## MRDE ERSY

India's Best Institute for IES, GATE \& PSUs

Test Centres: Delhi, Noida, Hyderabad, Bhopal, Jaipur, Lucknow, Bhubaneswar, Indore, Pune, Kolkata, Patna

## UPPSC AE 2019 ASSISTANT ENGINEER <br> MECHANICAL ENGINEERING

## Part Syllabus Test

Thermodynamics

## ANSWER KEY

1. (d)
2. (b)
3. (a)
4. (a)
5. (b)
6. (c)
7. (b)
8. (b)
9. (c)
10. (b)
11. (c)
12. (a)
13. (c)
14. (a)
15. (c)
16. (b)
17. (b)
18. (c)
19. (b)
20. (c)
21. (c)
22. (d)
23. (b)
24. (c)
25. (b)
26. (b)
27. (c)
28. (c)
29. (c)
30. (a)
31. (b)
32. (c)
33. (a)
34. (b)
35. (d)
36. (b)
37. (b)
38. (c)
39. (c)
40. (b)
41. (d)
42. (a)
43. (a)
44. (a)
45. (c)
46. (d)
47. (a)
48. (c)

## DETAILED EXPLANATIONS

1. (d)

$$
\begin{aligned}
\text { For ideal gas } z & =1 \\
\text { For a non ideal gas } z & <1, \quad z>1 \\
\text { but } z & \neq 1
\end{aligned}
$$

3. (c)

According to 1st law of thermodynamics,

$$
\begin{aligned}
\oint \delta Q=\oint \delta W & =Q_{1-2}+Q_{2-1}=W_{1-2}+W_{2-1} \\
20-10 & =40+W_{2-1} \\
10 & =40+W_{2-1} \quad \Rightarrow \quad W_{2-1}=-30 \mathrm{~kJ}
\end{aligned}
$$

4. (b)

Net heat intraction, $\oint \delta Q=\oint \delta W=$ Area enclosed in $p-v$ diagram

$$
\begin{aligned}
& =\pi R^{2}=\pi(1) \mathrm{m}^{3}(1) \mathrm{MPa} \\
& =\pi \times 1 \mathrm{~m}^{3} \times 1000 \mathrm{kPa}=3141 \mathrm{~kJ}
\end{aligned}
$$

8. (b)

$$
\begin{aligned}
(d S)_{\text {system }} & =m c_{p} \ln \left(\frac{T_{2}}{T_{1}}\right)=4 \times 1 \times \ln \left(\frac{400}{800}\right)=-2.7726 \mathrm{~kJ} / \mathrm{K} \\
(d S)_{\text {surrounding }} & =\frac{m c_{p}\left(T_{1}-T_{2}\right)}{T_{o}}=\frac{4 \times 1 \times 400}{300}=5.33 \mathrm{~kJ} / \mathrm{K} \\
(d S)_{\text {universe }} & =-2.7726+5.33=2.5601 \mathrm{~kJ} / \mathrm{kg} \\
\text { Unavailable energy } & =T_{o} d S=300 \times 2.5601=768.22 \mathrm{~kJ} \\
\text { Heat transferred } & =m c d T=4 \times 1 \times(800-400)=1600 \mathrm{~kJ} \\
\text { Available energy } & =1600-768.22=831.78 \mathrm{~kJ}
\end{aligned}
$$

19. (b)

For maximum work, heat engine must be reversible,

$$
\begin{aligned}
(d S)_{\mathrm{HE}} & =0 \\
(d S)_{1}+(d S)_{2} & =0
\end{aligned}
$$

Let $m, c_{p}$ are the mass and specific heat of body respectively.

$$
\begin{array}{rlrl}
m c_{p} \ln \left(\frac{T_{f}}{T_{1}}\right)+m c_{p} \ln \left(\frac{T_{f}}{T_{2}}\right) & =0 \\
\Rightarrow & & \ln \left(\frac{T_{f}^{2}}{T_{1} \times T_{2}}\right) & =0 \\
\Rightarrow & & \frac{T_{f}^{2}}{T_{1} \times T_{2}} & =1 \\
\Rightarrow & & T_{f} & =\sqrt{T_{1} T_{2}}
\end{array}
$$

23. (c)

On applying steady flow energy equation for a nozzle,

$$
\begin{aligned}
h_{1}+\frac{V_{1}^{2}}{2000} & =h_{2}+\frac{V_{2}^{2}}{2000} \quad(W=0, Q=0, \Delta \mathrm{PE}=0) \\
V_{2} & =\sqrt{2000\left(h_{1}-h_{2}\right)}=\sqrt{2000 \times 45} \\
& =\sqrt{90000}=300 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

24. (c)

$$
\begin{aligned}
(\mathrm{COP})_{\mathrm{HP}} & =1+(\mathrm{COP})_{\mathrm{RE}} \\
& =1+3.4=4.4
\end{aligned}
$$

25. (b)

Given: $m=0.2 \mathrm{~kg}, c_{w}=4.2 \mathrm{~kJ} / \mathrm{kgK}, \mathrm{LH}$ of vaporization $=2256 \mathrm{~kJ} / \mathrm{kg}$
Rate of heat transfer to water, $\dot{Q}=\frac{m \times L H}{t}=\frac{0.2 \times 2256}{10}=45.12 \mathrm{~kJ} / \mathrm{min}$
28. (b)

$$
\begin{aligned}
\dot{Q}_{2} & =18000 \mathrm{~kJ} / \mathrm{hr}=\frac{18000}{3600}=5 \mathrm{~kW} \\
\dot{W}_{\text {in }} & =1.9 \mathrm{~kW} \\
(\mathrm{COP})_{\mathrm{HP}} & =\frac{\dot{Q}_{2}}{\dot{W}_{\text {in }}}=\frac{5}{1.9}=2.63
\end{aligned}
$$


30. (d)
$\mathrm{C}_{6} \mathrm{H}_{14}+x\left[0.21 \mathrm{O}_{2}+0.79 \mathrm{~N}_{2}\right] \rightarrow a \mathrm{CO}_{2}+b \mathrm{H}_{2} \mathrm{O}+c \mathrm{~N}_{2}$
On balancing hydrogen, $\quad 2 b=14 \Rightarrow b=7$
On balancing carbon,

$$
a=6
$$

On balancing oxygen,

$$
0.21 \times 2 x=2 a+b
$$

$$
=2 \times 6+7=19
$$

$$
x=\frac{19}{0.42}=45.238 \mathrm{~mole}
$$

On balancing nitrogen,

$$
0.79 \times 2 x=2 c
$$

$$
c=3.5738
$$

So, Mole of fraction of $\mathrm{CO}_{2}, y_{\mathrm{CO}_{2}}=\frac{a}{a+b+c}=\frac{6}{6+7+3.5738}=0.362=36.2 \%$
31. (a)

Intensive properties are independent of mass.
32. (c)

Let

$$
\text { as } R=2.5 \text {, at } t=0
$$

$$
\Rightarrow
$$

$$
\Rightarrow
$$

$$
\begin{aligned}
R & =R_{0}(1+\alpha t) \\
2.5 & =R_{0}(1+\alpha \times 0) \\
R_{0} & =2.5 \\
5 & =2.5(1+\alpha \times 100) \\
\alpha & =0.01 \\
9 & =2.5(1+0.01 \times t) \\
t & =260^{\circ} \mathrm{C}
\end{aligned}
$$

Again, at $t=100^{\circ} \mathrm{C}, R=5$,
So when, $R=9 \Omega$,

$$
\Rightarrow
$$

33. (a)

As $\quad T d s=d h-v d P$
So for constant pressure lines $d P=0$
$\Rightarrow \quad\left(\frac{d h}{d s}\right)_{P}=T=$ Slope $=$ always positive as ' $T$ ' is always positive for superheated region.
34. (b)

Let methane is burned with $x$ moles of air,
$\mathrm{CH}_{4}+x\left[0.21 \mathrm{O}_{2}+0.79 \mathrm{~N}_{2}\right] \rightarrow a \mathrm{CO}_{2}+b \mathrm{H}_{2} \mathrm{O}+c \mathrm{O}_{2}+d \mathrm{~N}_{2}$
$\therefore c=1$
On balancing hydrogen,

$$
\begin{aligned}
b & =2 \\
a & =1 \\
0.21 \times 2 x & =2 a+b+2 \\
& =2 \times 1+2+2=6 \\
x & =\frac{6}{0.42}=14.2857
\end{aligned}
$$

On balancing carbon,
On balancing oxygen,

So,

$$
\frac{\dot{m}_{\text {air }}}{\dot{m}_{\text {fuel }}}=\frac{14.2857 \times 29}{1 \times(12+4 \times 1)}=25.89
$$

36. (c)

An isolated system is either of the following:

1. a physical system so far removed from other systems that it does not interact with them.
2. a thermodynamic system enclosed by rigid immovable walls through which neither matter nor energy can pass.
3. (c)

Given: $c_{p}=1 \mathrm{~kJ} / \mathrm{kgK}, c_{v}=0.75 \mathrm{~kJ} / \mathrm{kgK}, T=27^{\circ} \mathrm{C}=(27+273) \mathrm{K}=300 \mathrm{~K}, p=1 \mathrm{bar}=100 \mathrm{kPa}$
Gas constant: $\quad R=c_{p}-c_{v}=1-0.75=0.25 \mathrm{~kJ} / \mathrm{kgK}$
Applying equation of state in term of density,

$$
\begin{aligned}
p & =\rho R T \\
100 & =\rho \times 0.25 \times 300 \\
1 & =0.75 \rho \\
\rho & =\frac{1}{0.75}=\frac{10}{75}=1.33 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

39. (a)

We know that, If
$\mathrm{F}=1.8 \mathrm{C}+32$
$\mathrm{F}=2 \mathrm{C}$
$\therefore \quad 1.8 \mathrm{C}+32=2 \mathrm{C}$
or
or
$0.2 C=32$
$C=\frac{32}{0.2}=160^{\circ} \mathrm{C}$
41. (b)

1st law of thermodynamic for process,

$$
\begin{aligned}
\delta Q & =d U+\delta W \\
\delta W & =-d U
\end{aligned}
$$

For adiabatic process,
Adiabatic work is equal to change in internal energy. The internal energy is point function. Thus, adiabatic is also point function.
42. (b)

For an ideal gas,

$$
\begin{aligned}
s_{2}-s_{1} & =c_{v} \ln \frac{T_{2}}{T_{1}}+R \ln \frac{V_{2}}{V_{1}} \\
\frac{V_{2}}{V_{1}} & =\left(\frac{T_{1}}{T_{2}}\right)^{\frac{1}{n-1}} \quad \quad \quad \text { for polytropic process) } \\
s_{2}-s_{1} & =c_{v} \ln \frac{T_{2}}{T_{1}}+R \ln \left(\frac{T_{1}}{T_{2}}\right)^{\frac{1}{n-1}} \\
s_{2}-s_{1} & =\left(\frac{R}{\gamma-1}-\frac{R}{n-1}\right) \ln \frac{T_{2}}{T_{1}} \quad\left(c_{v}=\frac{R}{\gamma-1}\right) \\
& =\left(\frac{R}{\gamma-1}-\frac{R}{n-1}\right) R \ln \frac{T_{2}}{T_{1}}=\left\{\frac{n-1-\gamma+1}{(\gamma-1)(n-1)}\right\} R \ln \frac{T_{2}}{T_{1}} \\
s_{2}-s_{1} & =\frac{(n-\gamma) R}{(\gamma-1)(n-1)} \ln \frac{T_{2}}{T_{1}}=\frac{(n-\gamma) R}{(\gamma-1)(n-1)} \times \ln \frac{T_{2}}{T_{1}} \\
\left(S_{2}-S_{1}\right) & =m\left(s_{2}-s_{1}\right)=\left(\frac{n-\gamma}{n-1}\right) m c_{v} \log _{e} \frac{T_{2}}{T_{1}} \quad\left(c_{v}=\frac{R}{\gamma-1}\right)
\end{aligned}
$$

44. (c)

Given data:

$$
\begin{aligned}
& V_{1}=1 \mathrm{~m}^{3} \\
& p_{1}=5 \mathrm{bar}=5 \times 10^{5} \mathrm{~Pa} \\
& V_{2}=2 \mathrm{~m}^{3} \\
& p_{2}=5 \mathrm{bar}=5 \times 10^{5} \mathrm{~Pa}
\end{aligned}
$$

Paddle work done on the system,

$$
W_{\text {Paddle }}=200000 \mathrm{Nm}=2 \times 10^{5} \mathrm{Nm}
$$

Work done by the system,

$$
W_{1-2}=p\left(V_{2}-V_{1}\right)=5 \times 10^{5}(2-1)=5 \times 10^{5} \mathrm{Nm}
$$

Net work done by the system,

$$
W_{\text {net }}=W_{1-2}-W_{\text {Paddle }}=5 \times 10^{5}-2 \times 10^{5}=\mathbf{3} \times \mathbf{1 0}^{\mathbf{5}} \mathbf{N m}
$$

46. (a)

At initial state
Given: $m_{1}=10 \mathrm{~kg}, T_{1}=300 \mathrm{~K}, V_{1}=1 \mathrm{~m}^{3}$
At final state
Given: $m_{2}=$ ?, $T_{2}=500 \mathrm{~K}, P_{2}=P_{1}, V_{2}=V_{1}=1 \mathrm{~m}^{3} \quad(\because$ Rigid tank)

$$
\begin{aligned}
P_{1} V_{1} & =m_{1} R T_{1} \\
P_{2} V_{2} & =m_{2} R T_{2} \quad\left(P_{2}=P_{1} \text { and } V_{1}=V_{2}\right) \\
m_{1} T_{1} & =m_{2} T_{2} \\
10 \times 300 & =m_{2} \times 500 \\
m_{2} & =6 \mathrm{~kg} \\
\text { Mass of air escaped } & =m_{1}-m_{2}=10-6=4 \mathrm{~kg}
\end{aligned}
$$

or
47. (c)

$$
\text { Thermal reservoir, } d s=\frac{Q}{T}
$$

48. (c)

Heat required to convert 1 kg of ice to 1 kg of water $=$ L.H. $=335 \mathrm{~kJ} / \mathrm{kg}$
Heat given by water at $25^{\circ} \mathrm{C}=m c_{w} \times \Delta T=1 \times 4.2 \times 25=105 \mathrm{~kJ} / \mathrm{kg}<335$
Hence equilibrium temperature will be $0^{\circ} \mathrm{C}$, as at equilibrium mixture of ice and water will be present.
49. (a)

$$
\begin{aligned}
& T_{1}=(327+273) \mathrm{K}=600 \mathrm{~K} \\
& T_{2}=(27+273) \mathrm{K}=300 \mathrm{~K}
\end{aligned}
$$

Carnot efficiency:

$$
\begin{aligned}
\eta_{\text {Carnot }} & =1-\frac{T_{2}}{T_{1}} \\
& =1-\frac{300}{600}=1-0.5=0.5=50 \%
\end{aligned}
$$



Actual efficiency:

$$
\eta=1-\frac{Q_{2}}{Q_{1}}=1-\frac{0.5 Q_{1}}{Q_{1}}=1-0.5=0.5=50 \%=\eta_{\text {carnot }}
$$

