					DE ERSY				TAILED LUTION
		Ir	ndia's Be			S, GATE &	PSUs		
Test	Centres: Del						war, Indore, Pun	e, Kolk	ata, Patna
		PSC AI TANT E					ANICAL EERING	Т	est 2
				Part Sy	llabus T	est			
				Therm	odynam	nics			
				ANSV	VER KEY	Ĺ			
1.	(d)	11.	(b)	21.	(a)	31.	(a)	41.	(b)
2.	(c)	12.	(b)	22.	(b)	32.	(c)	42.	(b)
3.	(c)	13.	(a)	23.	(c)	33.	(a)	43.	(c)
4.	(b)	14.	(b)	24.	(c)	34.	(b)	44.	(c)
5.	(c)	15.	(d)	25.	(b)	35.	(c)	45.	(b)
6.	(b)	16.	(c)	26.	(c)	36.	(c)	46.	(a)
7.	(c)	17.	(a)	27.	(b)	37.	(b)	47.	(c)
	(b)	18.	(d)	28.	(b)	38.	(c)	48.	(c)
8.	· · ·								
8. 9.	(c)	19.	(b)	29.	(d)	39.	(a)	49.	(a)

DETAILED EXPLANATIONS

1. (d)

For ideal gas
$$z = 1$$

For a non ideal gas $z < 1$, $z > 1$
but $z \neq 1$

3. (c)

According to 1st law of thermodynamics,

$$\begin{split} \oint \delta Q &= \oint \delta W = Q_{1-2} + Q_{2-1} = W_{1-2} + W_{2-1} \\ 20 - 10 &= 40 + W_{2-1} \\ 10 &= 40 + W_{2-1} \implies W_{2-1} = -30 \text{ kJ} \end{split}$$

4. (b)

Net heat intraction, $\oint \delta Q = \oint \delta W$ = Area enclosed in *p*-*v* diagram $= \pi R^2 = \pi (1) \text{ m}^3 (1) \text{ MPa}$ $= \pi \times 1 \text{ m}^3 \times 1000 \text{ kPa} = 3141 \text{ kJ}$

8. (b)

$$(dS)_{\text{system}} = mc_p \ln\left(\frac{T_2}{T_1}\right) = 4 \times 1 \times \ln\left(\frac{400}{800}\right) = -2.7726 \text{ kJ/K}$$
$$(dS)_{\text{surrounding}} = \frac{mc_p (T_1 - T_2)}{T_o} = \frac{4 \times 1 \times 400}{300} = 5.33 \text{ kJ/K}$$
$$(dS)_{\text{universe}} = -2.7726 + 5.33 = 2.5601 \text{ kJ/kg}$$
Unavailable energy = $T_o dS = 300 \times 2.5601 = 768.22 \text{ kJ}$ Heat transferred = $mc dT = 4 \times 1 \times (800 - 400) = 1600 \text{ kJ}$ Available energy = $1600 - 768.22 = 831.78 \text{ kJ}$

19. (b)

For maximum work, heat engine must be reversible,

$$(dS)_{\rm HE} = 0$$

$$dS)_1 + (dS)_2 = 0$$

Let m, c_p are the mass and specific heat of body respectively.

$$\begin{aligned} mc_p \ln \left(\frac{T_f}{T_1} \right) + mc_p \ln \left(\frac{T_f}{T_2} \right) &= 0 \\ \Rightarrow & \ln \left(\frac{T_f^2}{T_1 \times T_2} \right) &= 0 \\ \Rightarrow & \frac{T_f^2}{T_1 \times T_2} &= 1 \\ \Rightarrow & T_f &= \sqrt{T_1 T_2} \end{aligned}$$

 \Rightarrow

© Copyright: MADE EASY

www.madeeasy.in

23. (c)

On applying steady flow energy equation for a nozzle,

$$h_1 + \frac{V_1^2}{2000} = h_2 + \frac{V_2^2}{2000} \qquad (W = 0, Q = 0, \Delta PE = 0)$$
$$V_2 = \sqrt{2000(h_1 - h_2)} = \sqrt{2000 \times 45}$$
$$= \sqrt{90000} = 300 \text{ m/s}$$

24. (c)

$$(COP)_{HP} = 1 + (COP)_{RE}$$

= 1 + 3.4 = 4.4

25. (b)

Given: m = 0.2 kg, $c_w = 4.2 \text{ kJ/kgK}$, LH of vaporization = 2256 kJ/kg

Rate of heat transfer to water, $\dot{Q} = \frac{m \times LH}{t} = \frac{0.2 \times 2256}{10} = 45.12 \text{ kJ/min}$

28. (b)

 $\dot{Q}_2 = 18000 \text{ kJ/hr} = \frac{18000}{3600} = 5 \text{ kW}$ $\dot{W}_{in} = 1.9 \text{ kW}$ $(\text{COP})_{\text{HP}} = \frac{\dot{Q}_2}{\dot{W}_{in}} = \frac{5}{1.9} = 2.63$

30. (d)

C₆H₁₄ + $x[0.21 \text{ O}_2 + 0.79\text{N}_2] \rightarrow a\text{CO}_2 + b\text{H}_2\text{O} + c\text{N}_2$ On balancing hydrogen, $2b = 14 \Rightarrow b = 7$ On balancing carbon, a = 6On balancing oxygen, $0.21 \times 2x = 2a + b$ $= 2 \times 6 + 7 = 19$ $x = \frac{19}{0.42} = 45.238 \text{ mole}$ On balancing nitrogen, $0.79 \times 2x = 2c$ c = 3.5738So, Mole of fraction of CO₂, $y_{\text{CO}_2} = \frac{a}{a+b+c} = \frac{6}{6+7+3.5738} = 0.362 = 36.2\%$

31. (a)

Intensive properties are independent of mass.

© Copyright: MADE EASY

MADE EASY

32. (c)

 $R = R_0(1 + \alpha t)$ Let $2.5 = R_0(1 + \alpha \times 0)$ as R = 2.5, at t = 0 $R_0 = 2.5$ \Rightarrow Again, at $t = 100^{\circ}$ C, R = 5, $5 = 2.5(1 + \alpha \times 100)$ $\alpha = 0.01$ \Rightarrow So when, $R = 9\Omega$, $9 = 2.5(1 + 0.01 \times t)$ $t = 260^{\circ}C$ \Rightarrow

33. (a)

As Tds = dh - vdP

So for constant pressure lines dP = 0

$$\Rightarrow$$

 $\left(\frac{dh}{ds}\right)_{p} = T =$ Slope = always positive as 'T' is always positive for superheated region.

34. (b)

Let methane is burned with *x* moles of air, $CH_4 + x[0.21 O_2 + 0.79N_2] \rightarrow aCO_2 + bH_2O + cO_2 + dN_2$ ∴ *c* = 1 On balancing hydrogen, b = 2On balancing carbon, a = 1 $0.21 \times 2x = 2a + b + 2$ On balancing oxygen, $= 2 \times 1 + 2 + 2 = 6$ $x = \frac{6}{0.42} = 14.2857$ $\frac{\dot{m}_{\rm air}}{\dot{m}_{\rm fuel}} = \frac{14.2857 \times 29}{1 \times (12 + 4 \times 1)} = 25.89$ So,

36. (c)

An isolated system is either of the following:

1. a physical system so far removed from other systems that it does not interact with them. 2. a thermodynamic system enclosed by rigid immovable walls through which neither matter nor energy can pass.

38. (c)

Given: $c_p = 1 \text{ kJ/kgK}$, $c_v = 0.75 \text{ kJ/kgK}$, $T = 27^{\circ}\text{C} = (27 + 273) \text{ K} = 300 \text{ K}$, p = 1 bar = 100 kPa $R = c_p - c_v = 1 - 0.75 = 0.25 \text{ kJ/kgK}$ Gas constant: Applying equation of state in term of density,

$$p = \rho R T$$

$$100 = \rho \times 0.25 \times 300$$

$$1 = 0.75 \rho$$

$$\rho = \frac{1}{0.75} = \frac{10}{75} = 1.33 \text{ kg/m}^3$$

or

39. (a)

We know that, If F = 1.8C + 32 (F = Temp. in Fahrenheit, C = Temp. in Celsius) F = 2C \therefore 1.8C + 32 = 2C or 0.2C = 32 or $C = \frac{32}{0.2} = 160^{\circ}C$

41. (b)

1st law of thermodynamic for process,

 $\delta Q = dU + \delta W$ For adiabatic process, $\delta W = -dU$

Adiabatic work is equal to change in internal energy. The internal energy is point function. Thus, adiabatic is also point function.

42. (b)

For an ideal gas,

$$\begin{split} s_{2} - s_{1} &= c_{v} \ln \frac{T_{2}}{T_{1}} + R \ln \frac{V_{2}}{V_{1}} \\ \frac{V_{2}}{V_{1}} &= \left(\frac{T_{1}}{T_{2}}\right)^{\frac{1}{n-1}} \quad \text{(for polytropic process)} \\ s_{2} - s_{1} &= c_{v} \ln \frac{T_{2}}{T_{1}} + R \ln \left(\frac{T_{1}}{T_{2}}\right)^{\frac{1}{n-1}} \\ s_{2} - s_{1} &= \left(\frac{R}{\gamma - 1} - \frac{R}{n-1}\right) \ln \frac{T_{2}}{T_{1}} \qquad \left(c_{v} = \frac{R}{\gamma - 1}\right) \\ &= \left(\frac{R}{\gamma - 1} - \frac{R}{n-1}\right) R \ln \frac{T_{2}}{T_{1}} = \left\{\frac{n - 1 - \gamma + 1}{(\gamma - 1)(n-1)}\right\} R \ln \frac{T_{2}}{T_{1}} \\ s_{2} - s_{1} &= \frac{(n - \gamma)R}{(\gamma - 1)(n-1)} \ln \frac{T_{2}}{T_{1}} = \frac{(n - \gamma)R}{(\gamma - 1)(n-1)} \times \ln \frac{T_{2}}{T_{1}} \\ (S_{2} - S_{1}) &= m(s_{2} - s_{1}) = \left(\frac{n - \gamma}{n-1}\right) m c_{v} \log_{e} \frac{T_{2}}{T_{1}} \qquad \left(c_{v} = \frac{R}{\gamma - 1}\right) \end{split}$$

Given data:

 $V_1 = 1 \text{ m}^3$ $p_1 = 5 \text{ bar} = 5 \times 10^5 \text{ Pa}$ $V_2 = 2 \text{ m}^3$ $p_2 = 5 \text{ bar} = 5 \times 10^5 \text{ Pa}$ Paddle work done on the system, $W_{\text{Paddle}} = 200000 \text{ Nm} = 2 \times 10^5 \text{ Nm}$

MADE EASY

Work done by the system,

$$W_{1-2} = p(V_2 - V_1) = 5 \times 10^5 (2 - 1) = 5 \times 10^5 \text{ Nm}$$

Net work done by the system,

$$W_{\text{net}} = W_{1-2} - W_{\text{Paddle}} = 5 \times 10^5 - 2 \times 10^5 = 3 \times 10^5 \text{ Nm}$$

46. (a)

At initial state Given: $m_1 = 10 \text{ kg}$, $T_1 = 300 \text{ K}$, $V_1 = 1 \text{ m}^3$ At final state Given: $m_2 = ?$, $T_2 = 500 \text{ K}$, $P_2 = P_1$, $V_2 = V_1 = 1 \text{ m}^3$ (:: Rigid tank) $P_1V_1 = m_1RT_1$ $P_2V_2 = m_2RT_2$ ($P_2 = P_1 \text{ and } V_1 = V_2$) $m_1T_1 = m_2T_2$ $10 \times 300 = m_2 \times 500$ or $m_2 = 6 \text{ kg}$ Mass of air escaped $= m_1 - m_2 = 10 - 6 = 4 \text{ kg}$

47. (c)

Thermal reservoir,
$$ds = \frac{Q}{T}$$

48. (c)

Heat required to convert 1 kg of ice to 1 kg of water = L.H. = 335 kJ/kg Heat given by water at 25°C = $mc_w \times \Delta T = 1 \times 4.2 \times 25 = 105$ kJ/kg < 335 Hence equilibrium temperature will be 0°C, as at equilibrium mixture of ice and water will be present.

$$T_{1} = (327 + 273)K = 600 K$$

$$T_{2} = (27 + 273)K = 300 K$$
Carnot efficiency:

$$\eta_{\text{Carnot}} = 1 - \frac{T_{2}}{T_{1}}$$

$$= 1 - \frac{300}{600} = 1 - 0.5 = 0.5 = 50\%$$

$$T_{2}$$
Actual efficiency:

$$\eta = 1 - \frac{Q_{2}}{Q_{1}} = 1 - \frac{0.5Q_{1}}{Q_{1}} = 1 - 0.5 = 0.5 = 50\% = \eta_{\text{carnot}}$$

0000

τ