

GATE 2020 Instrumentation Engineering

Questions and Solutions of afternoon session

Date of Exam : 1/2/2020

Scroll down to view

ADE EABY	ndia's Best Institute for IES, GATE & PSUs	GATE 2020 : Instrumentation Engg Date of Test : 01-02-2020
	SECTION A : GEI	NERAL APTITUDE
Q.1	P, Q, R and S are to be uniquely coc as $\alpha\beta$, then R and S, respectively, ca (a) $\beta\alpha$ and $\alpha\beta$ (c) $\beta\alpha$ and $\beta\beta$	led using α and β. If <i>P</i> is coded as αα and α in be coded as (b) αβ and ββ (d) ββ and αα
Ans.	(c)Given:Code of $P = \alpha \alpha$; CodeThen,Code of $R = \beta \alpha$ andCode of $S = \beta \beta$	le of $Q = \alpha \beta$
Q.2	I do not think you know the case well with your other point. What does the ph (a) contrary to what I have said (c) as opposed to what I have said	enough to opinions. Having said that, I agre mase "having said that" means in the given text (b) in addition to what I have said (d) despite what I have said
Ans.	(d)	End of Solution
Q.3	He is known for his unscrupulous ways (a) fox (c) crocodile's	. He always sheds tears to deceive people (b) fox's (d) crocodile
Ans.	(d)	
Q.4	Select the word that fits the analogy: Build : Building :: Grow : (a) Grown	(b) Grew
Ans.	(c) Growed (d)	(d) Growth
		End of Solution
Q.5	Crowd funding deals with mobilization people, who would be willing to invest in the project. Based on the above paragraph, which (a) Funds raised through unwilling con (b) Funds raised through coerced con (c) Funds raised through large contrib (d) Funds raised through voluntary co	n of funds for a project from a large number of smaller amounts through web-based platform of the following is correct about crowd funding ntributions on web-based platforms. ntributions on web-based platforms. ntributions on web-based platforms. ntributions on web-based platforms.
Ans.	(d)	
		End of Solution
		Dama 2

UPPSC Combined State Engineering Services Exam, 2019

Assistant Engineer | Total Posts : 692

- 650 Hrs of quality classes at your doorstep.
- Flexibility to learn at your own pace.
- Physical study materials will be dispatched at your address.

Admission open

Streams: CE, ME, EE

20 Tests | Commencing from 23rd Feb, 2020

Test Series (Online/Offline)

- Quality questions with detailed solutions.
- Comprehensive performance analysis.
- Tests on standard and pattern as per UPPSC examination.

Streams: CE, ME, EE

Admission open

ESE 2020 Main Exam Streams: CE ME EE E&T

_____.

www.madeeasy.in

ESE 2021 **GATE** 2021

1 Year/2 Years Classroom Courses

Regular

Weekend

Early Start... • Extra Edge...

BATCH COMMENCEMENT DATES

Delhi and Noida			Rest of India	
	P		Patna : 24-02-2020	-
REGULAR			Lucknow : 20-02-2020	
BAICHES			Bhopal : 16-01-2020	_
DELHI Evening :	BATCHES		Indore : 20-02-2020	_
ME : 16 th Jan, 2020 25 th Feb, 2020			Pune : 10-02-2020	
CE : 30 th Jan, 2020 20 th Feb, 2020	CE : 1 [°] Feb, 2020 ME : 9 th Feb, 2020		Hyderabad : 16-03-2020	
EE, EC : 20 th Jan, 2020	EE: 22 nd Feb, 2020		Bhubaneswar : 23-01-2020	
Morning: EC:22 Feb, 2020 CE, ME:12 th Feb, 2020 NOIDA			Kolkata : 25-01-2020	
(Batch Closed)	CE & ME : 8 th Feb, 2020 FC & FE : 18 th Jan, 2020		Jaipur : 16-02-2020	_
EC : 6 th Apr, 2020 CS : 18 th May, 2020	16 th Feb, 2020			

www.madeeasy.in

	Image: Sest Institute for IES, GATE & PSUs GATE 2020 : Instrumentation Engg. Date of Test : 01-02-2020		
Ans.	(b)		
	Maximum current for 100 Ω , 1 W; $I = \sqrt{\frac{P}{R}} = 0.1$ A		
	Maximum current for 2 Ω , 0.5 W; $I = \sqrt{\frac{0.5}{2}} = 0.5$ A		
	Maximum current for 1 Ω , 0.25 W; $I = \sqrt{0.25} = 0.5$ A The safe maximum value of current <i>I</i> which can flow through series resistances is 0.1 A.		
Q.23	A differentiator has a transfer function whose (a) magnitude decreases linearly with frequency (b) magnitude remains constant (c) phase increase linearly with frequency (d) magnitude increases linearly with frequency		
Ans.	(d)		
	$y(t) = \frac{dx(t)}{dt}$		
	Taking Fourier Transform $Y(\omega) = j\omega X(\omega)$		
	$\Rightarrow \qquad H(\omega) = \frac{Y(\omega)}{X(\omega)} = j\omega$		
	$\Rightarrow \qquad H(\omega) = \omega \\ \angle H(\omega) = 90^{\circ}$		
	Magnitude increases linaerly and phase is constant.		
Q.24	Two 100 Ω resistors having tolerance 3% and 4% are connected in series. The effective tolerance of the series combination (in %, rounded off to one decimal place) is		
Ans.	(3.5) Given, $R_1 = 100 \ \Omega \pm 3\%$ $R_2 = 100 \ \Omega \pm 4\%$ $R = R_1 + R_2 = 100 + 100 = 200 \ \Omega$		
	Here, $\frac{\delta R_1}{R_1} \times 100 = 3$		
	$\delta R_1 = \frac{100 \times 3}{100} = 3 \Omega$		
Corporat	te Office: 44-A/1, Kalu Sarai, New Delhi-110016 🖂 info@madeeasy.in 🜏 www.madeeasy.in Page 16		

d Salutia

Г

An initiative of **MADE EASY** Group

🔀 cst@nextia<u>s.com 🕓 8800338066</u>

www.nextias.com

Q.31 A 1000/1 A, 5 VA, UPF bar-primary measuring current transformer has 1000 secondary turns. The current transformer exhibits a ratio error of – 0.1% and a phase error of 3.438 minutes when the primary current is 1000 A. At this operating condition, the rms value of the magnetization current of the current transformer (in amperes, rounded off to two decimal places) is _____.

Ans. (1.00)

In a current transformer we know that the phase angle error

$$\beta = \frac{180}{\pi} \frac{I_m}{nI_s}$$

Here

$$\beta = 3.438 \text{ mins} = \frac{3.438}{60} \text{deg}$$

$$n = 1000$$

$$I_s = 1$$

$$\frac{3.438}{60} = \frac{180}{\pi} \times \frac{I_m}{1000 \times 1}$$

 $I_m = \frac{3.438 \times 1000 \times \pi}{60 \times 180}$

 $=\frac{108.0079}{108}$ = 1.00 A

....

	Detailed Solutions of GATE 2020 : Instrumentation Engg. Date of Test : 01-02-2020
Q.32	Consider the function $f(x, y) = x^2 + y^2$. The minimum value of the function attains on the line $x + y = 1$ (rounded off to two decimal places) is
Ans.	(0.5) $f(x, y) = x^{2} + y^{2} \text{ with respect to line } x + y = 1$ from constraint $x + y = 1 \implies y = 1 - x$ Then $f(x, y) = x^{2} + (1 - x)^{2}$ $= x^{2} + 1 + x^{2} - 2x$ $f(x, y) = \phi(x) = 2x^{2} - 2x + 1 \text{ to be minimum}$ find stationary point $\phi'(x) = 4x - 2 = 0$ $\Rightarrow \qquad x = 1/2$ Then, $y = 1 - x = 1 - \frac{1}{2} = \frac{1}{2}$ $\therefore \text{ stationary point is } \left(\frac{1}{2}, \frac{1}{2}\right)$ and $\phi''(x) = 4 > 0$ $\Rightarrow \qquad f(x, y) \text{ is minimum at point } \left(\frac{1}{2}, \frac{1}{2}\right)$ Hence, minimum value of $f(x, y) = x^{2} + y^{2}$ $= \left(\frac{1}{2}\right)^{2} + \left(\frac{1}{2}\right)^{2} = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$
Q.33	Consider the matrix $M = \begin{bmatrix} 1 & -1 & 0 \\ 1 & -2 & 1 \\ 0 & -1 & 1 \end{bmatrix}$. One of the eigen vectors of M is (a) $\begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix}$ (b) $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$
Ans.	(c) $\begin{bmatrix} 1\\ -1\\ 1 \end{bmatrix}$ (d) $\begin{bmatrix} 1\\ 1\\ 1\\ -1 \end{bmatrix}$ (b) $\therefore C_1 + C_2 + C_3 = 0 \implies \lambda = 0$ We know that, $MX = \lambda X$ $\implies \qquad MX = 0$ $\begin{bmatrix} 1 & -1 & 0\\ 1 & -2 & 1\\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} x\\ y\\ z \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}$
Corporat	e Office: 44-A/1, Kalu Sarai, New Delhi-110016 🖂 info@madeeasy.in 🕢 www.madeeasy.in Page 22

$$= \frac{1}{3} \sum_{K=0}^{2} e^{j\frac{2\pi}{3}Kn} = \frac{1}{3} \left[1 + e^{j\frac{4\pi}{3}} + e^{j\frac{8\pi}{3}} \right]$$

National Through Scholarship

BST For ESE & GATE 202

Scholarship applicable on Long Term Classroom Courses for ESE & GATE

Date of Test : 1st Mar, 2020

Valid on batches commencing from Apr-June, 2020

Students may opt any one of the following paper:

• Technical Paper : CE, ME, EE, EC, CS, IN

Avail upto

- 50 Questions; • 100 Marks; 1 Hour duration
- Aptitude Based Paper : Maths + Reasoning + English

🕓 09599946203, 09599946204 🛛 🖂 nst@madeeasy.in For registration, visit: www.madeeasy.in

Detailed Solutions of made ea **GATE 2020 : Instrumentation Engg.** Date of Test: 01-02-2020 $\operatorname{cosec} x - \operatorname{cot} x = e^{t + c}$ $\frac{1-\cos x}{\sin x} = e^{t+c}$ $\tan\frac{x}{2} = e^{t + c}$ $\frac{x}{2} = \tan^{-1}[e^{t+c}]$ Put t = 0, x = 0 $0 = \tan^{-1}[e^{0 + c}]$ $C = -\infty$ \Rightarrow \therefore solution is $\frac{x}{2} = \tan^{-1}[e^{t-\infty}]$ but as $t \ge 0$ and finite $\frac{x}{2} = \tan^{-1}[e^{-\infty}]$ We get, $\frac{x}{2} = 0 \implies x(t) = 0$ End of Solution Q.43 The loop transfer function of a negative feedback system is given by $G(s)H(s) = \frac{K}{s(s+2)(s+6)}$, where K > 0. The value of K at the breakaway point of the root locus for the above system (rounded off to one decimal place) is _____. Ans. (5) $G(s)H(s) = \frac{K}{s(s+2)(s+6)}$ Breakaway point = -0.9 $\left|\frac{K}{s(s+2)(s+6)}\right| = 1$ *.*:. S = -0.9K = 5*.*... End of Solution Page 28 Corporate Office: 44-A/1, Kalu Sarai, New Delhi-110016 | 🔀 info@madeeasy.in | 🔊 www.madeeasy.in

MADE EAS India's Best Institute for IES. GATE & PSUs

Detailed Solutions of GATE 2020 : Instrumentation Engg. Date of Test: 01-02-2020

Ans. (10)

Given that,

Self-inductances L_{s1} and L_{s2} remain constant and are independent of x. At x = 0, $M_1 = M_2 = M_0$

 M_1 and M_2 change linearly with x. This means

 $M_1 = M_0 + k_1 x$

at

$$M_{2} = M_{0} + k_{2}x$$

$$x = + 10 \text{ mm}$$

$$M_{1} = M_{0} + k_{1} \times 10 \times 10^{-3}$$

$$M_{2} = M_{0} + k_{2} \times 10 \times 10^{-3}$$

$$M_{1} - M_{2} = (k_{1} - k_{2}) \times 10 \times 10^{-3} = 0.25 M_{0}$$

$$(k_{1} - k_{2}) = 25 M_{0}$$

Voltage across the detector (V_{D}) = Volteage developed across the primary coil (I_{P}) $V_D = V_{IP}$

Voltage develped across the primarycoil depends on the primary current and current in the secondary coils.

So,
$$V_D = V_{LP} = L_P \frac{di_P}{dt} + M_1 \frac{di_{s_1}}{dt} - M_2 \frac{di_{s_2}}{dt}$$
 ...(ii)

(:: i_{s1} and i_{s2} are out of phase)

(

According to the given information detector output voltage $(V_D) = 0$ at x = D and there can't be any primary current (i_p)

So, equation (ii) can be written as

$$M_1 \frac{di_{s_1}}{dt} - M_2 \frac{di_{s_2}}{dt} = 0$$
 ...(iii)

From the diagram, voltages across secodnary coils can be written as

$$V_1 = L_{s_1} \frac{di_{s_1}}{dt}$$
$$V_2 = L_{s_2} \frac{di_{s_2}}{dt}$$

. .

as L_{s_1} , L_{s_2} are not changing and initial voltages across both should be zero.

 $L_{s_1} = L_{s_2} = L_s$ So,

Page 33

...(i)

- $D = \frac{0.25M_0}{k_1 k_2} = \frac{0.25M_0}{25M_0} = 10 \times 10^{-3} \text{ (From eq.(i))}$ D = 10 mm
 - End of Solution

Corporate Office: 44-A/1, Kalu Sarai, New Delhi-110016 | 🔀 info@madeeasy.in | 🔊 www.madeeasy.in

Ans.

Detailed Solutions of India's Best Institute for IES, GATE & PSUs GATE 2020 : Instrumentation Engg. Date of Test: 01-02-2020 Ans. (1.8) D₄ 2 kΩ D_1 , D_2 , D_3 are in common cathode connection. Only D_1 can conduct D_2 and D_3 remain OFF. Let D_4 , D_5 be ON. $\begin{array}{c} D_4 & 2 \ k\Omega \\ 12 \ V \bullet & \swarrow & V_x \\ 6 \ V \bullet & \swarrow & I_x \\ D_5 & 2 \ k\Omega \end{array} \xrightarrow{\begin{array}{c} D_4 \\ V_x \\$ KCL at V_r Node: $I_x = I_4 + I_5$ $\frac{15 - V_x}{3} = \frac{V_x - 12}{2} + \frac{V_x - 6}{2} = \frac{2V_x - 18}{2}$ $\frac{15 - V_x}{3} = V_x - 9 \implies V_x = 10.5 \text{ V}$ \therefore $V_x < 12$ V \Rightarrow D_4 must be OFF $6 \vee \bullet \bigvee_{D_5} \xrightarrow{2 k\Omega} 3 k\Omega \\ \longleftarrow I_x D_1 \bullet 15 \vee D_1$ $I_x = \frac{15-6}{2+3} = 1.8 \text{ mA}$ End of Solution

