

MADE EASY India's Best Institute for IES, GATE & PSUs

Detailed Solutions of GATE 2020 : Electrical Engineering Date of Test : 08-02-2020

Ans. (b) Z, 26, Q.2 If F wit) M V, 23,22	R Q P 18 17 16	КЈІН	
Q.2 If F wit		10,17,10	11,10,9,8	B End of Solution
(a) (c)	P, <i>Q, R, S</i> are fo th <i>Q</i> as a mer) 8) 5	our individuals nber?	s. How ma	any teams of size exceeding one can be formed, (b) 6 (d) 7
Ans. (d) ³ C 3 - Po PC) $C_1 + {}^{3}C_2 + {}^{3}C_3 + 3 + 1 = 7$ pssible combin Q, RQ, SQ, PF	ations, RQ, PSQ, RS	Q, PQRS	End of Solution
Q.3 In sec (a) (c)	four-digit inte quence) appe 299 280	ger numbers ars ti	from 100 mes.	01 to 9999, the digit group "37" (in the same (b) 270 (d) 279
Ans. (c) 10 Qι)) × 10 + 9 × 1 uestion is aski	10 + 9 × 10 ng 37 appea	= 280 Irs how m	nany times and not how many numbers.
Q.4 Nc un Re in t ea pa (a) (c)	Non-performing Assets (MPAs) of a bank in India is defined as an asset, which remains unpaid by a borrower for a certain period of time in terms of interest, principal, or both Reserve Bank of India (RBI) has changed the definition of NPA thrice during 1993-2004 in terms of the holding period of loans. The holding period was reduced by one quarter each time. In 1993, the holding period was four quarters (360 days). Based on the above paragraph, the holding period of loans in 2004 after the third revision was days (a) 45 (b) 135 (c) 90 (d) 180			
Ans. (c) As Th) given in que perefore, after	stion holding third division	period w holding p	vas reduced by one quarter each time. period remains 90 days. <i>End of Solution</i>

UPPSC Combined State Engineering Services Exam, 2019

Assistant Engineer | Total Posts : 692

- 650 Hrs of quality classes at your doorstep.
- Flexibility to learn at your own pace.
- Physical study materials will be dispatched at your address.

Admission open

Streams: CE, ME, EE

20 Tests | Commencing from 23rd Feb, 2020

Test Series (Online/Offline)

- Quality questions with detailed solutions.
- Comprehensive performance analysis.
- Tests on standard and pattern as per UPPSC examination.

Streams: CE, ME, EE

Admission open

India's Best Institute for IES, GATE & PSUs

Detailed Solutions of GATE 2020 : Electrical Engineering Date of Test : 08-02-2020

SECTION B : TECHNICAL

Q.1	x_R and x_A are, respectively, the y_R and y_A are, respectively, independent of <i>t</i> . Which of the formula (a) we have b and (b) are the set of the formula (b) are the formula (b) and (b) are the formula (b) are the formula (b) and (b) are the formula (b) are	the rms and average values of $x(t) = x$ the rms and average values of $y(t)$ the following is true?	x(t - T), and similarly, $f(t) = kx(t) \cdot k$, T are
	(a) $y_A = kx_A$; $y_R = kx_R$ (c) $y_A \neq kx_A$; $y_R \neq kx_R$	(b) $y_A = kx_A$; $y_R \neq kx_R$ (d) $y_A \neq kx_A$; $y_R = kx_R$	
Ans.	(a, b) Given, $y(t) = K$ then, Average of $y(t) = K$ $\Rightarrow Y_A = K$ From equation (1),	x(t) × Average of $x(t)$ X_A	(1)
	Power of $y(t) = \mathbf{r} $	$\left x\right ^2 \cdot \text{power of } x(t)$	
	$\Rightarrow \qquad Y_R^2 = k $	$\left<^2 \cdot X_R^2\right>$	[:: Power = Rms^2]
	\Rightarrow $Y_R = k$	$\langle \cdot X_R$	
	Case (i): When K is real an	d positive then,	
	$ \mathcal{K} = \mathcal{K}$		
	and $Y_R = K$. Thus option (a) is satisfied. Case (ii): When K is imagina	X _R ary or complex or real and negative	e then,
	$ K \neq K$		
	and $Y_R \neq K$. Thus option (b) is satisfied,	X _R option (a) and (b) both satisfies the	e given condition.

Q.2 A double pulse measurement for an inductively loaded circuit controlled by the IGBT switch is carried out to evaluate the reverse recovery characteristics of the diode. *D*, represented approximately as a piecewise linear plot of current vs time at diode turn-off. L_{par} is a parasitic inductance due to the wiring of the circuit, and is in series with the diode. The point on the plot (indicate your choice by entering 1. 2, 3 or 4) at which the IGBT experiences the highest current stress is _____.

India's Best Institute for IES, GATE & PSUs

Ans. (a. b. d) 1. $\int_{-l}^{l} \cos\left(\frac{m\pi x}{l}\right) \cos\left(\frac{m\pi x}{l}\right) dx = \begin{cases} 2l & \text{if } n = m = 0\\ l & \text{if } n = m \neq 0\\ 0 & \text{if } m \neq n \end{cases}$ 2. $\int_{0}^{l} \cos\left(\frac{n\pi x}{l}\right) \cos\left(\frac{m\pi x}{l}\right) dx = \begin{cases} l & \text{if } n = m = 0\\ l/2 & \text{if } n = m \neq 0\\ 0 & \text{if } m \neq n \end{cases}$ 3. $\int_{l}^{l} \sin\left(\frac{n\pi x}{l}\right) \sin\left(\frac{m\pi x}{l}\right) dx = \begin{cases} l & \text{if } m = n \\ 0 & \text{if } m \neq n \end{cases}$ 4. $\int_{0}^{l} \sin\left(\frac{n\pi x}{l}\right) \sin\left(\frac{m\pi x}{l}\right) dx = \begin{cases} l/2 & \text{if } n = m\\ 0 & \text{if } n \neq m \end{cases}$ 5. $\int_{-1}^{l} \sin\left(\frac{n\pi x}{l}\right) \cos\left(\frac{m\pi x}{l}\right) dx = 0$ $\frac{1}{\pi}\int_{0}^{\pi}\sin m\theta\cos n\theta = 0$ (A): Put $l = \pi$ in rule 4 $\int_{0}^{\pi} \sin\left(\frac{n\pi x}{\pi}\right) \sin\left(\frac{m\pi x}{\pi}\right) dx$ Given that. $m \neq n$ $\frac{1}{\pi}\int_{0}^{\pi}\sin nx\sin mx\,dx = 0$ $\frac{1}{2\pi}\int_{-\infty}^{\pi}\sin p\theta\cos q\theta\,d\theta\,=\,0$ **(B)**: Put $l = \pi$ in rule 5 $\int_{-\pi}^{\pi} \sin\left(\frac{n\pi x}{\pi}\right) \cos\left(\frac{m\pi x}{\pi}\right) dx$ Given that, $m \neq n$ $\int_{0}^{\pi} \sin nx \cos mx \, dx = 0$ $Lt_{\alpha \to \infty} \frac{1}{2\alpha} \int_{-\infty}^{\alpha} \sin p\theta \sin q\theta \, d\theta = 0$ (C): When, $\alpha \rightarrow \infty$, $\frac{1}{2\infty}\int_{-\infty}^{\infty}\sin p\theta\sin q\theta d\theta = \frac{1}{\infty}$ (finite) = 0 End of Solution

Corporate Office: 44-A/1, Kalu Sarai, New Delhi-110016 🔰 🔀 info@madeeasy.in 🛛 🌏 www.madeeasy.in 👘

ESE 2020 Main Exam Streams: CE ME EE E&T

_____.

www.madeeasy.in

IADE EASY	MADE ndia's Best Institute f	ior IES, GATE & PSUs	GATE 2020 : Electrical Engineeri Date of Test : 08-02-2020
Ans.	(b)		
		$x(n) = \left(\frac{1}{2}\right)^n u(n)$, ROC of $x(n)$: $ z > \frac{1}{2}$
	$x(n-k) \rightleftharpoons$	$\implies X(z) = \frac{z^{-k}}{1 - \frac{1}{2}z^{-1}},$, ROC of $x(n - k) : z > \frac{1}{2}$
	For <i>x</i> (<i>n</i> – <i>k</i>) RC	C will be $ z > \frac{1}{2}$.	End of Solut
Q.8	A single-phase, supplies a serie The two most d (a) 150 Hz, 250 (c) 50 Hz, 100	full-bridge diode rec s combination of finit ominant frequency cc) Hz Hz	tifier fed from a 230 V, 50 Hz sinusoidal sou te resistance. <i>R</i> , and a very large inductance omponents in the source current are: (b) 50 Hz, 150 Hz (d) 50 Hz, 0 Hz
Ans.	(b)		
Q.9	Consider the ini decimal places	tial value problem be) is $\frac{dy}{dx} = 2x - 1$	How of y at $x = \ln 2$. (rounded off to y, $y(0) = 1$
Ans.	(0.886)		
		$\frac{dy}{dx} = 2x - y;$	$y(0) = 1, y \text{ at } x = \ln 2$
		$\frac{dy}{dx} + y = 2x$	
		$\frac{dy}{dx} + y = 2x$ $P = 1,$	Q = 2x
	Solution,	$\frac{dy}{dx} + y = 2x$ $P = 1,$ $I.F. = e^{\int Pdx} = y(I.F) = \int Q(I.F.)dx$	$Q = 2x$ $e^{\int 1dx} = e^x$ dx
	Solution,	$\frac{dy}{dx} + y = 2x$ $P = 1,$ $I.F. = e^{\int Pdx} =$ $y(I.F) = \int Q(I.F.)dx$ $ye^{x} = \int 2x \cdot e^{x}dx$ $y = 2x - 2 +$ $y(0) = 1$ $1 = 0 - 2 + 0$	$Q = 2x$ $e^{\int 1dx} = e^{x}$ dx $x = 2(xe^{x} - e^{x}) + C$ ce^{-x} C
	Solution, \therefore At $x = \ln 2$	$\frac{dy}{dx} + y = 2x$ $P = 1,$ $I.F. = e^{\int Pdx} =$ $y(I.F) = \int Q(I.F.)C$ $ye^{x} = \int 2x \cdot e^{x} dx$ $y = 2x - 2 +$ $y(0) = 1$ $1 = 0 - 2 + 0$ $C = 3$ $y = 2x - 2 + 3$	$Q = 2x$ $e^{\int 1dx} = e^{x}$ dx $x = 2(xe^{x} - e^{x}) + C$ ce^{-x} C $3e^{-x}$
	Solution, \therefore At $x = \ln 2$	$\frac{dy}{dx} + y = 2x$ $P = 1,$ $I.F. = e^{\int Pdx} =$ $y(I.F) = \int Q(I.F.)C$ $ye^{x} = \int 2x \cdot e^{x} dx$ $y = 2x - 2 +$ $y(0) = 1$ $1 = 0 - 2 + C$ $C = 3$ $y = 2x - 2 +$ $y = 2(\ln 2) -$	$Q = 2x$ $e^{\int 1dx} = e^{x}$ dx $x = 2(xe^{x} - e^{x}) + C$ ce^{-x} C $3e^{-x}$ $2 + 3e^{-\ln 2}$

Q.10 A single-phase, 4 kVA, 200 V/100 V, 50 Hz transformer with laminated CRGO steel core has rated no-load loss of 450 W. When the high-voltage winding is excited with 160 V, 40 Hz sinusoidal ac supply, the no-load losses are found to be 320 W. When the high-voltage winding of the same transformer is supplied from a 100 V, 25 Hz sinusoidal ac source, the no-load losses will be _____W (rounded off to 2 decimal places).

Ans. (162.50)

RDE

Best Institute for IFS

200 V, 50 Hz, $P_c = 450$ Watt 160 V, 40 Hz, $P_c = 320$ Watt 100 V, 25 Hz, $P_c = ?$ Watt $\frac{V}{f} = \text{constant} = \frac{200}{50} = \frac{160}{40} = \frac{100}{25}$

(9

450

So,

	50	40	25	
$= Af + Bf^2$				
= A × (50) +	- <i>B</i> × (50)) ²		(i)

$$A_{320} = A \times (40) + B \times (40)^2$$
 ...(ii)

From (i) and (ii),
$$\frac{450}{50} = A + B(50)$$
 ...(iii)

$$\frac{320}{40} = A + B(40) \qquad \dots (iv)$$

Equation (iii) - (iv),

$$B = B(10)$$

$$B = \frac{1}{10}$$

$$A = 9 - \frac{1}{10} \times 50 = 4$$

and

Now at 100 V, 25 Hz, $P_c = 4 \times 25 + \frac{1}{10} \times (25)^2$ = 100 + 62.5 = 162.50 Watt

End of Solution

Q.11 Currents through ammeters A_2 and A_3 in the figure are $1 \angle 10^\circ$ and $1 \angle 70^\circ$ respectively. The reading of the ammeter A_1 (rounded off to 3 decimal places) is ______ A.

Ans. (1.732)

 $I = 1\angle 10^{\circ} + 1\angle 70^{\circ}$ $I = 1.732\angle 40^{\circ}$ The ready of ammeter is 1.732 A.

End of Solution

Q.12 A single-phase inverter is fed from a 100 V dc source and is controlled using a quasisquare wave modulation scheme to produce an output waveform, v(t). as shown. The angle σ is adjusted to entirely eliminate the 3rd harmonic component from the output voltage. Under this condition, for v(t), the magnitude of the 5th harmonic component as a percentage of the magnitude of the fundamental component is _____(rounded off to 2 decimal places).

Ans. (20)

Using result,

India's Best Institute for

For

or

Now,

$$\cos^{2} \sigma = 0$$

$$3\sigma = \frac{\pi}{2}$$

$$\sigma = \frac{\pi}{6}$$

$$\frac{V_{5}}{V_{1}} = \frac{\cos 5\sigma}{5\cos \sigma} = \frac{\cos 5\pi/6}{5\cos \pi/6} = -\frac{1}{5}$$

$$\% \left| \frac{V_{5}}{V_{1}} \right| = \frac{1}{5} \times 100 = 20\%$$

 $V_n = \frac{4V_s}{n\pi} \cos n\sigma$

 $V_{2} = 0$

End of Solution

Q.13 Thyristor T_1 is triggered at an angle α (in degree), and T_2 at angle $180^\circ + \alpha$, in each cycle of the sinusoidal input voltage. Assume both thyristors to be ideal. To control the load power over the range 0 to 2 kW, the minimum range of variation in α is:

ESE 2021 **GATE** 2021

1 Year/2 Years Classroom Courses

Regular

Weekend

Early Start... • Extra Edge...

BATCH COMMENCEMENT DATES

Delhi an	d Noida	Rest of India	F
	P	Patna : 24-02-2020	
REGULAR		Lucknow : 20-02-2020	
BAICHES		Bhopal : 16-01-2020	-
DELHI Evening :	BATCHES	Indore : 20-02-2020	-
ME : 16 th Jan, 2020 25 th Feb, 2020		Pune : 10-02-2020	-
CE : 30 th Jan, 2020 20 th Feb, 2020	CE : 1 st Feb, 2020 ME : 9 th Feb, 2020	Hyderabad : 16-03-2020	
EE, EC : 20 th Jan, 2020	EE: 22 nd Feb, 2020	Bhubaneswar : 23-01-2020	-
Morning : CE, ME : 12 th Feb, 2020		Kolkata : 25-01-2020	-
(Batch Closed)	CE & ME : 8 th Feb, 2020 FC & FE : 18 th Jan, 2020	Jaipur : 16-02-2020	-
EC : 18 Feb, 2020 EC : 6 th Apr, 2020 CS : 18 th May, 2020	16 th Feb, 2020		

www.madeeasy.in

Q.14 A sequence detector is designed to detect precisely 3 digital inputs, with overlapping sequences detectable. For the sequence (1, 0, 1) and input data (1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0): what is the output of this detector?

(a) 0,1,0,0,0,0,0,1,0,1,0,0

ADE

- (c) 1,1,0,0,0,0,1,1,0,1,0,0
- (b) 0,1,0,0,0,0,0,0,1,0,0,0

India's Best Institute for IES, GATE & PSUs

(d) 0,1,0,0,0,0,0,1,0,1,1,0

Ans. (a)

Sequence detector problem:

- If consider the case of non-overlapping sequence detector, then the pattern 101 ٠ is appearing 2 times in the given bit sequence.
- If we consider the case of overlapping sequence detector, then the pattern 101 • is appearing 3 times in the given bit sequence.

The question says that the detector is overlapping, hence answer is (a).

End of Solution

Q.15 A three-phase. 50 Hz. 4-pole induction motor runs at no-load with a slip of 1%. With full load, the slip increases to 5 %. The % speed regulation of the motor (rounded off to 2 decimal places) is _____.

Ans. (4.21)

4 pole, 50 Hz I.M has no load slip 1%

4 pole, 50 Hz I.M has full load slip 5%

$$N_S = 1500 \text{ rpm}$$

 $N_0 = N_s(1 - s) = 1500(1 - 0.01) =$

$$N = N_{\rm s}(1-s) = 1500(1-0.01) = 1425$$

Speed regulation is

%S.R. =
$$\frac{N_0 - N}{N} \times 100 = \frac{1485 - 1425}{1425} \times 100 = 4.21\%$$

1485

End of Solution

Q.16 A lossless transmission line with 0.2 pu reactance per phase uniformly distributed along the length of the line, connecting a generator bus to a load bus, is protected up to 80% of its length by a distance relay placed at the generator bus. The generator terminal voltage is 1 pu. There is no generation at the load bus. The threshold pu current for operation of the distance relay for a solid three phase-to-ground fault on the transmission line is closest to:

(a)	1.00	(b)	5.00
(C)	3.61	(b)	6.25

(\mathbf{U})	0.01	

$$I_f = \frac{1}{Z_{Th}} = \frac{1}{0.2}$$

= 5 pu for 100% of line

Corporate Office: 44-A/1, Kalu Sarai, New Delhi-110016 | 🔀 info@madeeasy.in | 🔿 www.madeeasy.in

 $Z_{i} = 0.2 \text{ p.u.}$ 80%

- **Q.19** A three-phase cylindrical rotor synchronous generator has a synchronous reactance X_s and a negligible armature resistance. The magnitude of per phase terminal voltage is V_A and the magnitude of per phase induced emf is E_A . Considering the following two statements, P and Q.
 - P : For any three-phase balanced leading load connected across the terminals of this synchronous generator, V_A is always more than E_A .
 - Q : For any three-phase balanced lagging load connected across the terminals of this synchronous generator, V_A is always less than E_A .

Step-2:

End of Solution

Q.24 Consider a negative unity feedback system with forward path transfer function

 $G(s) = \frac{K}{(s+a)(s-b)(s+c)}$, where K, a, b, c are positive real numbers. For a Nyquist

path enclosing the entire imaginary axis and right half of the s-plane in the clockwise direction, the Nyquist plot of (1 + G(s)), encircles the origin of (1 + G(s)) plane once in the clockwise direction and never passes through this origin for a certain value of

K. Then, the number of poles of $\frac{G(s)}{1+G(s)}$ lying in the open right half of the s-plane is

(2) Ans.

O.L.T.F =
$$G(s) = \frac{K}{(s+a)(s-b)(s+c)}$$

 $N = P - Z; P = 1$
 $-1 = 1 - Z; N = -1$
 $Z = 2$

End of Solution

- Q.25 Out of the following options, the most relevant information needed to specify the real power (P) at the PV buses in a load flow analysis is
 - (a) solution of economic load dispatch
 - (b) base power of the generator
 - (c) rated power output of the generator
 - (d) rated voltage of the generator

Ans. (a)

End of Solution

Q.26 A resistor and a capacitor are connected in series to a 10 V dc supply through a switch. The switch is closed at t = 0, and the capacitor voltage is found to cross 0 V at $t = 0.4\tau$, where τ is the circuit time constant. The absolute value of percentage change required in the initial capacitor voltage if the zero crossing has to happen at $t = 0.2\tau$ is ______ (rounded off to 2 decimal places).

Ans. (54.99)

ADE

If initial charge polarities on the capacitor is opposite to the supply voltage then only the capacitor voltage crosses the zero line.

- **Q.27** A single-phase, full-bridge, fully controlled thyristor rectifier feeds a load comprising a 10 Ω resistance in series with a very large inductance. The rectifier is fed from an ideal 230 V, 50 Hz sinusoidal source through cables which have negligible internal resistance and a total inductance of 2.28 mH. If the thyristors are triggered at an angle $\alpha = 45^{\circ}$, the commutation overlap angle in degree (rounded off to 2 decimal places) is_____.
- Ans. (4.80)

1-ø, SCR bridge rectifier

 $\alpha = 45^{\circ}, R = 10 \Omega$

supply 230 V, 50 Hz

$$L_{s} = 2.28 \text{ mH}$$

$$\mu = ?$$

$$\Delta V_{d} = \frac{V_{m}}{\pi} [\cos \alpha - \cos(\alpha + \mu)] = 4f L_{s}I_{0}$$

$$V_{0} = \frac{2V_{m}}{\pi} \cos \alpha - 4f L_{s}I_{0}$$

$$I_{0}R = \frac{2V_{m}}{\pi} \cos \alpha - 4f L_{s}I_{0}$$

MADE EASY India's Best Institute for IES, GATE & PSUs

Find I_0

....

$$I_0 \times 10 = \frac{2 \times 230\sqrt{2}}{\pi} \cdot \cos 45 - 4 \times 50 \times 2.28 \times 10^{-3} I_0$$

$$I_0(10 + 0.456) = 146.42$$

$$I_0 = \frac{146.49}{10.456} = 14.0036 \text{ A}$$

$$\Delta V_{c0} = \frac{230\sqrt{2}}{\pi} [\cos 45 - \cos(45 + \mu)]$$

$$= 4 \times 50 \times 2.28 \times 10^{-3} \times 14 = 6.384$$

$$\cos 45^\circ - \cos(45^\circ + \mu) = 0.061659$$

$$45 + \mu = 49.80$$

$$\mu = 4.80^\circ$$

End of Solution

- **Q.28** An 8085 microprocessor accesses two memory locations (2001 H) and (2002H), that contain 8-bit numbers 98H and B1H respectively. The following program is executed:
 - LXI H, 2001 H MVIA, 21H INX H ADD M INX H MOV M, A HLT

. .

At the end of this program, the memory location 2003H contains the number in decimal (base 10) form _____.

$$LXI H, 2001 H \rightarrow \boxed{20 01}$$

$$MVI A, 21 H \rightarrow \boxed{21H}$$

$$INX H \rightarrow HL + 1 \boxed{20 02}$$

$$ADD M \rightarrow [A] + data @ reference of HL pair$$

$$21 H + B1H = D2H \rightarrow [A]$$

$$INX H \rightarrow [HL] + 1 \rightarrow 2002H + 1H \rightarrow 2003H$$

$$MOV M, A \rightarrow [A] to Memory, i.e., @ reference of HL pair$$

$$A2003H \boxed{D2} \leftarrow \boxed{D2}$$

$$HLT \rightarrow Stop$$

MADE EASY India's Best Institute for IES, GATE & PSUs

Detailed Solutions of GATE 2020 : Electrical Engineering Date of Test : 08-02-2020

: content in the 2003 H is D2H

Converting in decimal

 $D \times 16^{1} + 2 \times 16^{\circ} \Rightarrow 13 \times 16 + 2 = (210)_{10}$

End of Solution

Q.29 Let a_x and a_y be unit vectors along x and y directions, respectively. A vector function is given by

$$F = \mathbf{a}_{y} y - \mathbf{a}_{y}$$

The line integral of the above function

 $\int_{c} F \cdot dl$

along the curve *C*, which follows the parabola $y = x^2$. as shown below is _____ (rounded off to 2 decimal places).

Ans. (-3)

$$\vec{F} = y\hat{a}_{x} - x\hat{a}_{y}$$

$$\vec{r} = x\hat{i} + y\hat{j}$$

$$\vec{F} = y\hat{i} - x\hat{j}$$

$$d\vec{r} = dx\hat{i} + dy\hat{j}$$

$$= \int_{c} F \cdot d\vec{r} = \int_{c} F_{1} dx + F_{2} dy = \int_{c} y dx - x dy$$

$$y = x^{2}$$

where C is,

$$dy = 2x dx$$

x varies from -1 to 2,

$$\int_{c} \vec{F} dl = \int_{-1}^{2} x^{2} dx - x \cdot 2x dx = \int_{-1}^{2} (x^{2} - 2x) dx$$
$$= \int_{-1}^{2} -x^{2} dx = -\frac{x^{3}}{3} \Big|_{-1}^{2} = -\frac{8}{3} - \frac{1}{3} = -\frac{9}{3}$$
$$= -3$$

End of Solution

An initiative of **MADE EASY** Group

🔀 cst@nextia<u>s.com 🕓 8800338066</u>

www.nextias.com

Q.30 Let a_r , a_{ϕ} and a_z be unit vectors along r, ϕ and z directions, respectively in the cylindrical coordinate system. For the electric flux density given by $D = (a_r 15 + a_{\phi} 2r - a_z 3rz)$ Coulomb/m², the total electric flux, in Coulomb, emanating from the volume enclosed by a solid cylinder of radius 3 m and height 5 m oriented along the *z*-axis with its base at the origin is:

(a)	108 π	(b)	54 π
(c)	90 π	(d)	180 <i>τ</i>

Ans. (180π)

$$\begin{split} \psi/\text{Crossing closed surface} &= \bigoplus \vec{D} \cdot \vec{ds} = \iiint (\vec{\nabla} \cdot \vec{D}) \, dv \qquad \dots(i) \\ \vec{\nabla} \cdot \vec{D} &= \frac{1}{\rho} \frac{\partial}{\partial \rho} (\rho D_{\rho}) + \frac{1}{\rho} \frac{\partial D_{\phi}}{\partial \phi} + \frac{\partial D_{z}}{\partial z} \\ &= \frac{1}{\rho} \frac{\partial}{\partial \rho} (\rho 15) + \frac{1}{\rho} \frac{\partial}{\partial \phi} (2\rho) + \frac{\partial}{\partial z} (-3\rho z) = \frac{1}{\rho} 15 - 3\rho \\ \iiint (\vec{\nabla} \cdot \vec{D}) \, dv &= \iiint \left(\frac{15}{\rho} - 3\rho \right) \rho \, d\rho \, d\phi \, dz \\ &= \iiint 15 \, d\rho \, d\phi \, dz - 3 \iiint \rho^{2} \, d\rho \, d\phi \, dz \\ &= 15 \int_{\rho=0}^{3} d\rho \int_{\phi=0}^{2\pi} d\phi \int_{z=0}^{5} -3 \int_{\rho=0}^{3} \rho^{2} d\rho \int_{\phi=0}^{2\pi} d\phi \int_{z=0}^{5} dz \\ &= 15(3-0) (2\pi) (5) - 3 \left(\frac{3^{3}}{3} \right) \times (2\pi) (5) \\ &= 45(10\pi) - 27 (10\pi) = 180\pi C \end{split}$$

Q.31 Which of the following option is correct for the system shown below?

(a) 3rd order and stable
(c) 4th order and stable

- (b) 4th order and unstable
- (d) 3rd order and unstable

Ans. (b)

 $1 + \frac{20}{s^2(s+1)(s+20)} = 0$ $(s^3 + s^2)(s+20) + 20 = 0$ $s^4 + 20s^3 + s^3 + 20s^2 + 20 = 0$ $s^4 + 21s^3 + 20s^2 + 20 = 0$ $s^1 \text{ coefficient} = 0$ Given system is fourth order sytem and unstable.

End of Solution

Q.32 A 250 V dc shunt motor has an armature resistance of 0.2 Ω and a field resistance of 100 Ω . When the motor is operated on no-load at rated voltage. It draws an armature current of 5 A and runs at 1200 rpm. When a load is coupled to the motor, it draws total line current of 50 A at rated voltage, with a 5 % reduction in the air-gap flux due to armature reaction. Voltage drop across the brushes can be taken as 1 V per brush under all operating conditions. The speed of the motor, in rpm, under this loaded condition, is closest to:

(a)	900	(b)	1200
(C)	1000	(d)	1220

Ans. (d)

MADE EASY

MADE

No load current 5 A

B.R.D = 1 V per brushloaded, $I_1 = 50$ A $R_{\rm sh} = 100 \ \Omega$ $I_{\rm sh} = \frac{250}{100} = 2.5 \, \text{A}$ $I_{20} = 2.5 \text{ A}$ $I_{al} = 47.5 \text{ A}$ $V = E_b + I_a R_a + B.R.D$ 100 Ω **β**)0.2Ω 250 V $E_{b \text{ no load}} = V - I_{a0}R_a - B.R.D$ $= 250 - 2.5(0.2) - 1 \times 2$ = 247.5 Volts $E_{b \text{ load}} = 250 - 47.5(0.2) - 1 \times 2$ = 238.5 volts $\frac{N_2}{N_1} = \frac{E_{b2}}{E_{b1}} \times \frac{\phi_1}{\phi_2}$ $\frac{N_2}{1200} = \frac{238.5}{247.5} \times \frac{\phi_1}{0.95\phi_1}$ $N_2 = 1217.22 \text{ rpm}$

End of Solution

Q.33 A conducting square loop of side length 1 m is placed at a distance of 1 m from a long straight wire carrying a current l = 2 A as shown below. The mutual inductance, in nH (rounded off to 2 decimal places), between the conducting loop and the long wire is ______.

Ans. (138.63)

ADE

$$\phi \sim I$$

$$\phi = MI$$

$$\vec{B} = \frac{\mu_0 I}{2\pi\rho} \hat{a}_{\phi} \quad (\vec{B} \text{ due to infinite long line})$$

Magnetic flux crossing square loop is

 $\phi = \iint \vec{B} \cdot \vec{ds}$ $= \iint \frac{\mu_0 I}{2\pi\rho} \hat{a}_{\phi} \cdot (d\rho \, dz) \, \hat{a}_{\phi} = \frac{\mu_0 I}{2\pi} \int_{\rho=1}^{2} \frac{d\rho}{\rho} \int_{z=0}^{1} dz$ $\phi = \frac{\mu_0 I}{2\pi} (\ln\rho)_{\rho=1}^{2} (z)_{z=0}^{1}$ $\phi = \frac{\mu_0 I}{2\pi} (\ln 2)$ $M = \frac{\phi}{I}$ $M = \frac{\mu_0 (\ln 2)}{2\pi} = \frac{4\pi \times 10^{-7} (\ln_2)}{2\pi}$ $M = 1.386 \times 10^{-7} \text{ Henry} \simeq 138.63 \text{ nH}$

End of Solution

Q.34 A non-ideal Si-based pi: junction diode is tested by sweeping the bias applied across its terminals from -5 V to +5 V. The effective thermal voltage, V_T, for the diode is measured to be (29 ± 2) mV. The resolution of the voltage source in the measurement range is 1 mV. The percentage uncertainty (rounded off to 2 decimal plates) in the measured current at a bias voltage of 0.02 V is _____.

Ans. (5.87) $V_{\tau} = (29 \pm 2) \text{ mV}$ $= \left(\begin{array}{c} 0.029 \pm (0.002) \\ \downarrow \\ V_T \\ W_L \end{array} \right) V \left| \begin{array}{c} V_D = 0.02 \ V \\ W_{V_D} = 1 \ \text{mV} = 0.001 \ V \end{array} \right)$ $I_D = I = I_0 \cdot e \frac{V_D}{n V_T}$ $I = I_0$ Applying log on both sides, $\ln(I) = \ln(I_0) + \frac{V_D}{nV_T}$ Differentiating w.r.t. ' V_{τ} ', $\frac{\partial I}{I} = 0 + \left(\frac{V_D}{\eta}\right) \left(1 - \frac{1}{V_T^2} \times \partial V_T\right) \implies \frac{\partial I}{\partial V_T} = -\frac{V_D I}{\eta V_T^2}$ $\eta = 1 \implies \frac{\partial I}{\partial V_T} = -\frac{V_D I}{V_T^2}$ For Differentiating w.r.t. V_{D} , $\frac{\partial I}{I} = 0 + \frac{1}{nV_{\tau}} \cdot \partial V_D \implies \frac{\partial I}{\partial V_D} = -\frac{I}{nV_{\tau}}$ $\frac{\partial I}{\partial V_{\Omega}} = \frac{I}{V_{\tau}};$ for $\eta = 1$ \Rightarrow $W_{\rm res} = \sqrt{\left(\frac{\partial I}{\partial V_T}\right)^2} W_{V_T}^2 + \left(\frac{\partial I}{\partial V_D}\right)^2 W_{V_D}^2$ $= \sqrt{\left(-\frac{V_D I}{V_T^2}\right)^2} W_{V_T}^2 + \left(\frac{I}{V_T}\right)^2 W_{V_D}^2$ $= \sqrt{\frac{V_D^2 \cdot I^2}{V_{\tau}^4}} \times W_{V_{\tau}}^2 + \left(\frac{I}{V_{\tau}}\right)^2 \times W_{V_D}^2$ $W_{\rm res} = \sqrt{\frac{I^2 \times (0.02)^2}{(0.029)^4} \times (0.002)^2 + \frac{I^2}{(0.029)^2} \times (0.001)^2}$ $= I \times \sqrt{2.262 \times 10^{-3} + 1.189 \times 10^{-3}}$ $= 0.0587 \times I$ $\% \frac{W_{\text{res}}}{I} = \pm 0.0587 \times 100$ $\% \frac{W_I}{I} = \pm 5.87\%$ \Rightarrow End of Solution

Q.35 The figure below shows the per-phase Open Circuit Characteristics (measured in V) and Short Circuit Characteristics (measured in A) of a 14 kVA, 400 V, 50 Hz, 4-pole, 3-phase, delta connected alternator, driven at 1500 rpm. The field current, If is measured in A. Readings taken are marked as respective (*x*, *y*) coordinates in the figure. Ratio of the unsaturated and saturated synchronous impedances ($Z_{s(unsat)}/Z_{s(sat)}$) of the alternator is closest to

Ans.

At 400 V,

(d)

Institute for IFS

 $I_f = 8 A$

So, air gap line equation will be like,

y = mx + Cy = 100x + 10

at $I_f = 8 \text{ A}$,

Unsaturated voltage = $100 \times 8 + 10 = 810$

$$Z_{\text{sunsat}} = \frac{810}{20} = \frac{81}{2}$$
 ...(ii)

 $Z_{\text{saturated}} = \frac{400}{20} = \frac{40}{2}$

From equation (ii) and (iii),

$$\frac{Z_{\text{unsaturated}}}{Z_{\text{saturated}}} = \frac{81/2}{40/2} = 2.025$$

Note: As, (0,10), (1, 110) and (2, 210) are colinear so, air gap line is an shown in figure. * Data given is not realistic because at $V_{\text{(residual)}}$, $I_{\text{(SC)}}$ should have some non-zero value.

...(iii)

End of Solution

Detailed Solutions of GATE 2020 : Electrical Engineering India's Best Institute for Date of Test: 08-02-2020

The temperature of the coolant oil bath for a transformer is monitored using the circuit Q.36 shown. It contains a thermistor with a temperature-dependent resistance, $R_{\text{thermistor}} = 2(1 + \alpha T) \text{ k}\Omega$. Where T is the temperature in °C. The temperature coefficient α , is -(4 ± 0.25) %/°C. Circuit parameters: R_1 = 1 k Ω , R_2 = 1.3 k Ω , R_3 = 2.6 k Ω . The error in the output signal (in V. rounded off lo 2 decimal places) at 150° C is ____

Ans. (0.04)

MADE

 $R_{\text{thermistor}} = R_{\text{th}} = 2(1 + \alpha T) \text{ k}\Omega$ Given data. $\alpha = -(4 + 0.25)\% /°C = -(0.04 \pm 0.0025) °C$ $\alpha_{max} = -0.0425 /^{\circ}C, \quad \alpha_{min} = -0.375 /^{\circ}C$ $T = 150^{\circ}C$ Temeprature, $R_1 = 1 \text{ k}\Omega, R_2 = 1.3 \text{ k}\Omega, R_3 = 2.6 \text{ k}\Omega$ $\alpha = -0.04$ Considering, $R_{\rm th} = 2[1 - 0.04 \times 150] = -10 \ \rm k\Omega$ \Rightarrow $V_0 = V_1 \times \frac{R_1}{R_1 + R_{tb}} \left[1 + \frac{R_2}{R_2} \right] = 3 \times \frac{1k}{1k + 10k} \left[1 + \frac{1.3k}{2.6k} \right] = 0.5 \text{ V}$

Case-1:

Considering,

 $\alpha_{max} = -0.0425/^{\circ}C$ $R_{\text{thmax}} = 2[1 + (-0.0425) \times 150] \text{ k}\Omega = -10.75 \text{ k}\Omega$

$$V_0 = V_1 \times \frac{R_1}{R_1 + R_{\text{th}}} \left[1 + \frac{R_2}{R_3} \right] = 3 \times \frac{1k}{1k - 10.75k} \left[1 + \frac{1.3k}{2.6k} \right]$$

= -0.46 Volt \Rightarrow For R_{Th max}

Case-2:

Considering,

α_{min}=-0.0375/°C $R_{Th\ min}$ = 2[1 + (-0.0375) \times 150] k Ω = -9.25 k Ω

$$V_0 = 3 \times \frac{1k}{1k + (-9.25k)} \left[1 + \frac{1.3k}{2.6k} \right] = -0.54 \text{ Volt} = \text{For } R_{Th \text{ min}}$$

Output voltage,

$$V_0 = 0.5 \pm 0.04 \Rightarrow (Error)$$

Error = 0.04

End of Solution

National Through Scholarship

BST For ESE & GATE 202

Scholarship applicable on Long Term Classroom Courses for ESE & GATE

Date of Test : 1st Mar, 2020

Valid on batches commencing from Apr-June, 2020

Students may opt any one of the following paper:

• Technical Paper : CE, ME, EE, EC, CS, IN

Avail upto

- 50 Questions; • 100 Marks; 1 Hour duration
- Aptitude Based Paper : Maths + Reasoning + English

🕓 09599946203, 09599946204 🛛 🖂 nst@madeeasy.in For registration, visit: www.madeeasy.in

Consider the diode circuit shown below. The diode, D, obeys the current-voltage Q.37 characteristic $I_D = I_S \left(\exp \left(\frac{V_D}{nV_T} \right) - 1 \right)$, where n > 1, $V_T > 0$, V_D is the voltage across the diode and I_D is the current through it. The circuit is biased so that voltage, V > 0and current, l < 0. If you had to design this circuit to transfer maximum power from the current source (I,) to a resistive load (not shown) at the output, what values R_1 and R_{2} would you choose? $D \bigtriangledown R_2 \qquad V$ $I \qquad I \qquad I$ $(b) \text{ Large } R_1 \text{ and large } R_2.$ $(d) \text{ Large } R_1 \text{ and small } R_2.$ (a) Small R_1 and small R_2 . (c) Small R_1 and large R_2 . Ans. (c) R_1 , low, R_2 high $V_D = V \times \frac{R_2}{R_1 + R_2}$ If R_2 is large V_d (high) R_1 is less $V_D = V$ So for maximum power to deliver to load R_1 is small and R_2 is large. End of Solution Q.38 A benchtop dc power supply acts as an ideal 4 A current source as long as its terminal voltage is below 10 V. Beyond this point, it begins to behave as an ideal 10 V voltage source for all load currents going down to 0 A. When connected to an ideal rheostat, find the load resistance value at which maximum power is transferred, and the corresponding load voltage and current. (a) 2.5 Ω, 4 A, 10 V (b) 2.5 Ω, 4 A, 5 V (d) Short, ∞ A, 10 V (c) Open, 4 A, 0 V Ans. (a) VI = K10 V 0 4 A

India's Best Institute for IFS

$$E = \hat{a}_r 2r + a_{\varphi} \left(\frac{3}{T}\right) + \hat{a}_z 6$$

where $\hat{a}_r, a_{\varphi}, \hat{a}_z$ are unit vectors along *r*, φ and *z* directions, respectively. If the above expression represents a valid electrostatic field inside the medium, then the volume charge density associated with this field in terms of free space permittivity, ε_0 , in SI units is given by:

(a)	4 ε ₀	(b)	5ε
(C)	3 ε ₀	(d)	9ε

Ans. (d)

P

$$\vec{D} = \epsilon \vec{E} = \epsilon_o \epsilon_r \vec{E}$$

$$\vec{D} = \epsilon_o 2.25 \left(2r\hat{a}_r + \frac{3}{r}\hat{a}_{\phi} + 6\hat{a}_z \right)$$

$$\vec{D} = 4.5 \epsilon_o r\hat{a}_r + \frac{6.75 \epsilon_o}{r}\hat{a}_{\phi} + 13.5 \epsilon_o \hat{a}_z$$

Volume charge density

MADE

India's Best Institute for IES GATE

$$\rho_{v} = \sqrt{D}$$

$$\rho_{v} = \frac{1}{r} \frac{\partial}{\partial r} (rD_{r}) + \frac{1}{r} \frac{\partial D_{\phi}}{\partial \phi} + \frac{\partial D_{z}}{\partial z}$$

$$\rho_{v} = \frac{1}{r} \frac{\partial}{\partial r} (r4.5 \epsilon_{o} r) + \frac{1}{r} \frac{\partial}{\partial \phi} \left(\frac{6.75 \epsilon_{o}}{r}\right) + \frac{\partial}{\partial z} (13.5 \epsilon_{o})$$

$$= \frac{1}{r} \frac{\partial}{\partial r} (4.5 \epsilon_{o} r^{2}) + 0 + 0$$

$$= \frac{1}{r} (4.5 \epsilon_{o}) (2r) = 9 \epsilon_{o}$$

End of Solution

Q.41 Consider a negative unity feedback system with the forward path transfer function

 $\frac{s^2 + s + 1}{s^3 + 2s^2 + 2s + K}$, where *K* is a positive real number. The value of *K* for which the system will have some of its poles on the imaginary axis is _____. (a) 8 (b) 9 (c) 6 (d) 7 Ans. (a) 1 + G(s)H(s) = 0CE is $1 + \frac{s^2 + s + 1}{s^3 + 2s^2 + 2s + K} = 0$ \Rightarrow $s^3 + 3s^2 + 3s + (1 + K) = 0$ \Rightarrow R.H. criteria: $\begin{array}{c|c|c} s^3 & 1 & 3 \\ s^2 & 3 & (1+K) \end{array}$ $s^{1} | 9 - (1 + K) = 0$ For marginal stability 9 - (1 + K) = 0K = 8 \Rightarrow End of Solution

Q.42 Bus 1 with voltage magnitude $V_1 = 1.1$ p.u. is sending reactive power Q_{12} towards bus 2 with voltage magnitude $V_2 = 1$ p.u. through a lossless transmission line of reactance X. Keeping the voltage at bus 2 fixed at 1 p.u., magnitude of voltage at bus 1 is changed, so that the reactive power Q_{12} sent from bus 1 is increased by 20%. Real power flow through the line under both the conditions is zero. The new value of the voltage magnitude, V_1 , in p.u. (rounded off to 2 decimal places) at bus 1 is ______.

Ans. (1.12)

ADE

India's Best Institute for IES, GATE

With real power zero, load angle $\delta = 0$ With initial values, $V_1 = 1.1$, $V_2 = 1$ $Q_{12} = \frac{V_1^2}{V_1^2} - \frac{V_1V_2}{V_2} \sin \delta$

$$= \frac{(1.1)^2}{X} - \frac{1.1 \times 1}{X} \sin 0 = \frac{0.11}{X}$$

With increased value of voltage,

new

value of
$$Q_{12} = 1.2Q_{12}$$
, $V_2 = 1$
1.2 $Q_{12} = \frac{V_1^2}{V_1 + 1} = 1.2 \times \frac{0.1}{V_1}$

$$V_1^2 - V_1 - 0.132 = 0$$

$$V_1 = 1.12, -0.11$$

Hence the practical value in per unit, $V_1 = 1.12$ p.u.

End of Solution

 V_2

Х

Q.43 In the dc-dc converter circuit shown, switch *Q* is switched at a frequency of 10 kHz with a duty ratio of 0.6. All components of the circuit are ideal, and the initial current in the inductor is zero. Energy stored in the inductor in mJ (rounded off to 2 decimal places) at the end of 10 complete switching cycles is _____.

MADE EASY India's Best Institute for IES, GATE & PSUs

Ans. (5) Buck boost converter, $D = 0.6 \rightarrow$ stores energy $D = \frac{T_{ON}}{T} = 0.6$ 50 $T_{\rm ON} = 0.6T \rightarrow \text{store energy}$ $T_{\text{OFF}} = 0.4 \text{ T} \rightarrow \text{releasing energy}$ 0.6T 0.4TFor one cycle: Rise in current for 0.2T For 10 cycles: Find rise in current $(0.27) \times 10 = 27$ $i = \frac{50}{l}t$ $i = \frac{50}{L}(2T) = \frac{50 \times 2}{LP} = \frac{100}{10 \cdot 10^{-3} \times 10 \cdot 10^{3}} = 1$ A Energy stored = $\frac{1}{2}Li^2 = \frac{1}{2} \times (10 \cdot 10^{-3}) \cdot (1)^2 = 5 \text{ mJ}$ Ζ. End of Solution

Q.44 Which of the following options is true for a linear time-invariant discrete time system that obeys the difference equation:

 $y[n] - ay[n - 1] = b_0 x[n] - b_1 x[n - 1]$

- (a) When x[n] = 0, n < 0, the function y[n]; n > 0 is solely determined by the function x[n].
- (b) The system is necessarily causal.
- (c) y[n] is unaffected by the values of x[n k]; k > 2.
- (d) The system impulse response is non-zero at infinitely many instants.

Ans. (d)

 \Rightarrow

$$y(n) - ay(n-1) = b_0 x(n) - b_1 x(n-2)$$

By applying ZT,

$$Y(z) - az^{-1} Y(z) = b_0 X(z) - b_1 z^{-1} X(z)$$

$$H(z) = \frac{Y(z)}{X(z)} = \frac{b_0 - b_1 z^{-1}}{1 - a z^{-1}}$$

By taking right-sided inverse ZT,

$$h(n) = b_0 a^n u(n) - b_1 a^{n-1} u(n-1)$$

By taking left-sided inverse ZT,

$$h(n) = -b_0 a^n u(-n - 1) + b_1 a^{n - 1} u(-n)$$

Thus system is not necessarily causal.

The impulse response is non-zero at infinitely many instants.

End of Solution

Q.45 Two buses, *i* and *j*, are connected with a transmission line of admittance *Y*, at the two ends of which there are ideal transformers with turns ratios as shown. Bus admittance matrix for the system is:

I I

Ans. (d)

Ans.

MADE

Best Institute for IES GATE

$$I = Y(t_i V_i - V_j t_j)$$

$$I_i = t_i I$$

$$= t_i^2 Y V_i - t_i t_j Y V_j$$

$$I_j = -t_j I$$

$$= -I_i t_j Y V_i + t_j^2 Y V_j$$

$$I_i = \begin{bmatrix} t_i^2 Y & -t_i t_j Y \\ -t_i t_j Y & t_j^2 Y \end{bmatrix} \begin{bmatrix} V_i \\ V_j \end{bmatrix}$$

End of Solution

Q.46 Windings 'A', 'B' and 'C' have 20 turns each and are wound on the same iron core as shown, along with winding 'X' which has 2 turns. The figure shows the sense (clockwise/ anti-clockwise) of each of the windings only and does not reflect the exact number of turns, If windings 'A', 'B' and 'C' are supplied with balanced 3-phase voltages at 50 Hz and there is no core saturation, the no-load RMS voltage (in V, rounded off to 2 decimal places) across winding 'X' is ______ .

Corporate Office: 44-A/1, Kalu Sarai, New Delhi-110016 \mid 🔀 info@madeeasy.in 🛛 🔬 www.madeeasy.in

Q.47 The vector function expressed by $F = \mathbf{a}_{y}(5y - k_{1}z) + \mathbf{a}_{y}(3z + k_{2}x) + \mathbf{a}_{z}(k_{3}y - 4x)$ represents a conservative field, where a_x , a_y , a_z are unit vectors along x, y and z directions, respectively. The values of constants k_1 , k_2 , k_3 are given by: (a) $k_1 = 3$, $k_2 = 3$, $k_3 = 7$ (b) $k_1 = 4$, $k_2 = 5$, $k_3 = 3$ (c) $k_1 = 3$, $k_2 = 8$, $k_3 = 5$ (d) $k_1 = 0$, $k_2 = 0$, $k_3 = 0$ Ans. (b) $\overline{F} = (5y - k_1 z)\hat{i} + (3z + k_2 x)\hat{j} + (k_3 y - 4x)\hat{k}$ is conservative field \overline{F} is irrotational, $\nabla \times \overline{F} = 0$ $\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \end{vmatrix} = 0$ $5y - k_1 z$ $3z + k_2 x$ $k_3 y - 4x$ $\hat{i}(k_3 - 3) - \hat{j}(-4 + k_1) + \hat{k}(k_2 - 5) = 0$ $k_3 - 3 = 0$ $k_3 = 3$ $k_1 = 4$ $k_2 = 5$ $4 - k_1 = 0$ $k_1 = 4$ $k_2 = 5$ $k_2 - 5 = 0$ k₂ = 5 $k_3 = 3$ End of Solution Q.48 A cylindrical rotor synchronous generator has steady state synchronous reactance of 0.7 pu and subtransient reactance of 0.2 pu. It is operating at (1 + i0) pu terminal voltage

Q.48 A cylindrical rotor synchronous generator has steady state synchronous reactance of 0.7 pu and subtransient reactance of 0.2 pu. It is operating at (1 + j0) pu terminal voltage with an internal emf of (1 + j0.7) pu. Following a three-phase solid short circuit fault at the terminal of the generator, the magnitude of the subtransient internal emf (rounded off to 2 decimal places) is _____ pu.

Ans. (1.02)

Prefault current,
$$I_0 = \frac{E_f - V_t}{jX_d} = \frac{1 + j0.7 - 1}{j0.7} = 1$$

Subtransient induced emf,

$$E_{f}'' = V_{0} + jX_{d}''I_{0}$$

= 1 + j0.2 × 1 = 1 + j0.2
$$|E_{f}''| = \sqrt{1^{2} + 0.2^{2}} = 1.02$$

End of Solution

Q.49 A cylindrical rotor synchronous generator with constant real power output and constant terminal voltage is supplying 100 A current to a 0.9 lagging power factor load. An ideal reactor is now connected in parallel with the load, as a result of which the total lagging reactive power requirement of the load is twice the previous value while the real power remains unchanged. The armature current is now ______ A (rounded off to 2 decimal places).

Corporate Office: 44-A/1, Kalu Sarai, New Delhi-110016 🏾 | 🔀 info@madeeasy.in | 🔊 www.madeeasy.in 👘

ADE EASY	MADE EASY ndia's Best Institute for IES, GATE & PSUs	Detailed Solutions of GATE 2020 : Electrical Engineering Date of Test : 08-02-2020
Ans.	(125.29)	
	At P_{constant} , $I_{a1} \cos \phi_1 = I_{a2} \cos \phi_2$	
	$\cos \phi_1 = 0.9$	
	$\tan\phi_1 = 0.484 = \frac{Q}{P}$	
	$\Rightarrow \qquad \frac{2Q}{P} = 0.9686 = ta$	n þ ₂
	$\cos \phi_2 = 0.7182$	
	:. $100 \times 0.9 = I_{a2} \times 0.7182$	2
	\Rightarrow $I_{a2} = 125.29 \text{ A}$	
		End of Solution
Q.50	A non-ideal diode is biased with a volume measured. The thermal voltage is 26 m The voltage, in V, at which the measur (a) -4.50 (c) -0.02	oltage of -0.03 V, and a diode current of I_1 in V and the ideality factor for the diode is 15/13 red current increases to $1.5I_1$ is closest to: (b) -0.09 (d) -1.50
Ans.	(b)	
	$I_1 = I_0 \left[e^{-\frac{0.0}{15/13 \times 10^{-10}}} \right]$	¹³ ^{26 mV} – 1
	As, $V_D = -ve^{-1} i cal$ $I_1 = I_0 [e^{-30 \text{ mV}/30}]$ $= I_0 [e^{-1} - 1]$	n not be neglected in diode current equation ^{mV} – 1]
	$= -0.64 I_0$	(
	$1.5I_1 = I_0 \left[e^{V_D / 30 \text{m}^2} \right]$	^v - 1
	$-1.5 \times 0.64 I_0 = I_0 \left[e^{V_D / 30 \text{ m}} \right]$	^v -1]
	Voz / 30 mV	
	$-0.96 = e^{-0.200}$	• 1
	$1 - 0.96 = e^{-1} e^{$	
	$0.04 = e^{V_D / 30 \text{ mV}}$	
	$V_D = -0.09 \text{ V}$	
		End of Salution

Corporate Office: 44-A/1, Kalu Sarai, New Delhi-110016 | 🔀 info@madeeasy.in | 🜏 www.madeeasy.in

A stable real linear time-invariant system with single pole at p, has a transfer function Q.51 $H(s) = \frac{s^2 + 100}{s - p}$ with a dc gain of 5. The smallest positive frequency, in rad/s at unity gain is closed to: (a) 11.08 (b) 78.13 (c) 8.84 (d) 122.87 Ans. (c) H(s) = T.F. = $\frac{s^2 + 100}{s - p}$ D.C. gain = 5 $\frac{100}{-p} = 5 = p = -20$ \Rightarrow $H(j\omega) = \frac{-\omega^2 + 100}{j\omega + 20}$ $|H(j\omega)| = \frac{-\omega^2 + 100}{\sqrt{\omega^2 + 400}}$ $\frac{-\omega^2 + 100}{\sqrt{\omega^2 + 400}} = 1$ $\omega = 8.84 \text{ rad/sec.}$ \Rightarrow End of Solution Q.52 Consider a permanent magnet dc (PMDC) motor which is initially at rest. At t = 0. a dc voltage of 5 V is applied to the motor. Its speed monotonically increases from 0 rad/s to 6.32 rad/s in 0.5 s and finally settles to 10 rad/s. Assuming that the armature inductance of the motor is negligible, the transfer function for the motor is (b) $\frac{10}{0.5s+1}$ (a) $\frac{2}{0.5s+1}$

(a) 0.5s+1(b) 0.5s+1(c) $\frac{2}{s+0.5}$ (d) $\frac{10}{s+0.5}$

Input = 5 V

Ans. (a)

MADE EASY

MADE

India's Best Institute for IES,

E

 \Rightarrow

$$R(s) = \frac{5}{s}$$

$$\frac{C(s)}{R(s)} = \text{T.F.} = \frac{K}{1+Ts}$$

$$C(s) = \frac{5K}{s(1+Ts)}$$

$$Lt \ sC(s) = 5 \ K = 10 \implies K = 2$$

Q.55 The number of purely real elements in a lower triangular representation of the given 3×3 matrix, obtained through the given decomposition is $\begin{bmatrix} 2 & 3 & 3 \\ 3 & 2 & 1 \\ 3 & 1 & 7 \end{bmatrix} = \begin{bmatrix} a_{11} & 0 & 0 \\ a_{12} & a_{22} & 0 \\ a_{13} & a_{13} & a_{13} \\ a_{14} & a_{15} & a_{15} \\ a_{15} & a$ (a) 6 (b) 5 (c) 8 (d) 9 (d) Ans. $\begin{vmatrix} 2 & 3 & 3 \\ 3 & 2 & 1 \\ 3 & 1 & 7 \end{vmatrix} = \begin{vmatrix} l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33} \end{vmatrix} \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{23} \end{vmatrix}$ Consider $u_{11} = u_{22} = u_{33} = 1$ $\begin{bmatrix} 2 & 3 & 3 \\ 3 & 2 & 1 \\ 3 & 1 & 7 \end{bmatrix} = \begin{bmatrix} l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33} \end{bmatrix} \begin{bmatrix} 1 & u_{12} & u_{13} \\ 0 & 1 & u_{23} \\ 0 & 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 2 & 3 & 3 \\ 3 & 2 & 1 \\ 3 & 1 & 7 \end{bmatrix} = \begin{bmatrix} l_{11} & l_{11}u_{12} & l_{11}u_{13} \\ l_{21} & l_{21}u_{12} + l_{22} & l_{21}u_{13} + l_{22}u_{23} \\ l_{31} & l_{31}u_{12} + l_{32} & l_{31}u_{13} + l_{32}u_{23} + l_{33} \end{bmatrix}$ $\begin{array}{cccc} l_{11} = 2 & & l_{11}u_{12} = 3 & & l_{11}u_{13} = 3 \\ l_{21} = 3 & & 2u_{12} = 3 & & 2u_{13} = 3 \end{array}$ $l_{31} = 3$ $u_{12} = \frac{3}{2}$ $u_{13} = \frac{3}{2}$ $l_{21}u_{12} + l_{22} = 2 \qquad \qquad l_{21}u_{13} + l_{22}u_{23} = 1$ $(3)\left(\frac{3}{2}\right) + l_{22} = 2$ $(3)\left(\frac{3}{2}\right) + \left(-\frac{5}{2}\right)u_{23} = 1$ $l_{22} = -\frac{5}{2}$ $u_{23} = \frac{7}{5}$ $l_{31}u_{12} + l_{32} = 1 \qquad l_{31}u_{13} + l_{32}u_{23} + l_{33} = 7$ (3) $\left(\frac{3}{2}\right) + l_{32} = 1$ (3) $\left(\frac{3}{2}\right) + \left(-\frac{7}{2}\right)\left(\frac{7}{5}\right) + l_{33} = 7$ $l_{32} = -\frac{7}{2}$ $l_{33} = \frac{74}{10}$ $L = \begin{bmatrix} 2 & 0 & 0 \\ 3 & -5/2 & 0 \\ 3 & -7/2 & 74/10 \end{bmatrix}$ The number of purely real elements of lower triangular matrix are 9. End of Solution Page 37 Corporate Office: 44-A/1, Kalu Sarai, New Delhi-110016 🔰 🔀 info@madeeasy.in | 🜏 www.madeeasy.in

India's Best, Institute for ISS

India's Best Institute for IES GATE