

GATE 2020 Mechanical Engineering

Click here for Questions and Solutions

Date of Exam: 01/02/2020 (Forenoon)

Scroll down to view

Corporate Office: 44-A/1, Kalu Sarai, New Delhi - 110016 | Ph: 011-45124612, 9958995830 Delhi | Hyderabad | Noida | Bhopal | Jaipur | Lucknow | Indore | Pune | Bhubaneswar | Kolkata | Patna

UPPSC Combined State Engineering Services Exam, 2019

Assistant Engineer | Total Posts : 692

- 650 Hrs of quality classes at your doorstep.
- Flexibility to learn at your own pace.
- Physical study materials will be dispatched at your address.

Admission open

Streams: CE, ME, EE

20 Tests | Commencing from 23rd Feb, 2020

Test Series (Online/Offline)

- Quality questions with detailed solutions.
- Comprehensive performance analysis.
- Tests on standard and pattern as per UPPSC examination.

Streams: CE, ME, EE

Admission open

VADE EASY	MADE EASY ndia's Best Institute for IES, GATE & PSUs	Detailed Solutions of GATE 2020 : Mechanical Engineering Date of Test : 01-02-2020 (Forenoon)
Q.5	P, Q, R and S are to be unique as $\alpha\beta$, then R and S, respective (a) $\beta\alpha$ and $\beta\beta$ (c) $\beta\alpha$ and $\alpha\beta$	ly coded using α and β. If P is coded as αα and Q ely, can be coded as (b) αβ and ββ (d) ββ and αα
Ans.	(a) $\beta \alpha$ and $\beta \beta$ Given,code of $P = \alpha \alpha$ code of $Q = \alpha \beta$ thesecode of $R = \beta \alpha$ andcode of $S = \beta \beta$	
Q.6	Crowd funding deals with mobil people, who would be willing to in the project. Based on the above paragraph, (a) Funds raised through unwillin (b) Funds raised through coerce (c) Funds raised through large of (d) Funds raised through volunta	End of Solution isation of funds for a project from a large number of invest smaller amounts through web-based platforms which of the following is correct about crowd funding? ng contributions on web-based platforms. ed contributions on web-based platforms. contributions on web-based platforms. ary contributions on web-based platforms.
Ans.	(d) Crowd funding has been defined for a project. Only option and is	as a large number of people making small cantribution s implied.
Q.7	Jofra Archer, the England fast b (a) faster (c) more fast	owler, is than accurate. (b) more faster (d) less fast
Ans.	(c) When two qualities of the same r is used. Use more fast and not	noun are compared, more + positive degree adjective 'faster'.
Q.8	Select the word that fits the ana Build : Building : : Grow : (a) Grew (c) Grown	llogy: (b) Growed (d) Growth
Ans.	(d) Build : Build (verb) (nour	ing))
	Grow : Grow (verb) (nour	<i>)</i>

	MADE EASY ndia's Best Institute for IES, GATE & PSUs	Detailed Solutions of GATE 2020 : Mechanical Engineering Date of Test : 01-02-2020 (Forenoon)
Q.9	I do not think you know the case well en with your other point. What does the ph (a) in addition to what I have said (b) despite what I have said (c) contrary to what I have said (d) as opposed to what I have said	ough to have opinions. Having said that, I agree nrase "having said that" mean in the given text?
Ans.	(b)	End of Solution
Q.10	The sum of the first n terms in the se	equence 8, 88, 888, 8888, is
	(a) $\frac{81}{80}(10^n - 1) + \frac{9}{8}n$	(b) $\frac{80}{81}(10^n - 1) + \frac{8}{9}n$
	(c) $\frac{81}{80}(10^n - 1) + \frac{9}{8}n$	(d) $\frac{80}{81}(10^n - 1) - \frac{8}{9}n$
Ans.	(d) Using throw options put $n = 1$ and n Actual method: $8 + 88 + 888 + \dots$ $8[1 + 11 + 111 + \dots]$ $\frac{8}{9}[9 + 99 + 999 + \dots]$ $\frac{8}{9}[(10 - 1) + (10^2 - 1) + (10^3 - 1) + \dots]$ $\frac{8}{9}[(10 + 10^2 + 10^3 + \dots) - (1 + 1 + 1 + 1)]$ $\frac{8}{9}[(10 + 10^2 + 10^3 + \dots) - n]$ $S_n = \frac{80}{81}(10^n - 1) - \frac{8n}{9}$	= 2 .] +n)] End of Solution

ESE 2020 Main Exam Streams: CE ME EE E&T

_____.

www.madeeasy.in

	India's Best Institute for IES, GATE & PSUs	Detailed Solutions of GATE 2020 : Mechanical Engineering Date of Test : 01-02-2020 (Forenoon)
Q.8	The base of a brass bracket needs rou grinding wheel grade specification is (a) A50G8V (c) A30D12V	gh grinding. For this purpose, the most suitable (b) C30Q12V (d) C90J4B
Ans.	(b) For brass 'Silicon carbide' is the abrasive Therefore 'Q' is the best choice. $\begin{array}{c} A \rightarrow Z \\ \text{soft} \rightarrow \text{hard} \end{array}$ So, 'J' is in the softer side. So best	ve. As brass is soft material, we need hard wheel. option is (b).
Q.9	Which of the following function $f(z)$, of the points of the complex plane? (a) $f(z) = z^2$	End of Solution f the complex variable z, is NOT analytic at all (b) $f(z) = \log z$
Ans.	(c) $f(z) = e^{z}$ (b) $\log z$ is not analytic at all points.	(d) <i>f</i> (<i>z</i>) = sin <i>z</i>
Q.10	Multiplication of real valued square m (a) not always possible to compute (b) associative (c) always positive definite (d) commutative	atrices of same dimension is
Ans.	(b) Matrix multiplication is associative.	End of Solution
Q.11	A company is hiring to fill four manage three women. If every candidate is equ at least one women will be selected i	rial vacancies. The candidates are five men and ually likely to be chosen then the probability that s (round off to 2 decimal places).
Ans.	(0.93) 5 men, 3 women P[atleast one women selected for 4 v] = 1 - P[none] $= 1 - \frac{5_{C_4} 3_{C_0}}{8_{C_4}}$	acancies]] = $1 - \frac{5}{70} = 1 - \frac{1}{14} = \frac{13}{14} = 0.93$
		End of Solution
Corpor	ate Office: 44-A/1, Kalu Sarai, New Delhi-110016 🏾 🔀	info@madeeasy.in 💽 www.madeeasy.in Page 9

lf

Corporate Office: 44-A/1, Kalu Sarai, New Delhi-110016 🔰 🔀 info@madeeasy.in | 🔊 www.madeeasy.in

v = C

Tds = du

Tds = du + pdv

s

	Detailed Solutions of GATE 2020 : Mechanical Engineering Date of Test : 01-02-2020 (Forenoon)
Ans.	(a)
	$\vec{F} = \frac{\vec{r}}{r^3}$
	$\nabla \cdot \vec{F} = \nabla \cdot \frac{\vec{r}}{r^3} = 0$
	By divergence theorem
	$\iint_{S} \vec{f} \cdot \vec{dS} = \iint_{R} \nabla \vec{F} dx dy dz = 0$
	End of Solution
Q.27	Two business owners Shveta and Ashok run their businesses in two different states. Each of them, independent of the other, produces two products A and B, sells them at Rs. 2,000 per kg and Rs, 3,000 per kg, respectively, and uses Linear Programming to determine the optimal quantity of A and B to maximize their respective daily revenue. Their constraints are as follows: i) for each business owner, the production process is such that the daily production of A has to be at least as much as B, and the upper limit for production of B is 10 kg per day, and ii) the respective state regulations restrict Shveta's production of A to less than 20 kg per day and Ashok's production of A to less than 15 kg per day. The demand of both A and B in both the states is very high and everything produced is sold. The absolute value of the difference in daily (optimal) revenue of Shveta and Ashok is thousand Rupees (round off to 2 decimal places)
Ans.	(10)
	$Maximum \ z = 2000x_1 + 3000x_2$
	$B \rightarrow x_2$ units $x_1 \ge x_2$ $B \rightarrow x_2$ units $x_2 \ge 10$
	$x_1 < 20$
	$x_1 < 15$ Shveta's Profit = Rs. 70000 at (20, 10)
	Ashok's Profit = Rs. 60000 at (15, 10)
	Difference Rs. 10000
Q.28	In a disc-type axial clutch, the frictional contact takes place within an annular region with outer and inner diameters 250 mm and 50 mm, respectively. An axial force F_1 is needed to transmit a torque by a new clutch. However, to transmit the same torque,
	one needs an axial force F_2 when the clutch wears out. If contact pressure remains uniform during operation of a new clutch while the wear is assumed to be uniform for an old clutch and the coefficient of friction does not change, then the ratio F_1/F_2 is (round off to 2 decimal places).
Company	Page 17

ESE 2021 **GATE** 2021

1 Year/2 Years Classroom Courses

Regular

Weekend

Early Start... • Extra Edge...

BATCH COMMENCEMENT DATES

Delhi an	d Noida	Rest of India	
	P	Patna : 24-02-2020	-
REGULAR		Lucknow : 20-02-2020	
BAICHES		Bhopal : 16-01-2020	
DELHI Evening :	BATCHES	Indore : 20-02-2020	_
ME : 16 th Jan, 2020 25 th Feb, 2020		Pune : 10-02-2020	
CE : 30 th Jan, 2020 20 th Feb, 2020	CE : 1 [°] Feb, 2020 ME : 9 th Feb, 2020	Hyderabad : 16-03-2020	
EE, EC : 20 th Jan, 2020	EE: 22 nd Feb, 2020	Bhubaneswar : 23-01-2020	
Morning : CE, ME : 12 th Feb, 2020		Kolkata : 25-01-2020	
(Batch Closed)	CE & ME : 8 th Feb, 2020 FC & FE : 18 th Jan, 2020	Jaipur : 16-02-2020	_
EC : 6 th Apr, 2020 CS : 18 th May, 2020	16 th Feb, 2020		

www.madeeasy.in

Detailed Solutions of GATE 2020 : Mechanical Engineering Date of Test : 01-02-2020 (Forenoon)

Q.31 A rigid mass-less rod of length L is connected to a disc (pulley) of mass *m* and radius r = L/4 through a friction-less revolute joint. The other end of that rod is attached to a wall through a friction-less hinge. A spring of stiffness 2k is attached to the rod at its mid-span. An inextensible rope passes over half the disc periphery and is securely tied to a spring of stiffness *k* at point C as shown in the figure. There is no slip between the rope and the pulley. The system is in static equilibrium in the configuration shown in the figure and the rope is always taut.

Neglecting the influence of gravity, the natural frequency of the system for small amplitude vibration is

MI about point O:

$$I = \frac{mr^2}{2} + ml^2 = \frac{m}{2} \left(\frac{l}{4}\right)^2 + ml^2 = \frac{33ml^2}{32}$$

MI about disc centre:

MADE EASY

India's Best Institute for IES. GATE & PSUs

 $I_{\rm disc} = \frac{mr^2}{2}$

When rod rotates by β ,

$$r = l \cdot \theta$$

 $\beta = \frac{l \cdot \theta}{r}$

β

(If disc is also rotating about its own centre due to static friction).

Energy Method:

 $E = (\text{Rotational KE})_{\text{system about } O} + (\text{Rotational KE})_{\text{disc about its own centre}}$ + (PE of spring of 2K) + (PE of spring of K)

$$E = \frac{1}{2}I(\dot{\theta})^{2} + \frac{1}{2}I_{\text{clisc}}(\dot{\beta})^{2} + \frac{1}{2}(2K) \times \left(\frac{l}{2} \cdot \theta\right)^{2} + \frac{1}{2}K(2l \cdot \theta)^{2}$$

$$= \frac{1}{2} \cdot \frac{33ml^{2}}{32}\dot{\theta}^{2} + \frac{1}{2} \cdot \frac{mr^{2}}{2}\left(\frac{l^{2}}{r^{2}}\right)\dot{\theta}^{2} + \frac{1}{2} \cdot 2K \cdot \frac{l^{2}}{4} \cdot \theta^{2} + \frac{1}{2}K \cdot 4l^{2}\theta^{2}$$

$$E = \frac{1}{2}\left(\frac{33ml^{2}}{32} + \frac{ml^{2}}{2}\right)\dot{\theta}^{2} + \frac{1}{2}\left(\frac{Kl^{2}}{2} + 4Kl^{2}\right)\theta^{2}$$

$$= \frac{1}{2}\left(\frac{49ml^{2}}{32}\right)\dot{\theta}^{2} + \frac{1}{2}\left(\frac{9Kl^{2}}{2}\right)\theta^{2}$$

$$\frac{dE}{dt} = 0$$

$$\frac{1}{2} \left[\frac{49ml^2}{32} \cdot 2\dot{\theta}\ddot{\theta} + \frac{9Kl^2}{2} 2 \cdot \theta \cdot \dot{\theta} \right] = 0$$
$$\frac{49ml^2}{16} \ddot{\theta} + 9Kl^2 \theta = 0$$
$$\frac{49m}{16} \ddot{\theta} + 9K \cdot \theta = 0$$
$$\ddot{\theta} + \frac{9K \times 16}{49m} \cdot \theta = 0$$
$$12 \ \overline{k}$$

 $\omega_n = \frac{12}{7} \sqrt{\frac{\kappa}{m}}$ This is exact solution.

But this solution is very close to $\sqrt{3}\sqrt{\frac{k}{m}}$

$$\frac{12}{7}\sqrt{\frac{k}{m}} = (1.714)\sqrt{\frac{k}{m}}$$

Because,

Detailed Solutions of GATE 2020 : Mechanical Engineering Date of Test: 01-02-2020 (Forenoon)

Therefore,

$$h_n = \frac{12}{7}\sqrt{\frac{k}{m}} = \sqrt{3}\sqrt{\frac{k}{m}}$$

Note: If we take an approximation in moment of inertia about hinge axis.

 $\sqrt{3}\sqrt{\frac{k}{m}} = (1.732)\sqrt{\frac{k}{m}}$

ω

 $I = \frac{mr^2}{2} + ml^2$ (r = l/4)That. $= \left(\frac{ml^2}{32} + ml^2\right)$ If we neglect $\frac{ml^2}{32}$ because $\frac{ml^2}{32} <<< ml^2$ If we take, $I = ml^2$ $\omega_n = \sqrt{3} \sqrt{\frac{k}{m}}$ Then we get, But if we take exact inertia, $I = \left(\frac{ml^2}{32} + ml^2\right) = \frac{33ml^2}{32}$ Then exact answer is $\omega_n = \frac{12}{7} \sqrt{\frac{k}{m}}$

End of Solution

Air discharges steadily through a horizontal nozzle and impinges on a stationay vertical Q.32 plate as shown in figure.

The inlet and outlet areas of the nozzle are 0.1 m² and 0.02 m², respectively. Take air density as constant and equal to 1.2 kg/m³. If the inlet gauge pressure of air is 0.36 kPa, the gauge pressure at point O on the plate is _____ kPa (round off to two decimal places).

Ans. (0.375)

On applying continuity equation,

$$\dot{m} = \rho_1 \cdot A_1 \cdot v_1 = \rho_2 \cdot A_2 \cdot v_2$$
$$0.1 V_1 = 0.02 V_2$$

 $V_2 = \frac{10}{2}V_1 = 5V_1$

$$\Rightarrow$$

 \Rightarrow

Corporate Office: 44-A/1, Kalu Sarai, New Delhi-110016 | 🔀 info@madeeasy.in | 🔊 www.madeeasy.in

ADE EASY	INADE EASS India's Best Institute for IES, GATE & PSUs	GATE 2020 : Mechanical Engineer Date of Test : 01-02-2020 (Foreno
Q.36	A steel part with surface area of 125 cm^2 process using chromium acid sulphate a to the part according to the following c	is to be chrome coaled through an electroplat is an electrolyte. An increasing current is appl current time relation:
	where, <i>I</i> = current (A) and t = time (minute for a duration of 20 minutes for plating chromium to be 15% and the plating 2.50×10^{-2} mm ³ /A·s, the resulting coat µm (round off to one decimal place).	es). The part is submerged in the plating solut purpose. Assuming the cathode efficiency constant of chromium acid sulphate to ing thickness on the part surface is
Ans.	(5.0)	
	I = 12 + 0.2t After time, 't', Next infinitly small time $\therefore \qquad dQ = 2.50 \times 10^{-2}$ As we have to convert this 's' to 'min' $\therefore \qquad dQ = 2.50 \times 10^{-2}$	'dt' let heat deposited 'dQ'. (mm ³ /A.s) × 12 + 0.2t × dt (mm ³ /4 × min) × 12 + 0.2t × dt
	Considering cathode efficiency of 15% $dQ = 2.50 \times 10^{-2}$	$\times 60 \times (12 + 0.2t) dt \times 0.15 \text{ mm}^3$
	:. In 20 min, $Q = \int dQ = \int_{0}^{20} 2.5$	$50 \times 10^{-2} \times 60 \times (12 + 0.2t) dt \times 0.15$
	$= 0.225 [12 + 63 \text{ mm}^3]$	$0.1t^2\Big]_0^{20} = 0.225\Big[12 \times 20 + 0.1 \times 20^2\Big] \mathrm{mm}^3$
	As area os 125 cm ²	
	Plating thickness, $t = \frac{300}{125 \times (100)}$	$= 0.00504 \text{ mm} = 5.04 \mu \text{m}$
	(As 1 cm ² = 100 mm ²)	End of Soluti
Q.37	An analytic function of a complex varia	able $z = x + iy(i = \sqrt{-1})$ is defined as
	$f(z) = x^2 - y^2 + i\psi$	(x,y)
	where $\psi(x, y)$ is a real function. The values is (round off to 2 decima	alue of the imaginary part of $f(z)$ at $z = (1 - 1)$ places).
Ans.	(2) $f(z) = \phi + i\psi \text{ is a}$	nalytic
	$\phi = x^2 - y^2$	$\frac{C - Hequation}{\phi_x = \Psi_y}$
	$\phi_x = 2x = \psi_y$	$\phi_y = -$
	$\phi_y = -2y = -\psi_x$ $\psi_x = 2y \implies \psi =$ $\psi_y = 2x \implies \psi =$	$2xy + C_1$ $2xy + C_2$
		Deve

Г

ADE EAS GATE 2020 : Mechanical Engineering India's Best Institute for IES. GATE & PSUs Date of Test: 01-02-2020 (Forenoon) $F_2 = \rho g A \cdot \overline{x}_2$ = $1000 \times 10 \times (1 \times 1) \times 0.5 = 5 \text{ kN}$ $CP_1 = 4 \times \frac{1}{3} = \frac{4}{3} \text{ m}$ $CP_2 = 1 \times \frac{1}{3} = \frac{1}{3}$ m $M_A = 80 \times \frac{4}{3} - 5 \times \frac{1}{3} = 105$ kN-m So, End of Solution Consider two exponentially distributed random variables X and Y, both having a mean of 0.50. Let Z = X + Y and r be the correlation coefficient between X and Y. If the variance of Z equals 0, then the value of r is _____ (round off to 2 decimal places). (-1) $X \sim E(\lambda_1);$ mean = $\frac{1}{\lambda_1} = 0.5$ $\lambda_1 = 2$ \Rightarrow Variance, $x = \frac{1}{\lambda_1^2} = \frac{1}{4} = 0.25$ $Y \sim E(\lambda_2);$ Mean = $\frac{1}{\lambda_2} = 0.5$ $\lambda_2 = 2$ Variance, y = 0.25 \Rightarrow Given Var (Z) = Var(x) + Var (y) + 2 COV (x, y) 0 = 0.25 + 0.25 + 2 COV (x, y) $COV (x, y) = -\frac{0.5}{2} = -0.25$ $\rho = \frac{COV(x, y)}{\sigma_x \sigma_y} = \frac{-0.25}{\sqrt{(0.25)}\sqrt{(0.25)}} = -1$ Correlation, End of Solution Q.41 The thickness of a steel plate with material strength coefficient of 210 MPa, has to be reduced from 20 mm to 15 mm in a single pass in a two-high rolling mill with a roll radius of 450 mm and rolling velocity of 28 m/min. If the plate has a width of 200 mm and its strain hardening exponent, n is 0.25, the rolling force required for the operation is_____kN (round off to 2 decimal places).

Note: Average Flow Stress = Material Strength Coefficient $\times \frac{(\text{True strain})^n}{(1+p)}$

Corporate Office: 44-A/1, Kalu Sarai, New Delhi-110016 | 🔀 info@madeeasy.in | 📀 www.madeeasy.in

Q.40

Detailed Solutions of

Ans.

An initiative of **MADE EASY** Group

🔀 cst@nextia<u>s.com 🕓 8800338066</u>

www.nextias.com

MADE EASY	Detailed Solutions of GATE 2020 : Mechanical Engineering Date of Test : 01-02-2020 (Forenoon)
Q.43	Consider two cases as below. Case 1: A company buys 1000 pieces per year of a certain part from vendor 'X'. The changeover time is 2 hours and the price is Rs. 10 per piece. The holding cost rate per part is 10% per year. Case 2: For the same part, another vendor 'Y" offers a design where the changeover time is 6 minutes, with a price of Rs. 5 per piece, and a holding cost rate per part of 100% per year. The order size is 800 pieces per year from 'X' and 200 pieces per year from 'Y'. Assume the cost of downtime as Rs. 200 per hour. The percentage reduction in the annual cost for Case 2, as compared to Case 1 is (round off to 2 decimal places).
Ans.	(5.32) Given Data : 1000 pieces/year from 'X. Changeover time = 2 hrs. Cost of downtime = Rs. 200/hour So, Total cost of downtime $2 \times 200 = \text{Rs. 400/downtime}$ C = Rs. 10/piece Holding cost, $C_p = 10\%$ of Rs. 10 $C_p = \text{Rs. 1/unit/year}$ So, total cost for Case I : = Material Cost + Downtime Cost + Inventory Holding Cost $= 1000 \times 10 + (1 \times 400) + \frac{1000}{2} \times 1$ Total cost for case I = Rs. 10,900/- Case II : Order quantity 800 units from X and 200 units from Y. For Y : Change overtime = 6 min. = 0.1 hour Downtime cost = 0.1 × 200 = Rs. 20/- Unit cost, $C = \text{Rs. 5/piece}$ Holding cost, $C_h = 100\%$ of unit cost = Rs. 5/- So, total cost for case II : = Cost for 'X' + Cost for 'Y' $= \left(800 \times 10 + 400 + \frac{800}{2} \times 1\right) + \left(200 \times 5 + 20 + \frac{200}{2} \times 5\right)$ = 8000 + 800 + 1000 + 520 Total cost for case II = Rs. 10,320/- So, percentage reduction in total cost of case II : $= \frac{10900 - 10320}{10900} \times 100 = \frac{580}{10900} \times 100 = 5.32\%$
Corporat	te Office: 44-A/1, Kalu Sarai, New Delhi-110016 🖂 info@madeeasy.in 🔊 www.madeeasy.in Page 28

Г

National Through Scholarship

BST For ESE & GATE 202

Scholarship applicable on Long Term Classroom Courses for ESE & GATE

Date of Test : 1st Mar, 2020

Valid on batches commencing from Apr-June, 2020

Students may opt any one of the following paper:

• Technical Paper : CE, ME, EE, EC, CS, IN

Avail upto

- 50 Questions; • 100 Marks; 1 Hour duration
- Aptitude Based Paper : Maths + Reasoning + English

🕓 09599946203, 09599946204 🛛 🖂 nst@madeeasy.in For registration, visit: www.madeeasy.in

Q.54 A rectangular steel bar of length 500 mm, width 100 mm, and thickness 15 mm is cantilevered to a 200 mm steel channel using 4 bolts, as shown.

For an external load of 10 kN applied at the tip of the steel bar, the resultant shear load on the bolt at B, is _____ kN (round off to one decimal place).

