

ISRO (Scientist/Engineer) Examination
Electronics Engineering : Paper Analysis
Exam held on 12.01.2020

SI.	Subjects	No. of Qs.	Level of Difficulty
1	Electromagnetics	13	Difficult
2	Communication Systems	5	Moderate
3	NetworkTheory	10	Easy
4	Control Systems	9	Moderate
5	Signals and Systems	3	Easy
6	Digital Electronics	12	Easy
7	Electronic Devices and Circuits	11	Moderate
8	Analog Electronics	12	Moderate
9	Power Electronics	3	Difficult
10	Mathematics	2	Difficult

ESE 2020 Streams : CE, ME, EE, E&T

Batches commencing from

Admission open

Mains Classroom Course

Conventional Questions Practice Programme

with ESE Mains Test Series

Features :

- 350 Hrs of comprehensive course.
- Classes by senior faculty.
- Classes in synchronization with Mains Test Series.
- Well design workbook for every subject.

Corporate office : 44-A/1, Kalu Sarai, New Delhi 🕓 011-45124612, 9958995830 / 🌐 WWW.Madeeasy.in

MADE EASY **ISRO : Electronics Engineering** Detailed Solutions : Exam held on 12.01.2020 India's Best Institute for IES. GATE & PSUs Evaluate $\int_{-\infty}^{\infty} x^4 f(x) dx$, where, $f(x) = \frac{1}{\sqrt{2\pi}} e^{(-x^2/2)}, x \in (-\infty, \infty)$ Q.5 (b) $3\sqrt{\pi}$ (a) 3 (c) $\sqrt{3}\pi$ (d) 3π Ans. (a) $I = \int_{-\infty}^{\infty} x^4 f(x) dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x^4 e^{-x^2/2} dx$ $I = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} x^4 e^{-x^2/2} dx$ $\frac{x^2}{2} = y \implies x \, dx = dy$ Let, $I = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} 2y \sqrt{2y} e^{-y} dy$ So, $= \frac{4}{\sqrt{\pi}} \int_{0}^{\infty} (y)^{3/2} e^{-y} dy = \frac{4}{\sqrt{\pi}} \left[\left(\frac{3}{2} + 1 \right) \right]$ $\left\lceil \left(\frac{3}{2}+1\right) = \frac{3}{2} \left\lceil \left(\frac{3}{2}\right) = \frac{3}{4} \left\lceil \left(\frac{1}{2}\right) \right\rceil \right\rangle$ $\left[\because \left[(n+1) = n \right] \right]$ $I = \frac{4}{\sqrt{\pi}} \times \frac{3}{4} \times \left| \left(\frac{1}{2} \right) = \frac{4}{\sqrt{\pi}} \times \frac{3}{4} \times \sqrt{\pi} = 3$ End of Solution

- **Q.6** Consider a transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ where \mathbb{R}^3 and \mathbb{R}^2 represent three and two dimensional real column vectors respectively. Also, T(x) = Ax for some matrix A and for each x in \mathbb{R}^3 . How many rows and columns does A have and what is the its maximum possible rank?
 - (a) Rows : 3; Columns : 2; Rank : 3
 - (b) Rows : 3; Columns : 2; Rank : 2
 - (c) Rows : 2; Columns : 3; Rank : 2
 - (d) Rows : 2; Columns : 3; Rank : 3

```
Ans. (c)
```

```
T : R^3 \rightarrow R^2T(x) = A_{2 \times 3} X_{3 \times 1}Number of rows = 2
```

Number of columns = 3

Maximum possible rank = 2

End of Solution

ESE 2021 **GATE** 2021

1 Year/2Years **Classroom Courses**

Regular

Weekend

Early Start... • Extra Edge...

BATCH COMMENCEMENT DATES

Delhi and	Noida	Rest of India
REGULAR BATCHES DELHI Evening : 16 th & 20 th Jan'20 Morning : 12 th & 18 th Feb'20	WEEKEND BATCHES DELHI 11 th Jan, 2020 NOIDA 12 th Jan, 2020	Patna : 24-02-2020 Lucknow : 20-02-2020 Bhopal : 16-01-2020 Indore : 20-02-2020 Pune : 20-01-2020 Hyderabad : 16-03-2020 Bhubaneswar : 23-01-2020 Kolkata : 25-01-2020 Jaipur : 16-02-2020

(011-45124612, 9958995830

🌐 www.madeeasy.in

UPPSC Assistant Engineer Examination, 2019 Total Posts : 692

We are launching Comprehensive Classroom Course

at **DELHI & LUCKNOW** Centres

Batches from **20th Jan, 2020 & 10th Feb, 2020** Streams Offered : CE, ME, EE

• 650 Hrs of comprehensive course. • General Studies and Hindi covered.

• Exclusive study materials as per requirement of UPPSC.

Other courses available:

Useful for candidates who are not able to join Classroom Courses.

Technical books covering well illustrated theory with solved examples and previous solved papers. GS and Hindi also included.

Online test series on standard and pattern of UPPSC examination. Quality Questions with detailed solutions.

MADE EASY	ISRO : Electronics Engineering Detailed Solutions : Exam held on 12.01.2020
Ans.	(b) $U(\theta_1\phi) = 2 \sin \theta \sin \phi \text{ for } \begin{cases} 0 \le \theta \le \pi \\ 0 \le \phi \le \pi \end{cases}$
	Find directivity (D), $D = \frac{4\pi U_{max}}{P_{rad}}$ (i) Given, $U_{max} = 2$ (ii) $P_{rad} = \iint U(\theta, \phi) d\Omega$
	$= \iint 2\sin\theta \sin\phi(\sin\theta d\theta d\phi)$ $= \int 2\sin^2\theta d\theta \int \sin\phi d\phi$ $= \int_{\pi}^{\pi} (1 - \cos 2\theta) d\theta \int_{\pi}^{\pi} \sin\phi d\phi$
	$= \int_{\theta=0}^{\pi} (1 - \cos 2\theta) d\theta \int_{\phi=0}^{\pi} \sin \theta d\phi$ $= \left(\pi - \left(\frac{\sin 2\theta}{2}\right)_{\theta=0}^{\pi}\right) (-\cos \phi)_{\phi=0}^{\pi}$ $= (\pi - 0)2$ $P_{\text{rad}} = 2\pi$ (iii) Put equation (ii), (iii) in (i) $D = \frac{4\pi(2)}{2\pi} = 4$ $D(\text{dB}) = 10 \log_{10}4 = 6.02 \text{ dB}$
Q.20	End of SolutionWhich of the following is an example of oversampling ADC architecture?(a) Sigma delta(b) Successive approximation(c) Integrator(d) Flash
Ans.	 (a) An analog signal first undergoes the process of sampling before it is applied to ADC for conversion into a digital signal. Oversampling is a process in which an analog signal is sampled at a sampling frequency that is much greater than the Nyquist rate. A Sigma-Delta ADC is an example of a ADC that employs oversampling.
Q.21	A radar receiver has a detection SNR threshold of 10 dB for a 4 MHz bandwidth signal at 300 MHz frequency. If the transmit EIRP of the radar is 40 dBW and receive G/T is 10 dB/K, what is the maximum Radar cross-section (in dB-meter square) detectable at 10 km range? (Given: 10 log(4π) = 11, 10 log(k) = -228.6, k is Boltzmann constant). (a) -15.6 dBm ² (b) -12.6 dBm ² (c) -9.6 dBm ² (d) -5.6 dBm ²
Corporat	te Office: 44-A/1, Kalu Sarai, New Delhi-110016 🖂 info@madeeasy.in 🕢 www.madeeasy.in Page 13

National Through Scholarship

BST For ESE & GATE 202

Scholarship applicable on Long Term Classroom Courses for ESE & GATE

Date of Test : 1st Mar, 2020

Valid on batches commencing from Apr-June, 2020

Students may opt any one of the following paper:

• Technical Paper : CE, ME, EE, EC, CS, IN

Avail upto

- 50 Questions; • 100 Marks; 1 Hour duration
- Aptitude Based Paper : Maths + Reasoning + English

🕓 09599946203, 09599946204 🛛 🖂 nst@madeeasy.in For registration, visit: www.madeeasy.in

Corporate Office: 44-A/1, Kalu Sarai, New Delhi-110016 🏼 📔 🔀 info@madeeasy.in 🛛 🌏 www.madeeasy.in 👘

ISRO : Electronics Engineering MADE EASY Detailed Solutions : Exam held on 12.01.2020 India's Best Institute for IES, GATE & PSUs (*) Ans. $V_{T} = V_{T0} + \gamma \left[\sqrt{2\phi_{F} + V_{SB}} - \sqrt{2\phi_{F}} \right]$ For M_1 , Since V_{SB} value is not provided, assume $V_{SB} = 0$ $V_T = V_{T0} = 0.6 \text{ V}$ For M_1 to remain in conduction, $\begin{array}{c} V_{GS1} > V_{T} \\ V_{in} - V_{out} > 0.6 \text{ V} \\ \text{Now,} \qquad V_{DS2} = V_{out} \implies V_{DS2} < 0.6 \text{ V} \\ M_{2} \text{ will operate in saturation if } V_{DS2} \geq V_{GS2} - V_{T} \end{array}$ $V_{GS2} - V_T \le V_{DS2}$ $V_{GS2} - V_T \le 0.6 \text{ V}$ or \Rightarrow $I_{DS2} = \frac{\mu_n C_{ox}}{2} \times \frac{W}{L} (V_{GS2} - V_T)^2$ $200 = \frac{59.5}{2} \times \frac{W}{V} (V_{GS2} - V_T)^2$ $\frac{W}{L} = \frac{400}{59.5(V_{GS2} - V_T)^2}$ $\frac{W}{L} = \frac{400}{59.5 \times 0.6^2} \Rightarrow \frac{W}{L} \ge 18.67$ None of the given options match according to this solution. **Alternatively Solution:** But if we consider both transistors to be in saturation region then $I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{U} (V_{GS} - V_{T})^{2}$ 200 μ A = $\frac{1}{2}$ (59.5×10⁻⁶)× $\frac{20}{0.5}$ (1.2 - $V_o - V_T$)² $1.2 - V_o - V_T = 0.4$ $1.2 - 0.6 - 0.4 = V_o$ $V_o = 0.2$ $V_{DS} = V_{GS} - V_T$ $V_{GS} = 0.2 + 0.6 = 0.8 V$ $200 \times 10^{-6} = \frac{1}{2} (59.5 \times 10^{-6}) \left(\frac{W}{L}\right) (0.8 - 0.6)^2$

Approximately option (b) satisfies.

 $\frac{W}{L} = 168$

End of Solution

Rank Improvement Batches

for **GATE 2021 & ESE 2021**

Syllabus Covered Complete GATE syllabus & Technical syllabus of ESE **Course Duration** Approximately 5 months 450-475 teaching hours

Class Timing

5-6 days a week 4 hours a day

Features :

- Comprehensive problem solving sessions.
- Techniques to improve accuracy & speed.
- Doubt clearing sessions.
- Weekly class tests for performance improvement.
- Specially designed workbooks for technical subjects.
- Smart techniques to solve problems.
- Systematic & cyclic revision of all subjects.
- Inclusive of interview guidance for PSUs.

Batches commencing from Mid May, 2020 Admission Open

Corporate office : 44-A/1, Kalu Sarai, New Delhi 🕓 011-45124612, 9958995830

🕽 www.madeeasy.in

General Studies & Engineering Aptitude for ESE 2021 Prelims

BATCHES COMMENCEMENT DATES

Regular Batches Delhi 18th Feb, 2020 Weekend Batches Delhi & Noida 22nd Feb, 2020

🕓 011-45124612, 9958995830 🛛 🌐 www.madeeasy.in

	MADE EASY ndia's Best Institute for IES, GATE & PSUs	ISRO : Electronics Engi Detailed Solutions : Exam held o	neering on 12.01.2020
Ans.	(b) For $t < 0$: $V_{GS} = 3 - 3 = 0$ MOSFET is OFF $V_x = 3 + 3 = 6$ At $t = 0$: $V_x = 3 V$ For $t > 0$: $V_{GS} = 3 - 0 = 3$ MOSFET becomes ON so capacitor of	3 V V discharges through MOSFET upto C). ind of Solution
Q.36	An SRAM has address lines from A ₀ to of the SRAM will be (a) 20 MB (c) 8 MB	A_{19} and data width from D_0 to D_{15} . To (b) 16 MB (d) 4 MB	otal capacity
Ans.	(b) In SRAM the number of address line Number of data lines = 16 Capacity of RAM = $2^{20} \times 16 = 16$ M Note: Correct answer is 2 MB, but n	es = 20 Ibits one of the above option is matchir	ig. ind of Solution
Q.37	 Which of the following digital integrated (a) Totem-pole TTL gate (b) Open collector TTL gate (c) Totem-pole output with 3-state gate (d) Emitter Coupled Logic 	circuit cannot be used as wired logic o	connections?
Ans.	(a)	_	
Corporat	e Office: 44-A/1, Kalu Sarai, New Delhi-110016 \mid 左	🕽 info@madeeasy.in 💽 www.madeeasy.in	Page 24

An initiative of **MADE EASY** Group

🔀 cst@nextia<u>s.com 🕓 8800338066</u>

www.nextias.com

GATE 2020 Online Test Series Stream : CE, ME, EE, EC, CS, IN, PI

- Newly designed quality questions as per standard of GATE.
- Video solutions by senior faculties.
- **B** Fully explained and well illustrated solutions.
- Comprehensive and detailed analysis report of test performance.

PACKAGES

Complete Package

- Part Syllabus Topicwise Tests : 24
- Single Subject Tests : 12
- Multi Subject Tests : 6
- Full Syllabus Tests : 12

Only Full Syllabus Tests

12 TESTS

Full syllabus tests on standard & pattern on actual GATE exam.

Test Series available on

Helpline no.: 98180 98817

TESTS

Register online at www.madeeasy.in

MADE EASY ndia's Best Institute for IES, GATE & PSUs	ISRO : Electronics Engineering Detailed Solutions : Exam held on 12.01.2020
For a uniformly doped <i>npn</i> transistor, Given that: $N_E = 2 \times 10^{18} \text{ cm}^{-3}$, $N_B = 10^{17} \text{ cm}^{-3}$, Λ $D_B = 20 \text{ cm}^2/\text{s}$, $x_E = 0.5 \mu\text{m}$, $x_B = 0$. (a) 0.95 (c) 0.99	find the approximate emitter injection efficiency. $D_C = 4 \times 10^{19} \text{ cm}^{-3}$, $D_E = 8 \text{ cm}^2/\text{s}$, $D_C = 28 \text{ cm}^2/\text{s}$, $3 \mu \text{m}$. (b) 0.92 (d) 0.94
(c)	
$\gamma = \frac{1}{1 + \frac{D_E}{D_B} \times \frac{M}{L_B}}$	$\frac{N_B}{E} \times \frac{N_B}{N_E} = 0.99$
In a long <i>p</i> -type Si-bar with cross-sec extra holes = 10^{16} cm ⁻³ are injected. $\tau_p = 10^{-10}$ s, find minority carrier lifeti (a) 10 µs (c) 20 µs	tional area = 0.5 cm ² and $N_a = 2 \times 10^{17}$ cm ⁻³ , Assume $\mu_p = 500$ cm ² /Vs, $n_i = 10^{10}$ cm ⁻³ and me. (b) 15 µs (d) 25 µs
(*) Data insufficient.	End of Solution
In a <i>p</i> -type Si at 300 K and $N_a = 8 \times$ the semiconductor as a function of s statement for weak inversion region. concentrations at the surface. (a) $p_s > N_a$ (c) $n_s < N_a$ and $p_s < N_a$	10 ¹⁵ cm ⁻³ , variation of space-charge density in urface potential is plotted, then select the true Given that p_s and n_s are hole and electron (b) $n_s < N_a$ and $n_s > p_s$ (d) $n_s > N_a$
(b)	
$n_s < N_A, n_s >$	P _s
In order to ensure that the output volt are grounded (a) internal negative feedback is used (b) an external offset balancing circu (c) the currents incident at the output (d) the totem-pole output transistors an	age of an op-amp is zero, when both its inputs d it is used at the input terminals t node are carefully designed re designed to have exactly equal cut-in voltages
(b)	
	End of Solution
	For a uniformly doped <i>npn</i> transistor, Given that: $N_E = 2 \times 10^{18} \text{ cm}^{-3}, N_B = 10^{17} \text{ cm}^{-3}, N_D_B = 20 \text{ cm}^2/\text{s}, x_E = 0.5 \ \mu\text{m}, x_B = 0.$ (a) 0.95 (c) 0.99 (c) $\gamma = \frac{1}{1 + \frac{D_E}{D_B} \times \frac{W}{D_B}}$ In a long <i>p</i> -type Si-bar with cross-sec extra holes = 10 ¹⁶ cm ⁻³ are injected. $\tau_p = 10^{-10}$ s, find minority carrier lifeti (a) 10 \ \mu\text{s}} (c) 20 \ \mu\text{s} (*) Data insufficient. In a <i>p</i> -type Si at 300 K and $N_a = 8 \times$ the semiconductor as a function of s statement for weak inversion region. concentrations at the surface. (a) $p_s > N_a$ (c) $n_s < N_a$ and $p_s < N_a$ (b) $n_s < N_{A'}$ $n_s >$ In order to ensure that the output volt are grounded (a) internal negative feedback is used (b) an external offset balancing circu (c) the currents incident at the output (d) the totem-pole output transistors are (b)

www.madeeasy.in

MADE EASY	ISRO : Electronics Engineering Detailed Solutions : Exam held on 12.01.2020
Ans.	(a) $C(s) = \frac{1-s}{1+s} \times \frac{1}{s} = \frac{1}{s} - \frac{2}{s+1}$ $C(t) = (1 - 2e^{-t}) u(t)$ End of Solution
Q.77	The system $\frac{1600}{s(s+1)(s+16)}$ is to be compensated such that its gain-crossover frequency becomes same as its uncompensated Phase-crossover frequency. Which of the following is the phase crossover frequency of the compensated system? (a) 4 rad/sec (b) 8 rad/sec (c) 16 rad/sec (d) None of the above
Ans.	(d) Compressed ω_{gc} = uncompensated $\omega_{pc} = \frac{1}{\sqrt{T_1 T_2}} = 4 \text{ rad/s}$ But phase cross-over frequency of compensated system cannot be (provided) solved with given data.
Q.78	A discrete time, linear time invariant system with input sequence x_n and output sequence y_n is characterised by $y_n = 0.1x_n + 0.9 \ y_{n-1}$ If two such systems are connected in series, which of the following is the governing difference equation of the overall system? (a) $y_n - 1.8y_{n-1} + 0.81y_{n-2} = 0.01x_n$ (b) $y_n + 0.81y_{n-1} = 0.01x_n$ (c) $y_n - 0.81y_{n-1} + 1.8y_{n-2} = 0.01x_n$ (d) $y_n - 1.8y_{n-1} = 0.01x_n$
Ans.	(a) y(n) = 0.1x(n) + 0.9y(n - 1) By taking z-transform, $Y(z) = 0.1X(z) + 0.9z^{-1}Y(z)$ $\Rightarrow \qquad \frac{Y(z)}{X(z)} = H(z) = \frac{0.1}{1 - 0.9z^{-1}}$ For cascaded sys, resultant transfer function $H'(z) = H(z) \cdot H(z) = \left[\frac{0.1}{(1 - 0.9z^{-1})}\right]^2$ $\Rightarrow \qquad \frac{Y'(z)}{X'(z)} = \frac{0.01}{1 - 1.8z^{-1} + 0.81z^{-2}}$ $\Rightarrow Y'(z) - 1.8z^{-1}Y'(z) + 0.81z^{-2}Y'(z) = 0.01X'(z)$ By taking inverse transform $\Rightarrow y(n) - 1.8y(n - 1) + 0.81y(n - 2) = 0.01x(n)$ <i>End of Solution</i>
Corpora	te Office: 44-A/1, Kalu Sarai, New Delhi-110016 🖂 info@madeeasy.in 💽 www.madeeasy.in Page 47

r

