

GATE 2020 COMPUTER SCIENCE & IT

Click here for Questions and Solutions

Date of Exam : 08/02/2020

Scroll down to view

Corporate Office: 44-A/1, Kalu Sarai, New Delhi - 110016 | Ph: 011-45124612, 9958995830 Delhi | Hyderabad | Noida | Bhopal | Jaipur | Lucknow | Indore | Pune | Bhubaneswar | Kolkata | Patna

Detailed Solutions of GATE 2020 : Computer Science & IT Date of Test : 08-02-2020

SECTION A : GENERAL APTITUDE

Q.1	 Goods and Services Tax (GST) is an indirect tax introduced in India in 2017 that is imposed on the supply of goods and services, and it subsumes all indirect taxes except few. It is a destination-based tax imposed on goods and services used, and it is not imposed at the point of origin from where goods come. GST also has a few components specific to state governments, central government and Union Territories (UTs). Which one of the following statements can be inferred from the given passage? (a) GST is imposed on the production of goods and services. (b) GST does not have a component specific to UT. (c) GST is imposed at the point of usage of goods and services. (d) GST includes all indirect taxes.
Ans.	 (c) According to passage GST is imposed on the supply of goods and services hence option (a) is incorrect which states that GST is imposed on production of goods and services. In the passage it is mentioned that GST has a two components specific to UTs. So option (b) is incorrect. Passage states that GST is a destination based tax which means it is imposed at the point of usage of goods and services. Hence (c) is correct. Option (d) says GST includes all indirect taxes but as per passage it subsumes all indirect taxes except few.
Q.2	Raman is confident of speaking English six months as he has been practising regularlythe last three weeks. (a) for, since (b) within, for (c) during for (d) for in
Ans.	 (b) 'within' is a preposition that is used to express something that occurs inside a particular period of time. 'for' is used here because (i) Sentence is in 'present perfect continuous tense'. (ii) For is used when we talk about a period of time.

	MADE EASY ndia's Best Institute for IES, GATE & PSUs	Detailed Solutions of GATE 2020 : Computer Science & IT Date of Test : 08-02-2020
Q.7	His knowledge of the subject was excel (a) extremely poor (c) desirable	llent but his classroom performance was (b) praiseworthy (d) good
Ans.	(a) 'But' is used for introducing an idea w already said.	which contrasts with the statement that has been
Q.8	Select the word that fits the analogy: Cook : Cook :: Fly :	
	(a) Flying (c) Flew	(b) Flyer (d) Flighter
Ans.	(b)	
	(i) Relation is verb : noun(ii) One who cooks is a cook, simila	arly one who flies any aircraft is a flyer.
		End of Solution
	UN climate report estimates that with 30% of the northern hemisphere's surfa Given this situation of imminent globa seas, nation-states need to rethink the environmental ones. Which one of the following statement (a) Billions of people are affected by (b) Billions of people are responsible (c) Nation-states do not have environ (d) Nation-states are responsible for	aout deep cuts to man-made emissions, at least ce permafrost could melt by the end of the century. I exodus of billions of people displaced by rising ir carbon footprint for political concerns, if not for s can be inferred from the given passage? / melting glaciers. e for man-made emissions. mental concerns. providing fresh water to billions of people.
Ans.	(a)	

Detailed Solutions of GATE 2020 : Computer Science & IT Date of Test: 08-02-2020

SECTION B : COMPUTER SCIENCE & IT

- Q.1 Let R be the set of all binary relations on the set {1, 2, 3}. Suppose a relation is chosen from R at random. The probability that the chosen relation is reflexive (round off to 3 decimal places) is _____.
- Ans. (0.125)

$$A = \{1, 2, 3\} \\ n = |A| = 3$$

Number of relations on A = $2^{n^2} = 2^{3^2} = 2^9$ Number of reflexive relations on A = $2^{n^2-n} = 2^{3^2-3} = 2^6$ P(reflexive relation) = $\frac{2^6}{2^9} = \frac{1}{8} = 0.125$

End of Solution

Q.2

Consider a relational database containing the following schemas.

Catalog		
sno	pno	cost
S1	P1	150
S1	P2	50
S1	P3	100
S2	P4	200
S2	P5	250
S3	P1	250
S3	P2	150
S3	P5	300
S3	P4	250
S3 S3 S3 S3	P1 P2 P5 P4	250 150 300 250

Supplies				
sno	sname	location		
S1	M/s Royal furniture	Delhi		
S1	M/s Balaji furniture	Bangalore		
S3	M/s Premium furniture	Chennai		

	Parts			
pno	sname	part_spec		
P1	Table	Wood		
P2	Chair	Wood		
P3	Table	Steel		
P4	Almirah	Steel		
P5	Almirah	Wood		

The primary key of each table is indicated by underlining the constituent fields.

SELECT s.sno, s.name Suppliers s, Catalogue c FROM WHERE s.no = c.sno ANDcost > (SELECT AVG (cost) FROM Catalogue WHERE pno = 'P4' GROUP BY pno); The number of rows returned by the above SQL query is (a) 2 (b) 5

	Detailed Solutions of GATE 2020 : Computer Science & IT Date of Test : 08-02-2020
Q.9	Consider the following statements:I.If $L_1 \cup L_2$ is regular, then both L_1 and L_2 must be regular.II.The class of regular languages is closed under infinite union.Which of the above statements is/are TRUE?(a) Neither I nor II(b) II only(c) I only(d) Both I and II
Ans. Q.10	 (a) If L₁ ∪ L₂ is regular, then neither needs to be regular. <i>Example:</i> {aⁿbⁿ} ∪ {aⁿbⁿ}^c = (a + b)* is regular but {aⁿbⁿ} and its complement both are non-regular. So statement I is false. The class of regular language is not closed under infinite union. Proof: It is was closed under infinite union then aⁿbⁿ = {e} ∪ {ab} ∪ {aabb} ∪ will be infinite union of finite languages (which are regular) and hence will become regular. But we know that {aⁿbⁿ n ≥ 0} is non-regular. So option (a), neither I nor II is the correct answer. The preorder traversal of a binary search tree is 15, 10. 12, 11, 20, 18, 16, 19. Which one of the following is the postorder traversal of the tree? (a) 20, 19, 18, 16, 15, 12, 11, 10 (b) 10, 11, 12, 15, 16, 18, 19, 20
Ans.	(d) 19, 10, 16, 20, 11, 12, 10, 13 (d) 11, 12, 10, 16, 19, 16, 20, 13 (d)
	BST inorder: 10, 11, 12, (15), 16, 18, 19, 20
	LST RST
	Preorder: (15), 10, 12, 11, 20, 18, 16, 19
	(15)
	Postorder: 11, 12, 10, 16, 19, 18, 20, 15
	End of Solution
Corpored	to Office: 44.4/1 Kalu Sarai New Delhi 110016 - L VI info@madeeasty in L Course madeeasty in Page 12
Corpora	

MADE EASY	Detailed Solutions of GATE 2020 : Computer Science & I Date of Test : 08-02-2020	Т
Q.11	Consider the following grammar: $S \rightarrow aSB d$ $B \rightarrow b$ The number of reduction steps taken by a bottom-up parser while accepting the string aaadbbb is	g
Ans.	(7) $S \rightarrow aSB$ $\Rightarrow aaSBB [S \rightarrow aSB]$ $\Rightarrow aaaSBBB [S \rightarrow aSB]$ $\Rightarrow aaadBBB [S \rightarrow d]$ $\Rightarrow aaadbBB [B \rightarrow b]$ $\Rightarrow aaadbbB [B \rightarrow b]$ $\Rightarrow aaadbbb [B \rightarrow b]$ Total 7 steps required. <i>End of Solution</i>	
Q.12	Which one of the following regular expressions represents the set of all binary string with an odd number of 1's? (a) (0*10*10*)*0*1 (b) 10* (0*10*10*)* (c) ((0 + 1)* 1(0 + 1)*1)*10* (d) (0*10*10*)*10*	S
Ans.	 (*) Regular expression in option (a) is incorrect because it will force the strings to enwith 1 and a string of odd number of 1's need not to end with 1. Regular expression in option (b) will force it to start with 1 and hence it is incorrect. Regular expression in option (c) can create odd number of 1's as well as even number of 1's and hence it is incorrect. Regular expression in option (d) is incorrect as it does not generate strings '0' or 1 or more 0 followed by 1 which is having an odd number of 1's. Note: Option (d) would be correct only when if the expression wer (0*10*10*)*10* + (0*10*) means (0*10*) missing from the option. Hence option (d) is also incorrect. 	d t. n 1' e
Corpora	ate Office: 44-A/1, Kalu Sarai, New Delhi-110016 🔀 info@madeeasy.in 🕢 www.madeeasy.in Page 13	

	MADE EASY ndia's Best Institute for IES, GATE & PSUs	Detailed Solutions GATE 2020 : Computer S Date of Test : 08-02-	of cience & IT 2020
Q.13	What is the worst case time complexit <i>n</i> elements initially? (a) $\theta(n^4)$ (c) $\theta(n^3)$	by of inserting n^2 elements into an A (b) $\theta(n^2 \log n)$ (d) $\theta(n^2)$	AVL-tree with
Ans.	 (b) AVL with <i>n</i> element: [height balanced log<i>n</i> level due to balanced BST. (i) Every insertion of element: log<i>n</i>: Find place to insert. log<i>n</i>: If property not satisfied do ∴ n² element insertion: For 1 element = 2 log<i>n</i> So, for n² element = θ(n² logn) 	I [-1, 0, +1] BST] rotation.	ind of Solution
Q.14	Consider the language $L = \{a^n n > 0\}$ I. <i>L</i> is deterministic context-free. II. <i>L</i> is context-free but not determining III. <i>L</i> is not LL(<i>k</i>) for any <i>k</i> . Which of the above statements is/are (a) I and III only (c) I only	} ∪ { <i>aⁿbⁿ</i> <i>n</i> ≥ 0} and the following stic context-free. TRUE? (b) III only (d) II only	statements.
Ans.	 (a) Statement I: L in DCFL is true, sin closure property. So II is false an Statement III is true because we a since no matter how many a's a distinguish between whether the stahence the production cannot be a So option (a) is correct, I and III 	ce $\{a^n\} \cup \{a^n b^n\}$ = regular \cup DCFL ad I is true. cannot write LL(k) grammar, for any re shown to compiler it will be in ring presented is in the form of $\{a^n\}$ of chosen uniquely for any value of k. only are true.	= DCFL, by y value of k , npossible to or $\{a^n b^n\}$ and or $dof Solution$
Corporat	e Office: 44-A/1, Kalu Sarai, New Delhi-110016 \mid 🔀	info@madeeasy.in 🕢 www.madeeasy.in	Page 14

	MADE EASY ndia's Best Institute for IES, GATE & PSUs	Detailed Solutions of GATE 2020 : Computer Science & IT Date of Test : 08-02-2020
Q.15	A multiplexer is placed between a ground data movement such that at any giver will move to the accumulator, The minultiplexer is	p of 32 registers and an accumulator to regulate n point in time the content of only one register nimum number of select lines needed for the
Ans.	(5) Number of registers = $n = 32$ Required multiplexer size is $n : 1$ i.e. No of select lines required to the mult \therefore $m = \log_2 n$ $m = \log_2 32$ m = 5	32 : 1 tiplexer = <i>m</i> <i>End of Solution</i>
Q.16	If there are <i>m</i> input lines and n output lin a byte addressable 1 KB RAM, then	es for a decoder that is used to uniquely address the minimum value of $m + n$ is
Ans.	(1034) We need 2^{10} outputs to map 1 KB R/ For this we need 10×2^{10} decoder. Here $m = 10$ and $n = m + n = 1034$	AM. = 2 ¹⁰ End of Solution
Q.17	A direct mapped cache memory of 1 has an access time of 3 ns and a hit ra to bring the first word of a block from t takes 5 ns. The word size is 64 bits. T off to 1 decimal place) is	MB has a block size of 256 bytes. The cache ate of 94%. During a cache miss, it takes 20 ns the main memory, while each subsequent word The average memory access time in ns (round
Ans.	(13.5) Word size = 64 bit = 88 Block size = 256B $\therefore \frac{\text{Number of words}}{\text{Block}} = \frac{256}{8} = 2^5(3)$ $T_{\text{avg}} = (0.94 \times 3)$ $= 13.5 \text{ ns}$	2) + (1 – 0.94) [3 + 20 + (31 × 5)] <i>End of Solution</i>
Corporat	e Office: 44-A/1, Kalu Sarai, New Delhi-110016 \mid 🖂	info@madeeasy.in 💽 www.madeeasy.in Page 15

	MADE EASY	Detailed Solutions of GATE 2020 : Computer Science & IT
	ndia's Best Institute for IES, GATE & PSUs	Date of Test : 08-02-2020
Q.18	Consider a double hashing scheme in what and the secondary hash function is $h_2($ is 23. Then the address returned by probe sequence begins at probe 0) for	hich the primary hash function is $h_1(k) = k \mod 23$ $k = 1 + (k \mod 19)$. Assume that the table size to be 1 in the probe sequence (assume that the proof key value $k = 90$ is
Ans.	(13) For double hashing we use the formula probe value. $h_1(k) = 90\% \ 23 = h_2(k) = 1 + k \% \ 19 = 1 + 90 \%$ For probe 1 the value of <i>i</i> is 1 thus, of	as $(h_1(k) + i h_2(k))$ % table size where <i>i</i> denotes 21 29 19 = 15 (21 + 13) % 23 = 13 <i>End of Solution</i>
Q.19	 Consider the following statements about 1. A router does not modify the IP particular to the incoming IP particular to the above statements is/are 	ut the functionality of an IP based router. ackets during forwarding. implement any routing protocol. gments if the MTU of the outgoing link is larger acket. TRUE?
	(a) I only (c) II and III only	(b) I and II only (d) II only
Ans.	 (d) I. A router modifies the IP packets d II. A router can also be used in LAN that time. III. Packet fragmentation is done if page 	uring forwarding because TTL is changing. network it does not require routing protocol at acket size is more than MTU. End of Solution
Q.20	Consider the following data path diagr	am.
	MAR MDR IR PC To memory Consider an instruction: $R0 \leftarrow R1 + R2$ the given data path. Assume that PC is <i>w</i> indicate read and write operations, in	R0 R1 TEMP2 R7 The following steps are used to execute it over incremented appropriately. The subscripts <i>r</i> and respectively.
Corporat	e Office: 44-A/1, Kalu Sarai, New Delhi-110016 🖂	info@madeeasy.in 👩 www.madeeasy.in Page 16

ADE EASY	ndia's Best Institute for IES, GATE & PSUs	Date of Test : 08-02-2020
Q.23	Consider the following statements: I. Daisy chaining is used to assign	priorities in attending interrupts.
	II. When a device raises a vectored intervent.	errupt, the CPU does polling to identify the sour
	its attention.	ecks the status bits to know if any device need
	IV. During DMA, both the CPU and D time.	MA controller can be bus masters at the san
	Which of the above statements is/are	TRUE?
	(c) III only	(d) I and IV only
Ans.	(a)	
		End of Solution
) .24	For parameters a and b , both of which $T(n)$ is	are $\omega(1)$, $T(n) = T(n^{1/a}) + 1$, and $T(b) = 1$. The
	(a) $\Theta(\log_2 \log_2 n)$	(b) $\Theta(\log_a \log_b n)$
Ans.	(c) $\Theta(\log_b \log_a n)$	(d) $\Theta(\log_{ab} n)$
		End of Solution
Q.25	Consider the following statements:	
	I. Symbol table is accessed only du	uring lexical analysis and syntax analysis.
	storage for memory allocation in the storage for memory allocation in the storage detected during system analysis	ne run-time environment. I variable must be declared before its use' a
	Which of the above statements is/are	TRUE?
	(a) I only	(b) I and III only (d) None of L II and III
Ans.	(d)	
	None of the given statements are cor	rect.
		End of Solutio

Detailed Solutions of GATE 2020 : Computer Science & IT Date of Test : 08-02-2020

Q.33 Consider a non-pipelined processor operating at 2.5 GHz. It takes 5 clock cycles to complete an instruction. You are going to make a 5-stage pipeline out of this processor. Overheads associated with pipelining force you to operate the pipelined processor at 2 GHz. In a given program, assume that 30% are memory instructions. 60% are ALU instructions and the rest are branch instructions. 5% of the memory instructions cause stalls of 50 clock cycles each due to cache misses and 50% of the branch instructions cause stalls of 2 cycles each. Assume that there are no stalls associated with the execution of ALL) instructions. For this program, the speedup achieved by the pipelined processor over the non-pipelined processor (round off to 2 decimal places) is _____.

Ans. (2.16)

Non-pipeline: Clock frequency = 2.5 GHz

Cycle time =
$$\frac{1}{0.5 \text{ cycle}}$$
 = 0.4 ns

$$CPI = 5$$

 $ET_{non-pipe} = CPI \times Cycle time$

Pipeline:

So,

Clock frequency = 2.5 GHz

Cycle time =
$$\frac{1}{2 \text{ GHz}}$$
 = 0.5 ns

 $= 5 \times 0.4$ ns = 2 ns

Number of stalls/instruction = 0.85

Average instruction $ET_{pipe} = (1 + Number of stalls/instruction) \times Cycle time$ = (1 + 0.85) × 0.5 ns = 0.925 ns

$$S = \frac{ET_{non-pipe}}{ET_{pipe}} = \frac{2}{0.925} = 2.16$$

End of Solution

Corporate Office: 44-A/1, Kalu Sarai, New Delhi-110016 🔰 🔀 info@madeeasy.in | 🔊 www.madeeasy.in

drive with block size of 4 KB. The size of search key is 12 bytes and the size of tree/ disk pointer is 8 bytes. Assume that the database has one million records. Also assume that no node of the B+ tree and no records are present initially in main memory. Consider that each record fits into one disk block. The minimum number of disk accesses required to retrieve any record in the database is _____.

Ans. (4)

Block size = 4 KB Search key = 12 bytes Tree pointer = 8 bytes

- DB records 1 million = 1000000
- B+ tree index each record fits into one block
- ⇒ Keys given to find levels of B+ tree : Bulk loading B+ tree design we can use

= 205

 \Rightarrow Order of B tree nodes $P \times B_{p} + (P - 1)$ Keys \leq Block size

$$P \times 8 + (P - 1)12 \le 4096$$

$$20P \le 4108$$
$$P = \left| \frac{4108}{20} \right|$$

 \Rightarrow Minimum levels and index: Max fill factor of each node.

	MADE EASY ndia's Best Institute for IES, GATE & PSUs	Detailed Solutions GATE 2020 : Computer S Date of Test : 08-02-	of icience & IT 2020
Q.47	 Let G = (V, E) be a directed, weighted function f: V → R, for each edge (u, Which one of the options completes the "The shortest paths in G under w are (a) if and only if f(u) is the distance for new vertex s to G and edges of z (b) if and only if ∀u ∈ V, f(u) is positic (c) if and only if ∀u ∈ V, f(u) is negative. 	graph with weight function $w: E \rightarrow v) \in E$, define $w'(u, v)$ as $w(u, v)$ ne following sentence so that it is shortest paths under w' too, rom <i>s</i> to <i>u</i> in the graph obtained zero weight from <i>s</i> to every vertex tive	R. For some /) + f(v). TRUE? " by adding a c of G
Ans.	(a)		
	w(u, v) = (u, v) edge	e weight	
	$W'(u, v) = W(u, v) + \underline{f(u)}$	$\frac{(v)-f(v)}{0} = W(u, v)$	
	So, option (a) correct.		
			End of Solution
Q.40	the rank and determinant of a matrix M, I. rank(AB) = rank(A) rank(B) II. det(AB) = det(A) det(B) III. rank(A + B) \leq rank(A) + rank(B) IV. det(A + B) \leq det(A) + det(B) Which of the above statements are TF (a) III and IV only	RUE? (b) II and III only	3 statements:
	(c) I and IV only	(d) I and II only	
Ans.	(b) Statement II and III are correct statem	ents directly based on properties	of matrices.
Corporat	te Office: 44-A/1, Kalu Sarai, New Delhi-110016 🔀	info@madeeasy.in 🏹 www.madeeasy.in	Page 32

Corporate Office: 44-A/1, Kalu Sarai, New Delhi-110016 🔰 🔀 info@madeeasy.in | 🔊 www.madeeasy.in

India's Best Institute for IES, GATE & PSUs Date of Test : 08-02-2020
An organization requires a range of IP addresses to assign one to each of its 1500 computers. The organization has approached an Internet Service Provider (ISP) for this task. The ISP uses CIDR and serves the requests from the available IP address space 202.61.0.0/17. The ISP wants to assign an address space to the organization which will minimize the number of routing entries in the ISP's router using route aggregation. Which of the following address spaces are potential candidates from which the ISP can allot any one to the organization? I. 202.61.84.0/21 II. 202.61.64.0/21 II. 202.61.64.0/21 IV. 202.61.144.0/21 (a) I and IV only (b) III and IV only (c) I and II only (c) III and II only (c) III and III
(d) $ \begin{array}{l} /17 \Rightarrow 1111111 \ 1111111 \ 1000000 \ 0000000 \\ \Rightarrow 255.255.128.0 \\ 1500 \simeq 2048 = 2^{11} = 2^3 \times 2^8 \\ = 2^{32 - 21} = 2^{11} = /21 \\ /17 \Rightarrow 202.61.0.0/17 \\ \begin{array}{l} 0.0 \Rightarrow \ 0\underline{00000000000000} \\ 0\underline{0001111.111111} \\ 00001000.00000000 \\ 0\underline{0001111.1111111} \\ \end{array} $ (0.0 - 7.255) $\begin{array}{l} 0\underline{0001000.00000000} \\ 0\underline{00011000.00000000} \\ 0\underline{0001111.1111111} \\ \end{array} $ (16.0 - 23.255)
Sequence is 0, 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 96, 104, 112, 120. Hence 64 and 104 is present in sequence so it is the possible IP addresses. So option (d) is correct.

Г

