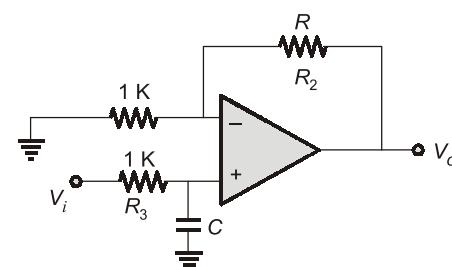
End of Solution

Q.42 A circuit with an ideal OPAMP is shown. The Bode plot for the magnitude (in dB) of the gain transfer function ($A_V(j\omega) = V_{\text{out}}(j\omega)/V_{\text{in}}(j\omega)$) of the circuit is also provided (here, ω is the angular frequency in rad/s). The values of R and C are _____.



(a) $R = 3 \text{ k}\Omega$, $C = 1 \mu\text{F}$
 (b) $R = 1 \text{ k}\Omega$, $C = 3 \mu\text{F}$
 (c) $R = 4 \text{ k}\Omega$, $C = 1 \mu\text{F}$
 (d) $R = 3 \text{ k}\Omega$, $C = 2 \mu\text{F}$

Ans. (a)



$$\text{Maximum gain} = 12 \text{ dB}$$

$$20 \times \log A_{\max} = 12$$

$$A_{\max} = 4$$

$$1 + \frac{R_2}{R_1} = 4 \Rightarrow R_2 = 3R_1$$

$$\Rightarrow R = 3 \times 1 = 3 \text{ k}\Omega$$

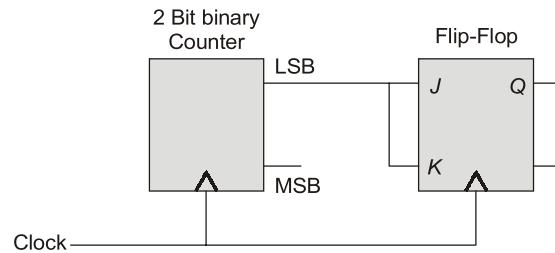
$$\log_{10} \omega_c = 3 \Rightarrow \omega_c = 1000 \text{ rad/sec}$$

$$\omega_c = \frac{1}{R_3 C} \Rightarrow C = \frac{1}{R_3 \times \omega_c}$$

$$C = \frac{1}{1000 \times 1000} = 1 \mu\text{F}$$

End of Solution

Q.43 For the circuit shown, the clock frequency is f_o and the duty cycle is 25%. For the signal at the Q output of the Flip-Flop, _____.



- (a) frequency is $f_o/4$ and duty cycle is 50%
- (b) frequency is $f_o/4$ and duty cycle is 25%
- (c) frequency is $f_o/2$ and duty cycle is 50%
- (d) frequency is f_o and duty cycle is 25%

Ans. (a)

2 bit counter

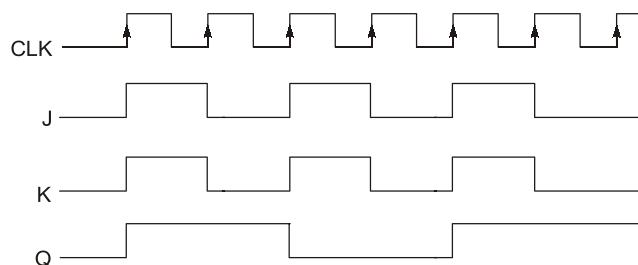
MSB LSB(J, K)

0 0

0 1

1 0

1 1



\therefore Duty cycle = 50%

$$\text{Output frequency} = \frac{f_o}{4}$$

End of Solution

Ans. (a, d)

(b)

$c = 2, d = 1$

$$\sum u_n = \sum \frac{n}{2^n}$$

Ratio test :

$$\lim_{n \rightarrow \infty} \frac{u_{n+1}}{u_n} = \lim_{n \rightarrow \infty} \frac{n+1}{2^{n+1}} \times \frac{2^n}{n} = \frac{1}{2}$$

$$\frac{1}{2} < 2$$

\therefore By ratio test, $\sum u_n$ is convergent.

(a)

$c = 1, d = -1$

$$\sum u_n = \sum \frac{1}{n}$$
 is divergent by P-test

(c)

$c = 0.5, d = -10$

$$\sum u_n = \sum \frac{n^{-10}}{(0.5)^n}$$

Ratio test :

$$\lim_{n \rightarrow \infty} \frac{u_{n+1}}{u_n} = \lim_{n \rightarrow \infty} \frac{(n+1)^{-10}}{(0.5)^{n+1}} \times \frac{(0.5)^n}{n^{-10}} = \frac{1}{0.5} = 2$$

$$2 > 1$$

$\sum u_n$ is divergent.

(d)

$c = 1, d = -2$

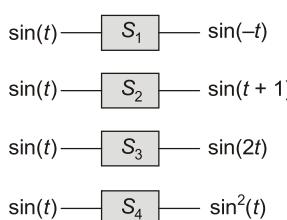
$$\sum u_n = \sum \frac{n^{-2}}{(1)^n} = \sum \frac{1}{n^2}$$

$\sum u_n$ is convergent by P-test.

End of Solution

Q.46 The outputs of four systems (S_1, S_2, S_3 , and S_4) corresponding to the input signal $\sin(t)$, for all time t , are shown in the figure.

Based on the given information, which of the four systems is/are definitely NOT LTI (linear and time-invariant)?



(a) S_1
(c) S_3

(b) S_2
(d) S_4

Ans. (c, d)

$$\sin t \rightarrow S_1 \rightarrow \sin(-t) = -\sin t$$

$$\sin t \rightarrow S_2 \rightarrow \sin(t+1)$$

$$\sin t \rightarrow S_3 \rightarrow \sin(2t)$$

$$\sin t \rightarrow S_4 \rightarrow \sin^2(t) = \frac{1 - \cos 2t}{2}$$

Since, LTI system does not change the frequency of sinusoidal input. So S_3 and S_4 are definitely not LTI as input and output sinusoidal frequencies are different.

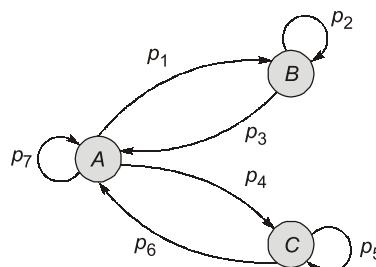
End of Solution
Q.47 Select the CORRECT statement(s) regarding semiconductor devices.

- Electrons and holes are of equal density in an intrinsic semiconductor at equilibrium.
- Collector region is generally more heavily doped than Base region in a BJT.
- Total current is spatially constant in a two terminal electronic device in dark under steady state condition.
- Mobility of electrons always increases with temperature in Silicon beyond 300 K.

Ans. (a, c)

- In intrinsic semiconductor at equilibrium $n = p = n_i$
- Collector region is generally lightly doped than base region in a BJT.
- Total current is spatially constant in a two terminal electronic device, however individual currents vary spatially under dark and steady state condition.
- Beyond 300K, mobility of electron decreases with increases in temperature.

Hence, statement(s) : (a) and (c) are correct.

End of Solution
Q.48 A state transition diagram with states A , B , and C , and transition probabilities p_1 , p_2 , ..., p_7 is shown in the figure (e.g., p_1 denotes the probability of transition from state A to B). For this state diagram, select the statement(s) which is/are universally true.


- $p_2 + p_3 = p_5 + p_6$
- $p_1 + p_3 = p_4 + p_6$
- $p_1 + p_4 + p_7 = 1$
- $p_2 + p_5 + p_7 = 1$

Ans. (a, c)

$$\left. \begin{array}{l} p_2 + p_3 = 1 \\ p_5 + p_6 = 1 \end{array} \right\} \quad p_2 + p_3 = p_5 + p_6$$

Option (a) is correct.

$$p_1 + p_4 + p_7 = 1$$

Option (c) is correct.

End of Solution

Q.49 Consider a Boolean gate (D) where the output Y is related to the inputs A and B as, $Y = A + \bar{B}$, where $+$ denotes logical OR operation. The Boolean inputs '0' and '1' are also available separately. Using instances of only D gates and inputs '0' and '1', _____ (select the correct option(s)).

(a) NAND logic can be implemented (b) OR logic cannot be implemented
 (c) NOR logic can be implemented (d) AND logic cannot be implemented

Ans. (a, c)

$$F(A, B) = A + \bar{B}$$

As 0 and 1 are available.

$$\begin{aligned} F(0, B) &= A + \bar{B} = 0 + \bar{B} \\ &= \bar{B} \text{ (NOT)} \end{aligned}$$

$$F(A + \bar{B}) = A + \bar{\bar{B}} = A + B$$

$$F(A + \bar{B}) = A + B \text{ (OR)}$$

With the combination of OR and NOT, NOR gate can be implemented.

Since NOR gate is universal logic gate, so all the functions can be implemented.
 So, correct option is (a, c).

End of Solution

Q.50 Two linear time-invariant systems with transfer functions

$$G_1(s) = \frac{10}{s^2 + s + 1} \text{ and } G_2(s) = \frac{10}{s^2 + s\sqrt{10} + 10}$$

have unit step responses $y_1(t)$ and $y_2(t)$, respectively. Which of the following statements is/are true?

(a) $y_1(t)$ and $y_2(t)$ have the same percentage peak overshoot.
 (b) $y_1(t)$ and $y_2(t)$ have the same steady-state value.
 (c) $y_1(t)$ and $y_2(t)$ have the same damped frequency of oscillation.
 (d) $y_1(t)$ and $y_2(t)$ have the same 2% settling time.

Ans. (a)

$$\text{For system } G_1(s) = \frac{10}{s^2 + s + 1}$$

Characteristics equation,

$$s^2 + s + 1 = 0$$

The standard characteristics equation is

$$s^2 + 2\xi\omega_n s + \omega_n^2 = 0$$

On comparing,

$$\omega_n = 1, \quad \xi = \frac{1}{2} = 0.5$$

$$\omega_d = \omega_n \sqrt{1 - \xi^2} = 1 \sqrt{1 - (0.5)^2} = 0.866$$

$$\text{Settling time, } t_s = \frac{4}{\xi \omega_n} = 8 \text{ sec}$$

Steady-state error,

$$e_{ss} = \lim_{s \rightarrow 0} \frac{s \left(\frac{1}{s} \right) \cdot 10}{s^2 + s + 1} = 10$$

$$e_{ss} = 10$$

For system,

$$G_2(s) = \frac{10}{s^2 + \sqrt{10}s + 10}$$

Characteristics equation,

$$s^2 + \sqrt{10}s + 10 = 0$$

Standard characteristics equation,

$$s^2 + 2\xi\omega_n s + \omega_n^2 = 0$$

On compairing,

$$\omega_n^2 = 10 \Rightarrow \omega_n = \sqrt{10}$$

$$2\xi\omega_n = \sqrt{10} \Rightarrow \xi = 0.5$$

$$\omega_d = \omega_n \sqrt{1 - \xi^2} = \sqrt{10} \sqrt{1 - (0.5)^2} = 2.739$$

Settling time,

$$t_s = \frac{4}{\xi \omega_n} = \frac{4}{0.5\sqrt{10}} = \frac{8}{\sqrt{10}} = 2.535$$

Steady state error,

$$e_{ss} = \lim_{s \rightarrow 0} \frac{s \left(\frac{1}{s} \right) \cdot 10}{s^2 + \sqrt{10}s + 10} = 1$$

$$e_{ss} = 1$$

Since ' ξ ' value for both the system is same. So percentage peak overshoot for both system is same.

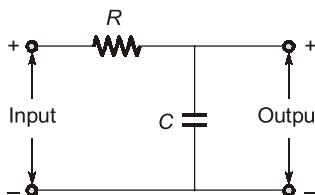
End of Solution

Q.51 Consider an FM broadcast that employs the pre-emphasis filter with frequency response

$$H_{pe}(\omega) = 1 + \frac{j\omega}{\omega_0},$$

where $\omega_0 = 10^4$ rad/sec.

For the network shown in the figure to act as a corresponding de-emphasis filter, the appropriate pair(s) of (R, C) values is/are _____.



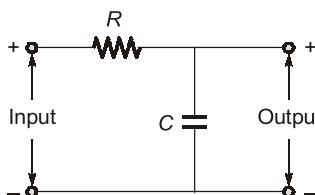
(a) $R = 1 \text{ k}\Omega, C = 0.1 \mu\text{F}$ (b) $R = 2 \text{ k}\Omega, C = 1 \mu\text{F}$
 (c) $R = 1 \text{ k}\Omega, C = 2 \mu\text{F}$ (d) $R = 2 \text{ k}\Omega, C = 0.5 \mu\text{F}$

Ans. (a)

Given frequency response of pre-emphasis filter,

$$H_{pe}(\omega) = 1 + \frac{j\omega}{\omega_0} \text{ where, } \omega_0 = 10^4 \frac{\text{rad}}{\text{sec}}$$

Deemphasis filter given as



$$H_{de}(\omega) = \frac{1}{1 + j\omega RC} \longrightarrow |H_{de}(\omega)| = \frac{1}{\sqrt{1 + (\omega RC)^2}}$$

Relationship between pre-emphasis and De-emphasis systems is

$$|H_{pe}(\omega)| = \frac{1}{|H_{de}(\omega)|}$$

$$|H_{pe}(\omega)|^2 = \frac{1}{|H_{de}(\omega)|^2}$$

$$1 + \left(\frac{\omega}{\omega_0} \right)^2 = 1 + (\omega RC)^2$$

$$\frac{1}{\omega_0} = RC \Rightarrow RC = 10^{-4}$$

Option (a) only satisfies the required condition.

End of Solution

Q.52 A waveguide consists of two infinite parallel plates (perfect conductors) at a separation of 10^{-4} cm, with air as the dielectric. Assume the speed of light in air to be 3×10^8 m/s. The frequency/frequencies of TM waves which can propagate in this waveguide is/are _____.

(a) 6×10^{15} Hz (b) 0.5×10^{12} Hz
 (c) 8×10^{14} Hz (d) 1×10^{13} Hz

Ans. (a, b, c, d)

For a parallel waveguide,

$$f_c|_{\text{TM}} = \frac{mc}{2a} \Rightarrow m = 0, 1, 2, \dots$$

$$\Rightarrow f_c|_{\text{TM}} = 0$$

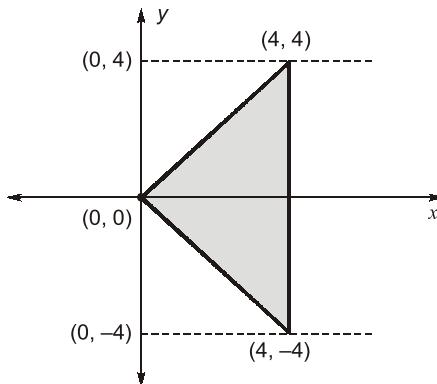
Hence, all the frequencies will pass.

End of Solution

Q.53 The value of the integral

$$\iint_D 3(x^2 + y^2) dx dy,$$

where D is the shaded triangular region shown in the diagram, is _____ (rounded off to the nearest integer).

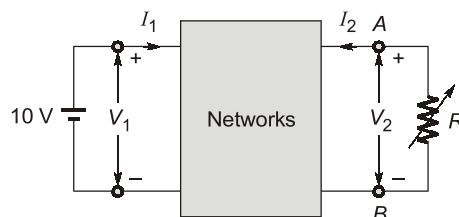
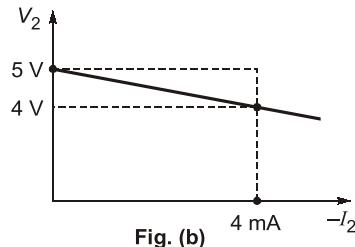
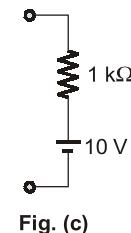


Ans. (512)

$$\begin{aligned} I &= \int_{0-x}^{4-x} \int_{-x}^x (3x^2 + 3y^2) dy dx \\ &= \int_0^4 \left(3x^2 y + \frac{3y^3}{3} \right)_{-x}^x dx = \int_0^4 (3x^2(2x) + 2x^3) dx \\ &= \int_0^4 (6x^3 + 2x^3) dx = \int_0^4 8x^3 dx \\ &= \frac{8}{4} (x^4) \Big|_0^4 = 2 \times 4^4 = 512 \end{aligned}$$

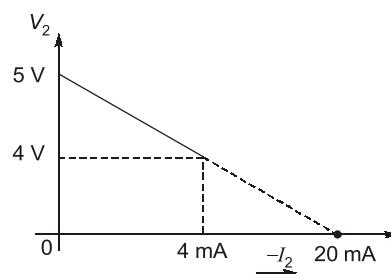
End of Solution

Q.54 A linear 2-port network is shown in Fig. (a). An ideal DC voltage source of 10 V is connected across Port 1. A variable resistance R is connected across Port 2. As R is varied, the measured voltage and current at Port 2 is shown in Fig. (b) as a V_2 versus $-I_2$ plot. Note that for $V_2 = 5$ V, $I_2 = 0$ mA, and for $V_2 = 4$ V, $I_2 = -4$ mA. When the variable resistance R at Port 2 is replaced by the load shown in Fig. (c), the current I_2 is _____ mA (rounded off to one decimal place).


Fig. (a)

Fig. (b)

Fig. (c)
Ans. (4)

 For $I_2 = 0$,

$$V_2 = V_{OC} = 5 \text{ V}$$

 For Thevenin's resistance R_{th} ,

 For $-I_2 = 20$ mA, $V_2 = 0$

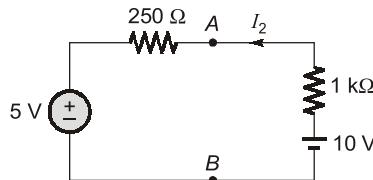
$$I_{SC} = -I_2$$

$$I_{SC} = 20 \text{ mA}$$

$$R_{th} = \frac{V_{OC}}{I_{SC}} = \frac{5}{20} \times 10^3$$

$$R_{th} = 250 \Omega$$

Network is replaced by Thevenin's equivalent,



$$I_2 = \frac{10 - 5}{1.25 \times 10^3}$$

$$I_2 = \frac{5}{1.25} \times 10^{-3} \text{ A}$$

$$I_2 = 4 \text{ mA}$$

End of Solution

Q.55 For a vector $\bar{x} = [x[0], x[1], \dots, x[7]]$, the 8-point discrete Fourier transform (DFT) is denoted by $\bar{X} = \text{DFT}(\bar{x}) = [X[0], X[1], \dots, X[7]]$, where

$$X[k] = \sum_{n=0}^7 x[n] \exp\left(-j \frac{2\pi}{8} nk\right).$$

Here, $j = \sqrt{-1}$. If $\bar{x} = [1, 0, 0, 0, 2, 0, 0, 0]$ and $\bar{y} = \text{DFT}(\text{DFT}(\bar{x}))$, then the value of $y[0]$ is _____ (rounded off to one decimal place).

Ans. (8)

$$y(n) = \text{DFT}[\text{DFT}(x(n))]$$

Using Duality property

$$x(n) \xrightarrow{\text{DFT}} \xrightarrow{\text{DFT}} Nx(-k) = y(n)$$

$$y(n) = Nx(-k) = Nx(N - k)$$

$$y(n) = 8(1, 0, 0, 0, 2, 0, 0, 0)$$

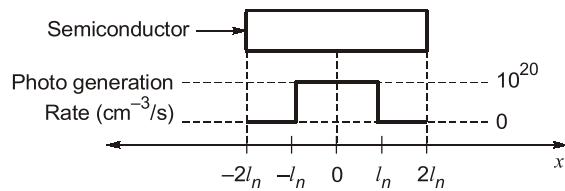
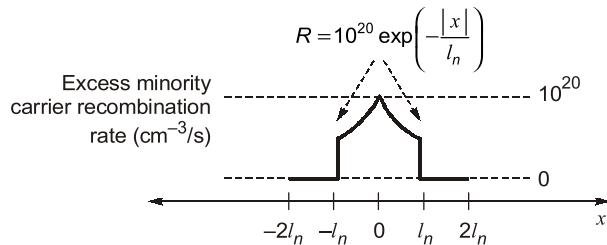
At

$$x = 0$$

$$y(0) = 8 \times 1 = 8$$

End of Solution

Q.56 A p-type semiconductor with zero electric field is under illumination (low level injection) in steady state condition. Excess minority carrier density is zero at $x = \pm 2l_n$, where $l_n = 10^{-4} \text{ cm}$ is the diffusion length of electrons. Assume electronic charge, $q = -1.6 \times 10^{-19} \text{ C}$. The profiles of photo-generation rate of carriers and the recombination rate of excess minority carriers (R) are shown. Under these conditions, the magnitude of the current density due to the photo-generated electrons at $x = +2l_n$ is _____ mA/cm² (rounded off to two decimal places).



Ans. (2.19)

$$-l_n \leq x \leq 0 \quad (\text{or}) \quad 0 \leq x \leq l_n$$

$$D_n \frac{\partial^2 \delta n}{\partial x^2} + G - R = 0$$

$$\frac{\partial^2 \delta n}{\partial x^2} = \frac{1}{D_n} (R - G) = \frac{1}{D_n} \left[10^{20} e^{-|x|/l_n} - 10^{20} \right]$$

$$\frac{\partial^2 \delta n}{\partial x^2} = \frac{10^{20}}{D_n} (e^{-|x|/l_n} - 1)$$

$$\frac{\partial \delta n}{\partial x} = \frac{10^{20}}{D_n} \left[e^{-|x|/l_n} (-l_n) - x \right] + C_1 \quad \dots(1)$$

$$\delta n(x) = \frac{10^{20}}{D_n} \left[l_n^2 e^{-|x|/l_n} - \frac{x^2}{2} \right] + C_1 x + C_2 \quad \dots(2)$$

$$\Rightarrow \delta n(l_n) = \delta n(-l_n) \quad (\text{due to symmetry})$$

$$\frac{10^{20}}{D_n} \left[l_n^2 e^{-l_n/l_n} - \frac{l_n^2}{2} \right] + C_1 l_n + C_2 = \frac{10^{20}}{D_n} \left[l_n^2 e^{-l_n/l_n} - \frac{l_n^2}{2} \right] + C_1 (-l_n) + C_2$$

$$2C_1 l_n = 0$$

$$C_1 = 0$$

eqn. (1) and (2) become

$$\frac{\partial \delta n}{\partial x} = \frac{10^{20}}{D_n} \left[e^{-|x|/l_n} (-l_n) - x \right] + 0 \quad \dots(1)$$

$$\delta n(x) = \frac{10^{20}}{D_n} \left[l_n^2 e^{-|x|/l_n} - \frac{x^2}{2} \right] + C_2 \quad \dots(2)$$

$$l_n \leq x \leq 2l_n \quad \text{or} \quad -2l_n \leq x \leq -l_n$$

$$G = 0, R = 0$$

$$D_n \frac{\partial^2 \delta n}{\partial x^2} = 0$$

$$\therefore \delta n(x) = Ax + B$$

$$\text{Given } \delta n(\pm 2l_n) = 0 \Rightarrow 0 = A(2l_n) + B$$

$$A = \frac{-B}{2l_n}$$

$$\delta n(x) = \frac{-B}{2l_n}x + B$$

$$\delta n(x) = B \left[1 - \frac{x}{2l_n} \right] = B \left[1 - \frac{|x|}{2l_n} \right] \quad \dots(3)$$

$$\frac{\partial \delta n(x)}{\partial x} = B \left[0 - \frac{1}{2l_n} \right] = \frac{-B}{2l_n} \quad \dots(4)$$

$$\text{Since } \frac{\partial \delta n}{\partial x} \text{ from equation (1)} = \frac{\partial \delta n}{\partial x} \text{ from equation (4)}$$

$$\text{at } x = l_n$$

due to continuity.

$$\frac{10^{20}}{D_n} [e^{-1}(-l_n) - l_n] = \frac{-B}{2l_n}$$

$$-l_n \frac{10^{20}}{D_n} [1 + e^{-1}] = \frac{-B}{2l_n} \Rightarrow B = \frac{2l_n^2 \times 10^{20}}{D_n} (1 + e^{-1})$$

$$\therefore \frac{\partial}{\partial x} \delta n(x) = \frac{-B}{2l_n} = \frac{-2l_n^2 \times 10^{20} (1 + e^{-1})}{D_n \times (2l_n)} \quad 0 \leq x \leq 2l_n$$

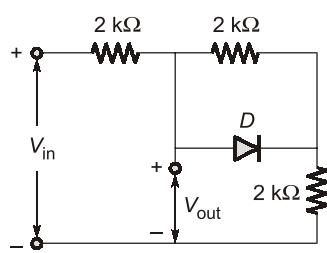
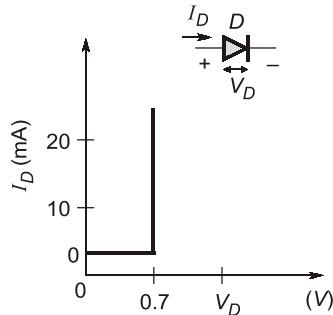
$$\frac{\partial}{\partial x} \delta n(x) = \frac{-l_n \times 10^{20} (1 + e^{-1})}{D_n}$$

$$|J_n| = qD_n \frac{\partial}{\partial x} \delta n(x) = qD_n \frac{l_n \times 10^{20}}{D_n} (1 + e^{-1}) \\ = 1.6 \times 10^{-19} \times 10^{-4} \times 10^{20} (1 + e^{-1}) \\ = 1.6 \times 10^{-3} (1 + e^{-1}) = 2.1886 \text{ mA/cm}^2 \\ = 2.19$$

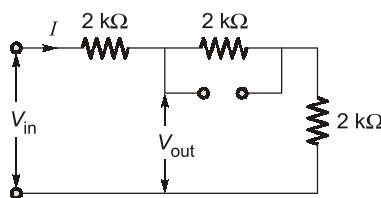
Note: It is the best possible solution based on given data otherwise one more boundary condition should be mentioned.

End of Solution

Q.57 A circuit and the characteristics of the diode (D) in it are shown. The ratio of the minimum to the maximum small signal voltage gain $\frac{\partial V_{\text{out}}}{\partial V_{\text{in}}}$ is _____ (rounded off to two decimal places).


Ans. (0.75)

When diode is OFF:

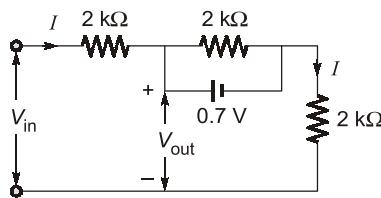


$$V_o = 4I$$

$$V_{in} = 6I$$

$$A_v = \frac{V_o}{V_{in}} = \frac{4}{6} = \frac{2}{3}$$

When diode is ON, voltage drop across diode is 0.7 V.



$$V_o = 0.7 + (2 \text{ k}\Omega)I$$

$$V_{in} = 0.7 + (4 \text{ k}\Omega)I$$

$$I = \frac{V_o - 0.7}{2 \text{ k}\Omega}$$

$$V_{in} = 0.7 + (4 \text{ k}\Omega) \cdot \frac{(V_o - 0.7)}{(2 \text{ k}\Omega)} = 0.7 + 2V_o - 1.4$$

$$V_o = \frac{V_{in} + 0.7}{2}$$

$$A'_v = \frac{\partial V_o}{\partial V_{in}} = \frac{1}{2}$$

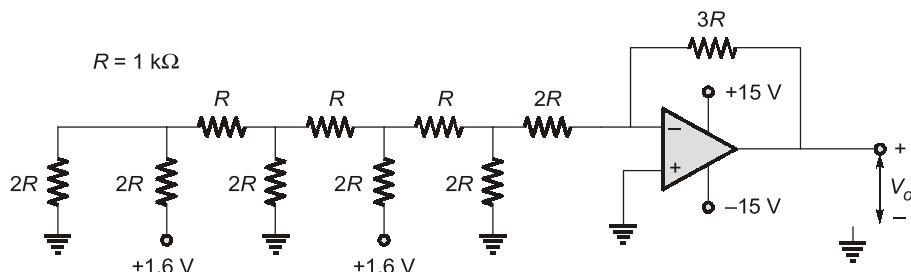
$$\text{Maximum voltage gain, } A_v = \frac{2}{3}$$

$$\text{Minimum voltage gain, } A'_v = \frac{1}{2}$$

$$\frac{(\partial V_{out} / \partial V_{in})_{\min}}{(\partial V_{out} / \partial V_{in})_{\max}} = \frac{A'_v}{A_v} = \frac{1}{2} \times \frac{3}{2} = \frac{3}{4} = 0.75$$

End of Solution

Q.58 Consider the circuit shown with an ideal OPAMP. The output voltage V_o is _____ V (rounded off to two decimal places).



Ans. (-0.5)

Analog output $V_o = -\text{Resolution} \times \text{Gain} \times \text{Decimal equivalent of binary data}$

$$\text{Resolution} = \frac{V_r}{2^n} = \frac{1.6}{2^4} = 0.1$$

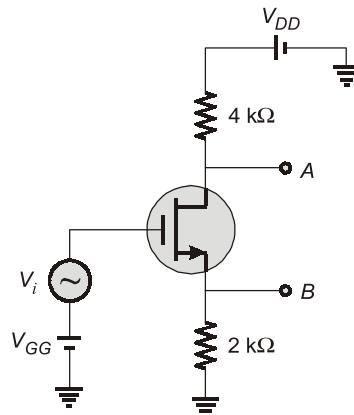
Decimal equivalent = 5

Gain = 1

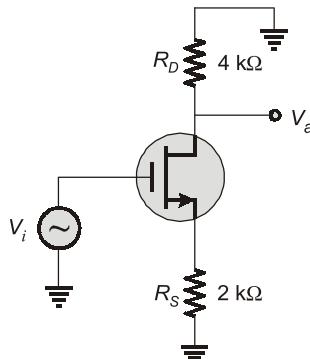
$$V_o = -(0.1)(5)(1) = -0.5 \text{ V}$$

End of Solution

Q.59 Consider the circuit shown with an ideal long channel n MOSFET (enhancement mode, substrate is connected to the source). The transistor is appropriately biased in the saturation region with V_{GG} and V_{DD} such that it acts as a linear amplifier. v_i is the small-signal ac input voltage. v_A and v_B represent the small-signal voltages at the nodes A and B, respectively. The value of $\frac{v_A}{v_B}$ is _____ (rounded off to one decimal place).

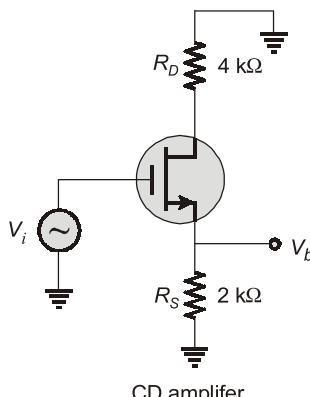


Ans. (-2)

 Consider V_a as an output then the small signal model is


CS in bypass amplifier

$$\text{Voltage gain } \frac{V_a}{V_{in}} = \frac{-g_m R_D}{1 + g_m R_s} \quad \dots(1)$$

 Consider V_b as an output, then the small signal model,


CD amplifier

$$\text{Voltage gain } \frac{V_b}{V_{in}} = \frac{g_m R_s}{1 + g_m R_s} \quad \dots(2)$$

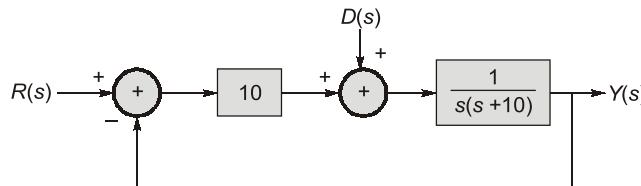
On dividing equation (1) and (2)

$$\frac{V_a/V_{in}}{V_b/V_{in}} = \frac{-R_D}{R_s}$$

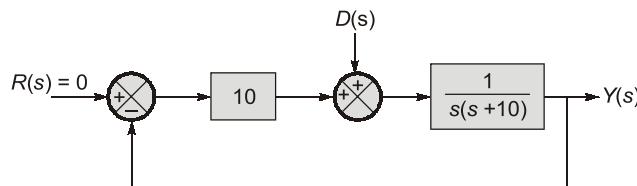
$$\frac{V_a}{V_b} = \frac{-4k}{2k} = -2$$

End of Solution

Q.60 The block diagram of a closed-loop control system is shown in the figure. $R(s)$, $Y(s)$, and $D(s)$ are the Laplace transforms of the time-domain signals $r(t)$, $y(t)$, and $d(t)$, respectively. Let the error signal be defined as $e(t) = r(t) - y(t)$. Assuming the reference input $r(t) = 0$ for all t , the steady-state error $e(\infty)$, due to a unit step disturbance $d(t)$, is _____ (rounded off to two decimal places).



Ans. (-0.1)



$$G_1(s) = 10, \quad G_2(s) = \frac{1}{s(s+10)}$$

$$\frac{E(s)}{D(s)} = \frac{-G_2(s)}{1 + G_1(s)G_2(s)}$$

$$= \frac{-1}{1 + \left(10 \times \frac{1}{s(s+10)} \right)}$$

$$= \frac{-1}{s^2 + 10s + 10}$$

$$e_{ss} = \lim_{t \rightarrow \infty} e(t) = \lim_{s \rightarrow 0} sE(s)$$

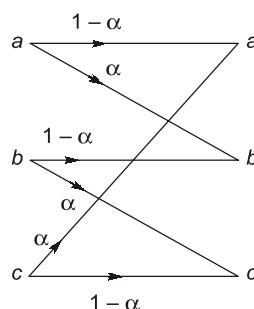
$$e_{ss} = \lim_{s \rightarrow 0} \frac{s(1/s)(-1)}{s^2 + 10s + 10}$$

$$e_{ss} = \frac{-1}{10}$$

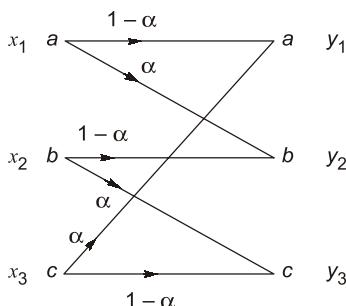
$$e_{ss} = -0.1$$

End of Solution

Q.61 The transition diagram of a discrete memoryless channel with three input symbols and three output symbols is shown in the figure. The transition probabilities are as marked. The parameter α lies in the interval $[0.25, 1]$. The value of α for which the capacity of this channel is maximized, is _____ (rounded off to two decimal places).



Ans. (1)



Channel capacity,

$$C_s = \text{Max}[I(X ; Y)]$$

$$I(X ; Y) = H(Y) - H\left(\frac{Y}{X}\right)$$

$$\text{where, } H\left(\frac{Y}{X}\right) = -\sum_{i=1}^3 \sum_{j=1}^3 P(x_i, y_j) \log_2 P\left(\frac{y_j}{x_i}\right)$$

$$\left[P\left(\frac{Y}{X}\right) \right] = \begin{bmatrix} y_1 & y_2 & y_3 \\ x_1 & \begin{bmatrix} 1-\alpha & \alpha & 0 \\ 0 & 1-\alpha & \alpha \\ \alpha & 0 & 1-\alpha \end{bmatrix} \\ x_2 \\ x_3 \end{bmatrix}$$

For simplication convenience, let $[P(X)] = [1 \ 0 \ 0]$

$$[P(X, Y)] = [P(X)]_d \cdot \left[P\left(\frac{Y}{X}\right) \right]$$

$$[P(X, Y)] = \begin{bmatrix} 1-\alpha & \alpha & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

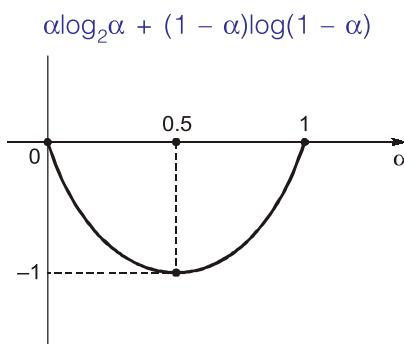
$$H\left(\frac{Y}{X}\right) = -\{(1-\alpha)\log_2(1-\alpha) + \alpha\log_2\alpha\}$$

$$I(X ; Y) = H(Y) + (1 - \alpha)\log_2 (1 - \alpha) + \log_2\alpha$$

$$C_s = \text{Max}\{I(X ; Y)\}$$

$$= \text{Max}\{H(Y)\} + (1 - \alpha)\log_2(1 - \alpha) + \alpha\log_2\alpha$$

$$C_s = \log_2 3 + \underbrace{(1 - \alpha)\log_2(1 - \alpha) + \alpha\log_2\alpha}_{\alpha\log_2\alpha + (1 - \alpha)\log(1 - \alpha)}$$



C_s will be maximum at $\alpha = 0$ and 1 .

Given $\alpha \in [0.25, 1]$

So, that $\alpha = 1$ will be the correct answer.

End of Solution

Q.62 Consider communication over a memoryless binary symmetric channel using a (7, 4) Hamming code. Each transmitted bit is received correctly with probability $(1 - \epsilon)$, and flipped with probability ϵ . For each codeword transmission, the receiver performs minimum Hamming distance decoding, and correctly decodes the message bits if and only if the channel introduces at most one bit error.
For $\epsilon = 0.1$, the probability that a transmitted codeword is decoded correctly is _____ (rounded off to two decimal places).

Ans. (0.85)

Given (7, 4) Hamming code.

Number of bits in the transmitted codeword = 7.

Given is binary symmetric channel $\rightarrow P(0/1) = P(1/0)$

$$P(0/1) = P(1/0) = \epsilon = 0.1$$

Probability of correct decoding of codeword (P_c) = Probability of atmost one bit error
 P_c = No error (or) 1 bit error

When 'n' bits transmitted, probability of getting error in 'r' bits is ${}^n C_r P^r (1 - P)^{n-r}$

Where 'p' is bit error probability

$$P(1/0) = P(0/1) = 0.1$$

$$P_c = {}^7 C_0 (0.1)^0 (1 - 0.1)^{7-0} + {}^7 C_1 (0.1)^1 (1 - 0.1)^{7-1} \\ = (0.9)^7 + 7 \times 0.1 \times (0.9)^6$$

$$P_c = 0.8503$$

End of Solution

Q.63 Consider a channel over which either symbol x_A or symbol x_B is transmitted. Let the output of the channel Y be the input to a maximum likelihood (ML) detector at the receiver. The conditional probability density functions for y given x_A and x_B are:

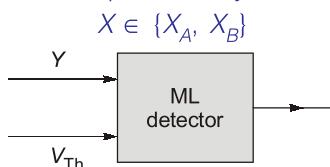
$$f_{Y|x_A}(y) = e^{-(y+1)} u(y+1),$$

$$f_{Y|x_B}(y) = e^{(y-1)} (1 - u(y-1)),$$

where $u(\cdot)$ is the standard unit step function. The probability of symbol error for this system is _____ (rounded off to two decimal places).

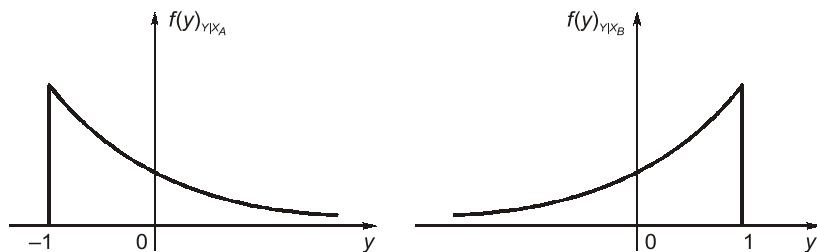
Ans. (0.367)

Given that source transmits two possible symbols X_A and X_B



$$f_{Y|x_A}(y) = e^{-(y+1)} u(y+1),$$

$$f_{Y|X_A}(y) = e^{(y-1)} (1 - u(y-1)),$$



$$\text{Find opt } V_{Th} \rightarrow f_{Y|X_A}(y) \Big|_{y=V_{Th}} = f_{Y|X_B}(y) \Big|_{y=V_{Th}}$$

$$e^{-(V_{Th}+1)} = e^{V_{Th}-1} \rightarrow e^{2V_{Th}} = 1$$

$$V_{Th} = 0$$

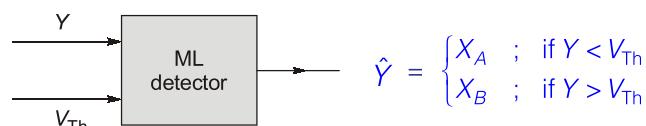
$$\text{Probability of error } (P_e) = P(X_A) \cdot P_{eXA} + P(X_B) \cdot P_{eXB}$$

P_{eXA} = Probability of error when X_A transmitted

P_{eXB} = Probability of error when X_B transmitted

Note : Decision making conditions of ML detector not given in the question.

Let,



$$P_e = P(X_A) P(Y > V_{Th})|_{X_A \text{ transmitted}} + P(X_B) P(Y < V_{Th})|_{X_B \text{ transmitted}}$$

where $V_{Th} = 0$

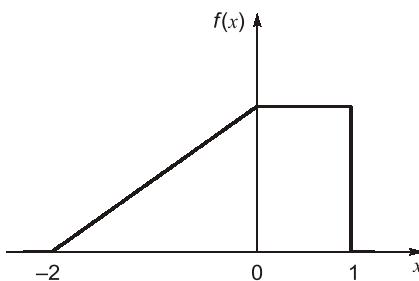
$$P_e = P(X_A) \int_0^{\infty} e^{-(y+1)} dy + P(X_B) \int_{-\infty}^0 e^{y-1} dy$$

$$P_e = P(X_A) \cdot e^{-1} + P(X_B) \cdot e^{-1}$$

$$= e^{-1} [P(X_A) + P(X_B)] = e^{-1} = 0.367$$

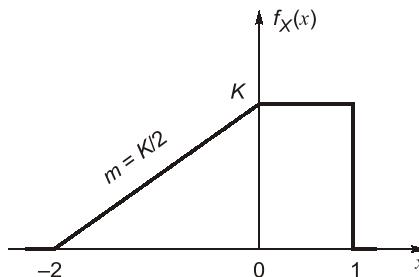
End of Solution

Q.64 Consider a real valued source whose samples are independent and identically distributed random variables with the probability density function, $f(x)$, as shown in the figure.



Consider a 1 bit quantizer that maps positive samples to value α and others to value β . If α^* and β^* are the respective choices for α and β that minimize the mean square quantization error, then $(\alpha^* - \beta^*) = \text{_____}$ (rounded off to two decimal places).

Ans. (1.167)



$$\frac{1}{2} \times K \times 2 + 1 \times K = 1 \Rightarrow K = \frac{1}{2} = 0.5$$

$$-2 \leq x \leq 0 \rightarrow f_X(x) = mx + C$$

$$f_X(x) = 0.25x + C$$

$$\text{when } x = -2 \rightarrow f_X(x) = 0$$

$$0 = 0.25 \times -2 + C \Rightarrow C = 0.5$$

$$f_X(x) = \frac{1}{4}x + \frac{1}{2} \quad -2 \leq x \leq 0$$

$$f_X(x) = 0.5 \quad ; \quad 0 \leq x \leq 1$$

Quantizer output,

$$x_q = \alpha \quad ; \quad \text{for } 0 \leq x \leq 1$$

$$x_q = \beta \quad ; \quad \text{for } -2 \leq x \leq 0$$

Mean square quantization error,

$$\text{MSQ}[Q_e] = E[Q_e^2]$$

$$Q_e = (\text{Sampled value}) - (\text{quantized value})$$

$$= X - x_q$$

$$\text{MSQ}[Q_e] = E[(X - x_q)^2]$$

$$\text{Quantization noise power, } N_o = \text{MSQ}[Q_e] = \int (X - x_q)^2 f_X(x) dx$$

$$\begin{aligned} \text{For } -2 \leq x \leq 0 \rightarrow N_Q &= \int_{-2}^0 (x - \beta)^2 \times \left(\frac{1}{4}x + \frac{1}{2} \right) dx \\ &= \int_{-2}^0 (x^2 + \beta^2 - 2x\beta) \left(\frac{x}{4} + \frac{1}{2} \right) dx \end{aligned}$$

$$N_Q = \frac{\beta^2}{2} + \frac{2}{3}\beta - \frac{1}{3}$$

 To find β value for which N_Q will be minimum \rightarrow

$$\frac{dN_Q}{d\beta} = 0 \Rightarrow \frac{1}{2} \times 2\beta + \frac{2}{3} = 0$$

$$\beta = \frac{-2}{3}$$

$$\text{For } 0 \leq x \leq 1 \rightarrow$$

$$N_Q = \int_0^1 (x - \alpha)^2 \times \frac{1}{2} dx$$

$$N_Q = \frac{1}{6} \left[(1-\alpha)^3 + \alpha^3 \right]$$

To find ' α ' value for which N_Q is minimum

$$\frac{dN_Q}{d\alpha} = 0 \Rightarrow \frac{1}{6} \left[3(1-\alpha)^2(-1) + 3\alpha^2 \right] = 0$$

$$\alpha = \frac{1}{2}$$

Chosen α^* and β^* for which mean square quantization error (N_Q) is minimum will be

$\frac{1}{2}$ and $\frac{-2}{3}$ respectively.

$$\alpha^* - \beta^* = \frac{1}{2} + \frac{2}{3} = \frac{7}{6} = 1.167$$

Q.65 In an electrostatic field, the electric displacement density vector, \vec{D} , is given by

$$\vec{D}(x, y, z) = (x^3 \vec{i} + y^3 \vec{j} + xy^2 \vec{k}) \text{ C/m}^2,$$

where $\vec{i}, \vec{j}, \vec{k}$ are the unit vectors along x -axis, y -axis, and z -axis, respectively. Consider a cubical region R centered at the origin with each side of length 1 m, and vertices at $(\pm 0.5 \text{ m}, \pm 0.5 \text{ m}, \pm 0.5 \text{ m})$. The electric charge enclosed within R is _____ C (rounded off to two decimal places).

Ans. (0.5)

$$\begin{aligned} Q_{\text{enclosed}} &= \int_V \rho_v dv = \int (\nabla \cdot D) dv \\ \nabla \cdot D &= \frac{\partial}{\partial x}(x^3) + \frac{\partial}{\partial y}(y^3) + \frac{\partial}{\partial z}(xy^2) \\ \nabla \cdot D &= (3x^2 + 3y^2) = 3(x^2 + y^2) \\ dv &= dx dy dz \\ Q_{\text{enc}} &= \int_V 3(x^2 + y^2) dx dy dz \\ &= 3 \int_{x=-0.5}^{0.5} \int_{y=-0.5}^{0.5} \int_{z=-0.5}^{0.5} (x^2 + y^2) dx dy dz \\ &= 3 \left[\left\{ \frac{x^3}{3} \right\}_{-0.5}^{0.5} \{y\}_{-0.5}^{0.5} \{z\}_{-0.5}^{0.5} + \{x\}_{-0.5}^{0.5} \left\{ \frac{y^3}{3} \right\}_{-0.5}^{0.5} \{z\}_{-0.5}^{0.5} \right] \\ &= ((0.5)^3 - (-0.5)^3)(0.5 + 0.5)(0.5 + 0.5) \times 2 \\ Q_{\text{enc}} &= 0.5 \text{ C} \end{aligned}$$

End of Solution

