

ESE 2020

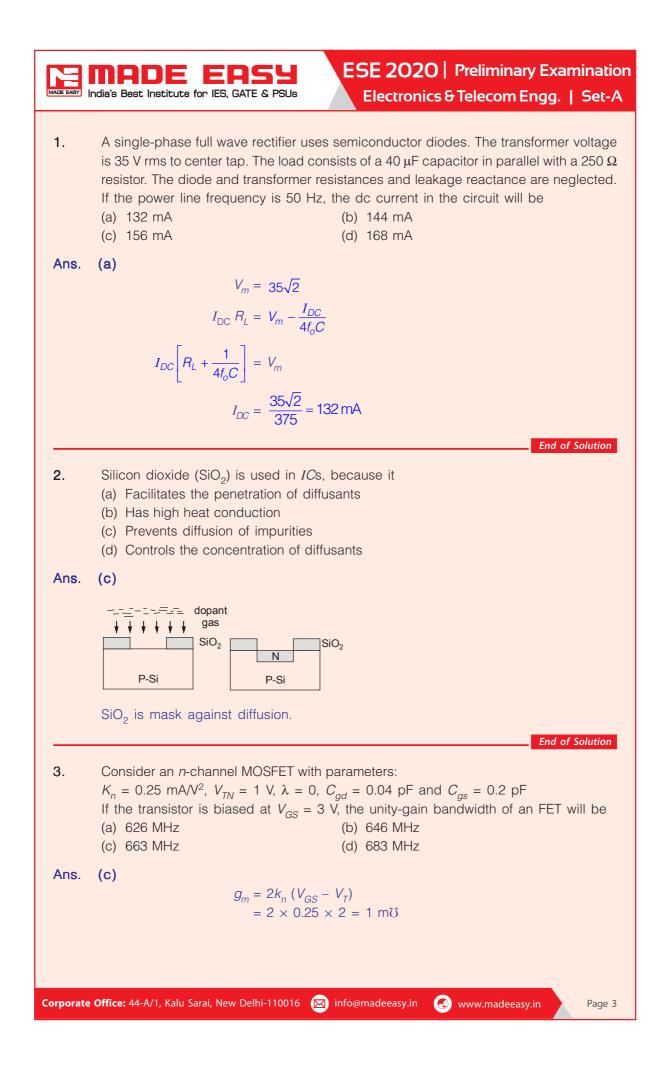
Preliminary Examination

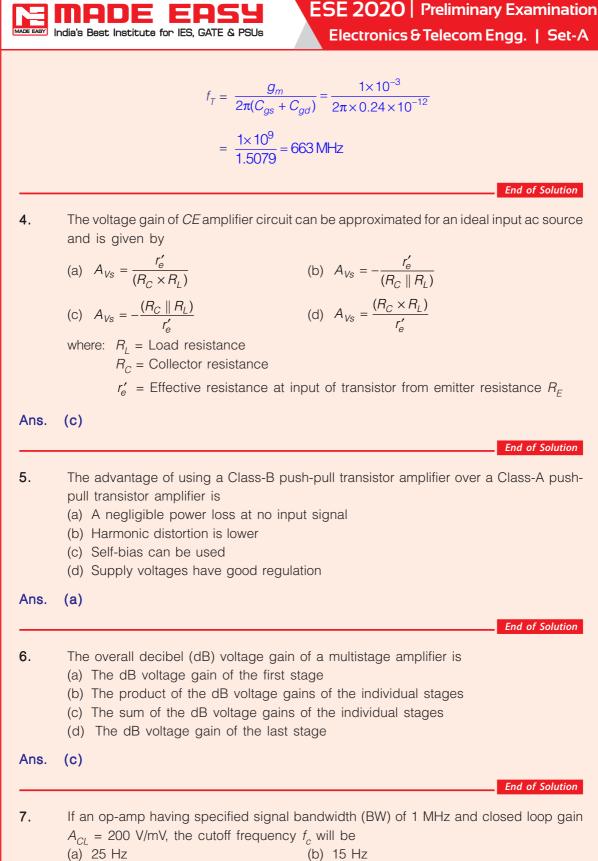
Detailed Solutions of Electronics & Telecom Engg. (Set-A)

Scroll down for detailed solutions

www.madeeasy.in

Corporate Office: 44-A/1, Kalu Sarai, New Delhi - 110016 | Ph: 011-45124612, 9958995830


Delhi | Hyderabad | Noida | Bhopal | Jaipur | Lucknow | Indore | Pune | Bhubaneswar | Kolkata | Patna



Expected Cutoff of ESE 2020 Prelims (Out of 500 Marks)				Actu		f of ESE 2 of 500 Ma	2 019 Preli arks)	ms	
Branch	Gen	OBC	SC	ST	Branch	Gen	OBC	SC	ST
CE	210-220	205-215	170-180	170-180	CE	188	185	143	159
ME	245-255	245-255	210-220	210-220	ME	187	187	166	169
EE	225-235	215-225	195-205	195-205	EE	221	211	191	172
E&T	235-245	225-235	185-195	185-195	E&T	226	221	176	165

E&T Paper Analysis ESE 2020 Prelims Exam

SI.	Subjects	Number of Questions
1	Materials Science	10
2	Electronic Devices and Circuits	2
3	Analog Circuits	12
4	NetworkTheory	20
5	Control Systems	11
6	Electromagnetic Theory	11
7	Measurements	12
8	Communication Systems	16
9	Advance Communications	10
10	Advance Electronics	5
11	Basic Electrical Engineering	8
12	Computer Organization	11
13	Signals and Systems	9
14	Digital Circuits	9
15	Microprocessors	4

- (c) 5 Hz
- (b) 15 Hz (d) 1 Hz
- Corporate Office: 44-A/1, Kalu Sarai, New Delhi-110016 🛛 info@madeeasy.in 💽 www.madeeasy.in

Page 4

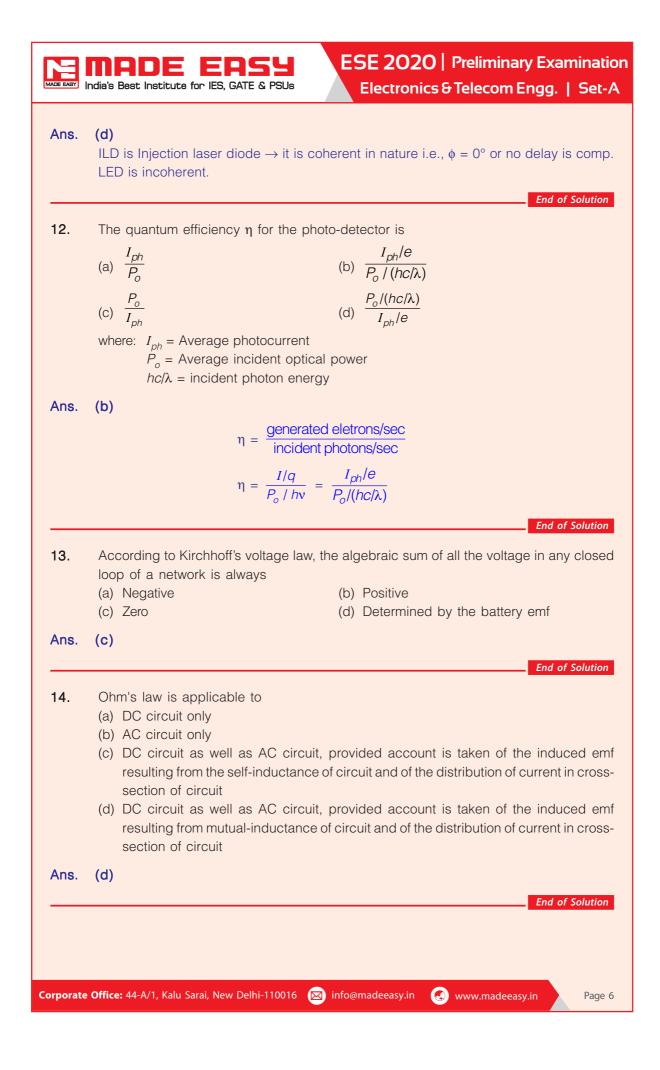
	India's Best Institute for IES, GATE & PSUs ESE 2020 Preliminary Examination Electronics & Telecom Engg. Set-A
Ans.	(c) $A_{CL} = 200 \times 10^{3} \text{ V/V}$ Cut-off frequency $(f_c) = \frac{\text{Unity gain BW}}{A_{CL}} = \frac{10^{6}}{200 \times 10^{3}} = 5 \text{ Hz}$ End of Solution
8.	If the bias current in the <i>IC</i> -741 op-amp is I_Q = 19 µA and the internal frequency compensation capacitor C_1 = 30 pF, the slew rate of the op-amp will be nearly (a) 1.58 V/µs (b) 1.26 V/µs (c) 0.93 V/µs (d) 0.63 V/µs
Ans.	(d) $I = C \times \frac{dV}{dt}$ Slew rate = $\frac{dV}{dt} = \frac{I}{C} = \frac{19 \times 10^{-6}}{30 \times 10^{-12}} = 0.63 \text{ V/}\mu\text{sec}$ End of Solution
9.	 Which one of the following statements regarding slew rate is correct ? (a) It signifies how rapidly the output of an op-amp can change in response to changes in the frequency of the input signal (b) It does not change with change in voltage gain (c) It should be smaller for high-speed op-amp applications (d) It is not fixed for an op-amp
Ans.	(a) End of Solution
10.	Which one of the following is correct for an ideal operational amplifier ? (a) Input resistance $R_i = \infty$, output resistance $R_o = 0$ and bandwidth = 0 (b) Input resistance $R_i = 0$, output resistance $R_o = \infty$ and bandwidth = 0 (c) Input resistance $R_i = \infty$, output resistance $R_o = 0$ and bandwidth = ∞ (d) Input resistance $R_i = 0$, output resistance $R_o = 0$ and bandwidth = ∞
Ans.	(C) End of Solution
11.	The advantage of ILD over LED is(a) ILD emits incoherent light whereas LED emits coherent light(b) In ILD it is difficult to couple light whereas in LED it is easy to couple light(c) In ILD coupling loss is more whereas in LED coupling loss is less(d) ILD emits coherent light whereas LED emits incoherent light
orporate	Office: 44-A/1, Kalu Sarai, New Delhi-110016 🖂 info@madeeasy.in 🔇 www.madeeasy.in Page 5

ESE 2020 Streams : CE, ME, EE, E&T

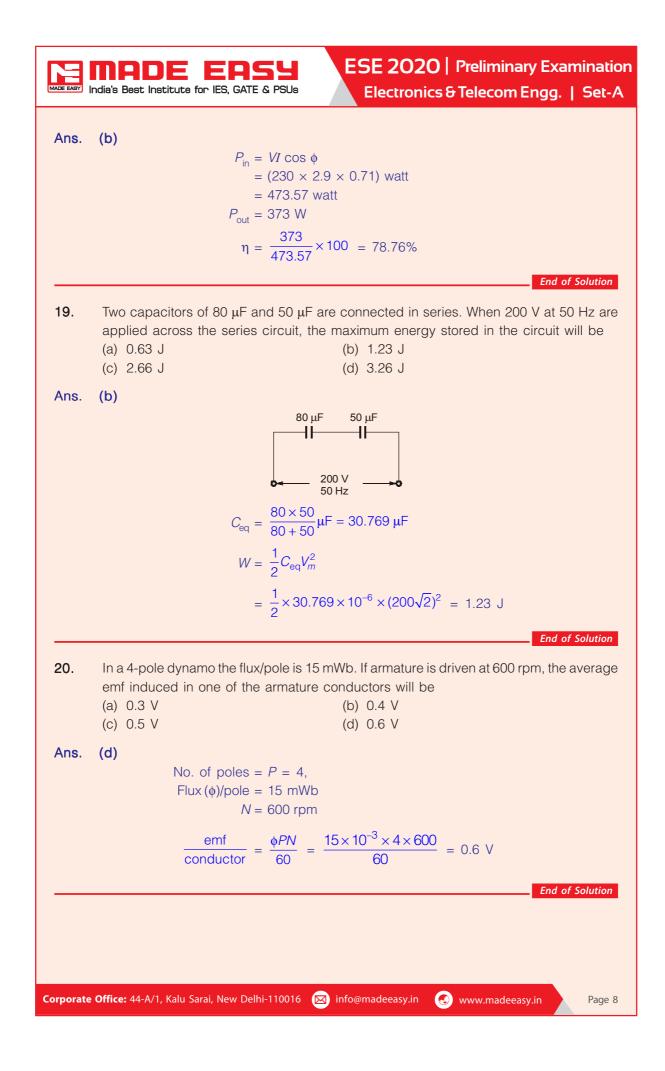
Batches commencing from

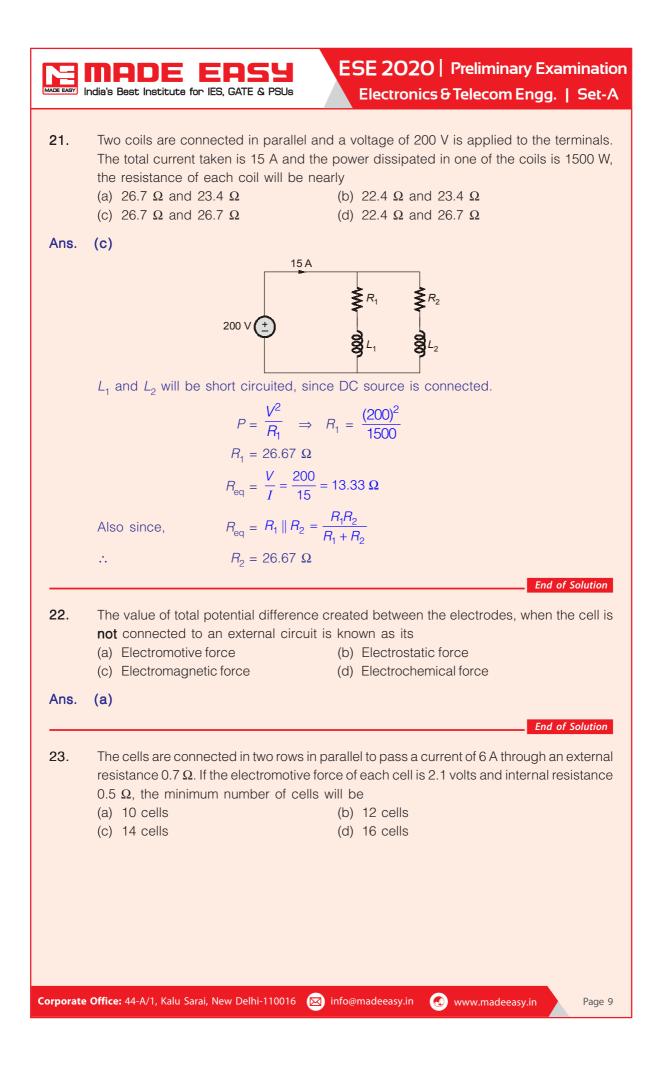
Admission open

Mains Classroom Course


Conventional Questions Practice Programme

with ESE Mains Test Series


Features :


- 350 Hrs of comprehensive course.
- Classes by senior faculty.
- Classes in synchronization with Mains Test Series.
- Well design workbook for every subject.

Corporate office : 44-A/1, Kalu Sarai, New Delhi 🕓 011-45124612, 9958995830 / 🌐 WWW.Madeeasy.in

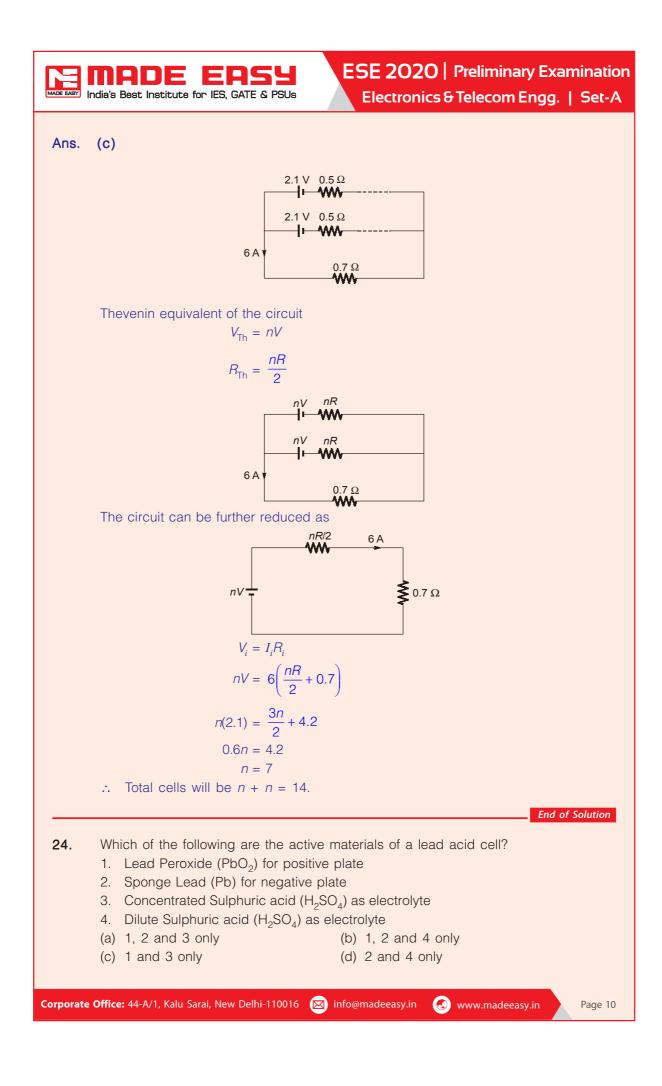
15.	of the earth's magnetic field of 40	th is travelling with 72 km/h at a vertical componen $\mu Wb/m^2$, the emf generated in the axle of a car will
	be (a) 1.2 mV (c) 2.2 mV	(b) 1.6 mV (d) 2.6 mV
Ans.	(b) $e = Blv$	
	= 40×1	$0^{-6} \times 2 \times 72 \times \frac{5}{18} = 1.6 \text{ mV}$
16.	Crest factor for an alternating cur (a) Maximum value to RMS value (c) RMS value to Average value	e (b) RMS value to Maximum value
Ans.	(a)	
	Creat factor or Deals factor	aximum value RMS value End of Solution
17.		gle-phase transformer has 80 turns on the secondar former, the primary current I ₁ and secondary currer (b) 72.2 A and 833 A (d) 72.2 A and 720 A
Ans.	(a) $200 \times 10^3 = 3300 \times I_1 = \frac{2000}{33}$ $200 \times 10^3 = 240 \times I_2$	$\times I_1$ = 60.6 A
	$I_2 = \frac{200 \times 24}{24}$	$\frac{10^3}{0} = 833.33 \text{ A}$
		ing the name plate of 1-phase, 4-pole induction motor

ESE 2021 **GATE** 2021

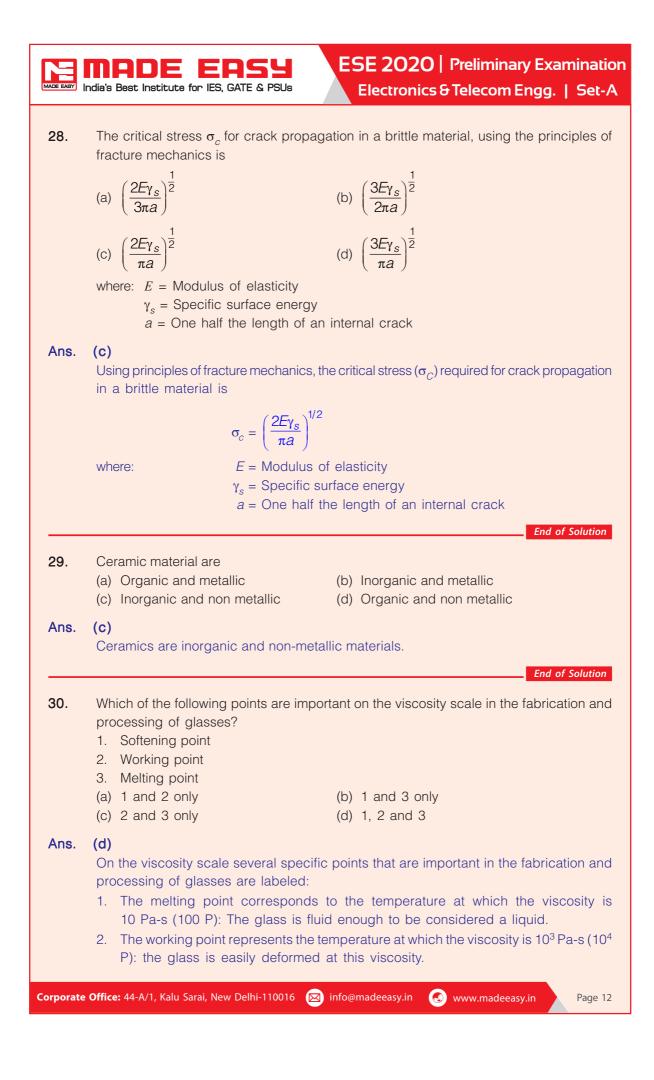
1 Year/2Years **Classroom Courses**

Regular

Weekend


Early Start... • Extra Edge...

BATCH COMMENCEMENT DATES


Delhi and	Rest of India	
REGULAR DELHI Evening : 16 th & 20 th Jan'20 Morning : 12 th & 18 th Feb'20	VEEKEND ATCHES DELHI 1 th Jan, 2020 IOIDA 2 th Jan, 2020	Patna : 24-02-2020 Lucknow : 20-02-2020 Bhopal : 16-01-2020 Indore : 20-02-2020 Pune : 20-01-2020 Hyderabad : 16-03-2020 Bhubaneswar : 23-01-2020 Kolkata : 25-01-2020 Jaipur : 16-02-2020

(011-45124612, 9958995830

🌐 www.madeeasy.in

	Image: Section Statute Est 2020 Preliminary Examination India's Best Institute for IES, GATE & PSUs Electronics & Telecom Engg. Set-/
Ans.	 (b) Active materials in lead acid cell: 1. Lead peroxide for positive plate. 2. Sponge lead for negative plates. 3. Dilute sulphuric acid (H₂SO₄) as electrolyte.
25.	 Which of the following materials are used for high-technology applications ? 1. Semi conductors 2. Bio materials 3. Smart materials (a) 1 and 2 only (b) 1 and 3 only
Ans.	(c) 2 and 3 only (d) 1, 2 and 3 (d)
26.	The theoretical density ρ for the crystal structure of a metallic solid is (a) $\frac{nV_C}{AN_A}$ (b) $\frac{nN_A}{AV_C}$ (c) $\frac{nA}{V_CN_A}$ (d) $\frac{nAN_A}{V_C}$ where: n = Number of atoms associated with each unit cell V_C = Volume of unit cell A = Atomic weight N_A = Avogadro's number
Ans.	$\rho = \frac{nA}{V_C N_A}$
27.	End of SolutionA circular dislocation loop has edge character all round the loop and this dislocationcan glide only on a surface that contains(a) Burgers vector(b) Both burgers vector and t vector(c) t vector(d) No vector
Ans.	(b) By definition, the Burgers vector is perpendicular to an edge dislocation line. Also, the Burgers vector is invariant. the edge dislocation can glide only on a surface that contains both the Burgers vector and the <i>t</i> vector. These consideration are satisfied only when

	India's Best Institute for IES, GATE & PSUs Electronics & Telecom Engg. Set
	 The softening point, the temperature at which the viscosity is 4 × 10⁶ Pa-s (4 × 10⁶ P), is the maximum temperature at which a glass piece may be handled without causing significant dimensional alternations.
31.	End of SolutionWhich one of the following is commonly used piezoelectric ceramics?(a) Yttrium oxide (Y_2O_3) (b) Boron carbide (B_4C) (c) Barium titanate $(BaTiO_3)$ (d) Tungsten carbide (WC)
Ans.	(c) Barium titanate (BaTiO ₃) is commonly used piezoelectric ceramic.
32.	The detailed information regarding the mechanism of fracture is available from microscop examination, normally using scanning electron microscopy, and its study is termed a (a) Microscopic (b) Fractographic (c) Atroscopic (d) Nanoscopic
Ans.	(b) Fractography is the study of the fracture surfaces of the materials.
33.	End of Solution A transformer core is wound with a coil carrying an alternating current at a frequenc
	of 50 Hz. The magnetization is uniform throughout the core volume of 0.01 m ³ , the hysteresis loop has an area of 60,000 units when the axes are drawn in units of 10^{-4} Wb m ⁻² and 10^{2} A m ⁻¹ . The power loss due to hysteresis will be (a) 200 W (b) 250 W (c) 300 W (d) 350 W
Ans.	hysteresis loop has an area of 60,000 units when the axes are drawn in units (10 ⁻⁴ Wb m ⁻² and 10 ² A m ⁻¹ . The power loss due to hysteresis will be (a) 200 W (b) 250 W (c) 300 W (d) 350 W (c) $P_{loss} = (60000) \times (10^{-4} \times 10^2) \times 50 \times 0.01$ watt = 300 watt
Ans. 34.	hysteresis loop has an area of 60,000 units when the axes are drawn in units of 10^{-4} Wb m ⁻² and 10^{2} A m ⁻¹ . The power loss due to hysteresis will be (a) 200 W (b) 250 W (c) 300 W (d) 350 W (c) $P_{loss} = (60000) \times (10^{-4} \times 10^{2}) \times 50 \times 0.01$ watt
	hysteresis loop has an area of 60,000 units when the axes are drawn in units of 10^{-4} Wb m ⁻² and 10^{2} A m ⁻¹ . The power loss due to hysteresis will be (a) 200 W (b) 250 W (c) 300 W (d) 350 W (c) $P_{loss} = (60000) \times (10^{-4} \times 10^{2}) \times 50 \times 0.01$ watt = 300 watt In a 440 V, 50 Hz transformer, the total iron loss is 2300 W. When the applied voltage is 220 V at 25 Hz, the total iron loss is 750 W. The eddy current loss at the normal voltage and frequency will be (a) 1600 W (b) 1400 W

UPPSC Assistant Engineer Examination, 2019 Total Posts : 692

We are launching **Comprehensive Classroom Course**

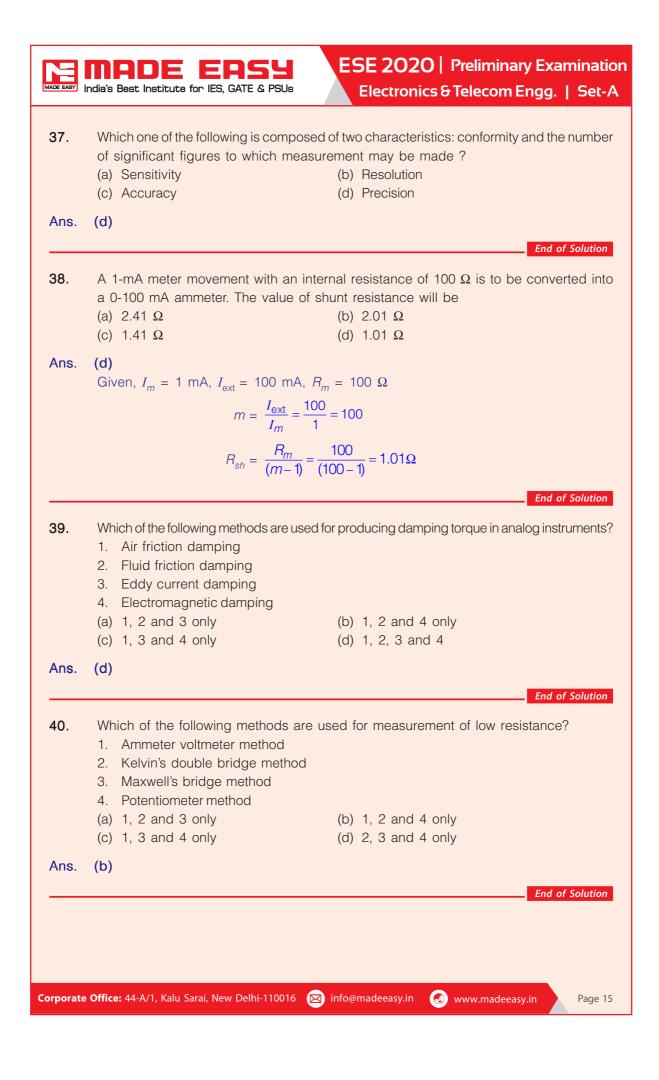
at **DELHI & LUCKNOW** Centres

Batches from **10th Feb**, **2020** | Streams: CE, ME, EE

• 650 Hrs of comprehensive course. • General Studies and Hindi covered.

• Exclusive study materials as per requirement of UPPSC.

Other courses available:



Useful for candidates who are not able to join Classroom Courses.

Technical books covering well illustrated theory with solved examples and previous solved papers. GS and Hindi also included.

Online test series on standard and pattern of UPPSC examination. Quality Questions with detailed solutions.

		D 442	
	$\therefore \qquad P_e \propto f^2 \text{or} $	$P_e = At^2$	(
	$\therefore \qquad P_h \propto B_m^n f$ $\therefore \qquad P_h = Bf$		(2
	Now, $A(50)^2 + B(50) = 2300$		(3
	$A(25)^2 + B(25) = 750$		(4
	or, $A(50) + B = \frac{2300}{50}$		(5
	$A(25) + B = \frac{750}{25}$		(6
	25A = (46 - 30)))	
	$A = \frac{16}{25}$		
	$\therefore P_e \text{ at 440 V, 50 Hz} = \left(\frac{16}{25}\right) \times (6)$	$50)^2 = 1600$ watt	
			End of Solution
Ans.	(c) Magnetic effect(b)The repulsion of magnetic flux line the material undergoes transition to effect.		n as Meissner
			End of Solution
	2. Superconducting elements hav	are correct for superconductors ? I resistance below certain tempera e greater electrical resistivity at roo conducting elements its transition	om temperature
36.	 On adding impurities to super increased. 		
36.		(b) 1 and 2 only (d) 2 and 3 only	
36. Ans.	increased. (a) 1, 2 and 3	(d) 2 and 3 only	superconductor
	increased. (a) 1, 2 and 3 (c) 1 and 3 only (b) Even a small amount of impurity can re-	(d) 2 and 3 only	superconductors
	increased. (a) 1, 2 and 3 (c) 1 and 3 only (b) Even a small amount of impurity can re-	(d) 2 and 3 only	

	Electronics & Telecom Engg. Set-,		
	d the static correction given in the correction curve is rature will be (b) 95.45°C (d) 95.73°C		
Given error is negative, therefore $A_T = A_m - \delta_T$	$A_m < A_T \Rightarrow$ correction factor = +ve		
Unit step response of first order $G(s) = \frac{1}{1 + \tau s}$ (a) $1 - e^{-t/\tau}$ (c) $1 + e^{t/\tau}$			
(a)	End of Solution		
 They are inexpensive They are useful for measuren Their electrical efficiency is v 	nent of large amplitudes of displacement ery high and they provide sufficient output to permi		
 What are the salient features of thermistors? 1. They are compact, rugged and inexpensive 2. They have good stability when properly aged 3. The response time of thermistors can vary from a fraction of a second to minute depending on the size of the detecting mass and thermal capacity of the thermist (a) 1 and 2 only (b) 1 and 3 only (c) 2 and 3 only (d) 1, 2 and 3 			
(d)			
	(c) 95.65° C (a) Error = δA = Given error is negative, therefore $A_{T} = A_{m} - \delta$ $A_{T} = 95.45$ Unit step response of first order $G(s) = \frac{1}{1 + \tau s}$ (a) $1 - e^{-t/\tau}$ (c) $1 + e^{t/\tau}$ (a) What are the advantages of resist 1. They are inexpensive 2. They are useful for measurent 3. Their electrical efficiency is vicontrol operations without furt (a) 1 and 2 only (c) 2 and 3 only (d) What are the salient features of t 1. They are compact, rugged ar 2. They have good stability whe 3. The response time of thermistic depending on the size of the c		

45.	Which of the following land line telemetry systems are available?1. Voltage telemetry systems2. Current telemetry systems3. Position telemetry systems	
	 4. Resistive telemetry systems (a) 1, 2 and 3 only (b) 1, 2 and 4 only (c) 1, 3 and 4 only (d) 2, 3 and 4 only 	
Ans.	. (a)	End of Solution
46.	A platinum thermometer has a resistance of 100 Ω at 25°C. The resi its resistance temperature coefficient of 0.00392/°C will be nearly (a) 107.3 Ω (b) 115.7 Ω (c) 123.3 Ω (d) 131.7 Ω	
Ans.		
	$R_t = R[1 + \alpha \Delta t]$	
	$= 100 \left[1 + \frac{0.00392}{^{\circ}\text{C}} \times (65 - 25)^{\circ}\text{C} \right]$	
	$= 100[1 + 0.00392 \times 40] = 115.68 \ \Omega$	End of Solution
47.	The capacitive transducer works on the principle of change of capacities caused by change in Dielectric constant Overlapping area of plates Distance between the plates (a) 1 and 2 only (b) 1 and 3 only (c) 2 and 3 only (d) 1, 2 and 3 	
Ans.	. (d)	
		End of Solution
48.	What are the advantages of capacitive transducers ?1. They are extremely sensitive2. They have a high input impedance and, therefore the loading eff3. They have a good frequency response	fects are minimun
	(a) 1 and 2 only (c) 2 and 3 only (d) 1, 2 and 3	
Ans.	. (d)	
		End of Solution

National Through Scholarship

BST For ESE & GATE 202

Scholarship applicable on Long Term Classroom Courses for ESE & GATE

Date of Test : 1st Mar, 2020

Valid on batches commencing from Apr-June, 2020

Students may opt any one of the following paper:

• Technical Paper : CE, ME, EE, EC, CS, IN

Avail upto

- 50 Questions; • 100 Marks; 1 Hour duration
- Aptitude Based Paper : Maths + Reasoning + English

🕓 09599946203, 09599946204 🛛 🖂 nst@madeeasy.in For registration, visit: www.madeeasy.in

 What are the properties of a tree in a network graph? 1. It consists of all the nodes of the graph. 2. If the graph has <i>N</i> number of nodes, the tree will have (<i>N</i> – 1) branches. 3. There will be only one closed path in the tree. (a) 1, 2 and 3 (b) 1 and 3 only (c) 1 and 2 only (d) 2 and 3 only
(c)
End of Solution Which one of the following is the property of incidence matrix? (a) Determinant of the incidence matrix of a closed loop is zero (b) The number of independent node-pair terminal is equal to the number of tree branche (c) Algebraic sum of the row entries of an incidence matrix is zero (d) Algebraic sum of the column entries of an incidence matrix is always one
(a)
The Laplace transform of a function $f(t)$ is $F(s) = \frac{s+2}{(s+2)^2+10^2}$
The value of f(0) will be (a) -1 (b) 0 (c) 1 (d) 2
(c) $F(s) = \frac{s+2}{(s+2)^2 + 10^2} = \frac{s+2}{s^2 + 4s + 104}$ $Lt_{S \to \infty} SF(s) = \lim_{S \to \infty} \frac{s(s+2)}{s^2 + 4s + 104} = \lim_{S \to \infty} \frac{s^2 \left(1 + \frac{2}{s}\right)}{s^2 \left(1 + \frac{1}{s} + \frac{104}{s^2}\right)} = 1$ End of Solution
A function, in Laplace domain is given by $F(s) = \frac{2}{s} - \frac{1}{s+3}$ Its value by final value theorem in <i>t</i> domain will be (a) $\lim_{t \to \infty} f(t) = 3$ (b) $\lim_{t \to \infty} f(t) = 2$

Ans.	(b)
	$F(s) = \frac{2s+6-s}{s(s+3)} = \frac{s+6}{s(s+3)}$
	$\lim_{s \to \infty} sF(s) = \frac{s(s+6)}{s(s+3)} = \frac{6}{3} = 2$
	End of Solution
53.	Consider the following experimental readings for a two-port network:
	V1 V2 I1 I2 Output open 100 V 60 V 10 V 0
	Input open 30 V 40 V 0 3 A
	The values of z_{11} , z_{12} , z_{21} and z_{22} respectively are
	(a) 10 Ω , 10 Ω , 6 Ω and 13.33 Ω (b) 6 Ω , 10 Ω , 10 Ω and 6 Ω (c) 10 Ω , 6 Ω , 10 Ω and 13.33 Ω (d) 6 Ω , 10 Ω , 6 Ω and 10 Ω
Ans.	(a)
	$Z_{11} = \left. \frac{V_1}{I_1} \right _{I_2 = 0} = \frac{100}{10} = 10 \Omega$
	$Z_{21} = \frac{V_2}{I_1} \bigg _{I_2 = 0} = \frac{60}{10} = 6 \ \Omega$
	$Z_{22} = \left. \frac{V_2}{I_2} \right _{I_1 = 0} = \frac{40}{3} = 13.33 \ \Omega$
	$Z_{12} = \left. \frac{V_1}{I_2} \right _{I_1 = 0} = \frac{30}{3} = 10 \ \Omega$
	End of Solution
54.	The Laplace transform of $f(t) = 1 - e^{-2t}$ is
	(a) $\frac{2}{s(s+2)}$ (b) $\frac{1}{s(s+2)}$
	(c) $\frac{2}{s(s-2)}$ (d) $\frac{1}{s(s-2)}$
Ans.	(a) $1 1 s + 2 - s 2$
	$F(s) = \frac{1}{s} - \frac{1}{s+2} = \frac{s+2-s}{s(s+2)} = \frac{2}{s(s+2)}$
	End of Solution

ESE 2020 | Preliminary Examination EBSY ADE India's Best Institute for IES, GATE & PSUs Electronics & Telecom Engg. | Set-A For a two-port network, the condition of Symmetry in terms of z-parameters is 55. (b) $Z_{11} = Z_{22}$ (a) $Z_{12} = Z_{21}$ (c) $Z_{11} = Z_{21}$ (d) $Z_{12} = Z_{22}$ (b) Ans. End of Solution 56. For a two-port network, the condition of *Reciprocity* in terms of *h*-parameter is (a) $h_{12} = h_{21}$ (b) $h_{11} = h_{22}$ (c) $h_{12} = -h_{21}$ (d) $h_{12} = -h_{22}$ Ans. (c) End of Solution 57. The initial current is $i(0^+)$, clockwise, and the circuit current being i(t) and $v(t) = L \cdot \frac{di(t)}{dt}$ The above representation in Laplace transform is (a) $V(s) = [sLI(s) - Li(0^+)]$ (b) V(s) = [sLI(s)](c) $V(s) = [Li(0^+)]$ (d) $V(s) = [sLI(0^+) + Li(s)]$ Ans. (a) $V(t) = L \frac{di}{dt}$ $V(s) = L[sI(s) - i(0^+)]$ $V(s) = sLI(s) - Li(0^+)$ End of Solution In a series *R*-*L* circuit, *R* is 10 Ω and *L* is 20 mH, if the circuit current is 10 sin 314 *t A*, 58. the phase angle θ between v and i will be (a) $tan^{-1}(0.2\pi)$ (b) $tan^{-1}(0.4 \pi)$ (c) $tan^{-1}(0.6\pi)$ (d) $tan^{-1}(0.8 \pi)$ (a) Ans. $\theta = \tan^{-1} \frac{\omega L}{R}$ $= \tan^{-1} \frac{2\pi \times 50 \times 20 \times 10^{-3}}{10}$ $= \tan^{-1}(0.2 \pi)$ End of Solution 59. A 4 Ω resistor is connected in series with a 10 mH inductor, across a 100 V, 50 Hz voltage source. The impedance of the circuit will be (a) 5 - i3.14(b) 5 + i3.14(d) 4 + j3.14(c) 4 - j3.14Corporate Office: 44-A/1, Kalu Sarai, New Delhi-110016 🛛 info@madeeasy.in 💽 www.madeeasy.in Page 20

	Control is a set institute for IES, GATE & PSUs ESE 2020 Preliminary Examination Electronics & Telecom Engg. Set-A
Ans.	(d) $Z = R + jX_{L} = R + j\omega L$ $= 4 + j(2\pi \times 50 \times 10 \times 10^{-3})$ $= 4 + j3.14$ End of Solution
60.	A 100 V, 50 Hz a.c. supply is applied across a series <i>RLC</i> circuit having $R = 10 \Omega$, $L = 100 \text{ mH}$ and $C = 1000 \mu\text{F}$. The current through the circuit will be (a) $4.33 \angle -70.5^{\circ}\text{A}$ (b) $3.33 \angle -70.5^{\circ}\text{A}$ (c) $2.33 \angle -50.5^{\circ}\text{A}$ (d) $1.33 \angle -50.5^{\circ}\text{A}$
Ans.	(b) $I = \frac{V}{Z}$
	$Z = 10 + j \left[2\pi \times 50 \times 100 \times 10^{-3} - \frac{1}{314 \times 1000 \times 10^{-6}} \right]$ = 10 + j[31.4 - 3.184] = 10 + j28.2 \Omega $I = \frac{100}{10 + j28.2} = 3.33 \angle -70.5^{\circ} \text{ A}$
61.	End of SolutionA three-phase full wave rectifier with resistive load has a ripple factor(a) 0.482(b) 1.000(c) 0.055(d) 0.500
Ans.	(c)
62.	If $T_A = 50^{\circ}$ C, $T_J = 200^{\circ}$ C and $\theta_{J-A} = 100^{\circ}$ C/W, the power that a transistor, 2N1701 can safely dissipate in free air will be (a) 0.5 W (b) 1.5 W (c) 2.5 W (d) 3.5 W
Ans.	(b) $\theta = \frac{T_j - T_A}{P_D}$
	$\Rightarrow \qquad P_D = \frac{T_j - T_A}{\theta} = \frac{150}{100}$ $P_D = 1.5 \text{ W}$
Corporate	End of Solution • Office: 44-A/1, Kalu Sarai, New Delhi-110016 🖂 info@madeeasy.in Swww.madeeasy.in Page 21

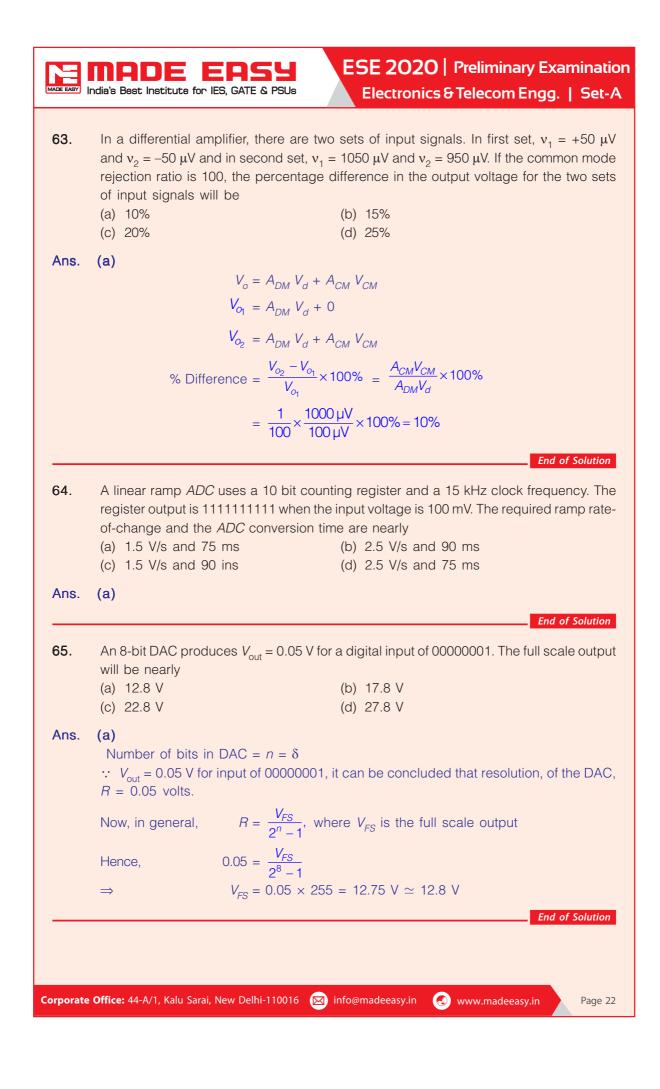
Rank Improvement Batches

for **GATE 2021 & ESE 2021**

Syllabus Covered Complete GATE syllabus & Technical syllabus of ESE **Course Duration** Approximately 5 months 450-475 teaching hours

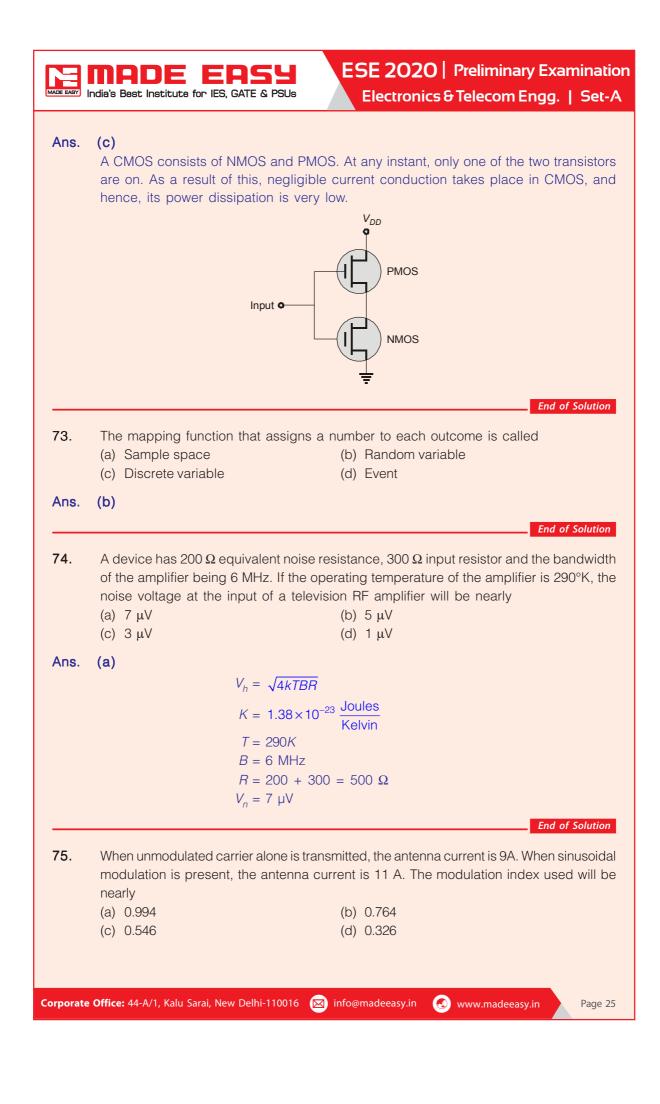
Class Timing

5-6 days a week 4 hours a day


Features :

- Comprehensive problem solving sessions.
- Techniques to improve accuracy & speed.
- Doubt clearing sessions.
- Weekly class tests for performance improvement.
- Specially designed workbooks for technical subjects.
- Smart techniques to solve problems.
- Systematic & cyclic revision of all subjects.
- Inclusive of interview guidance for PSUs.

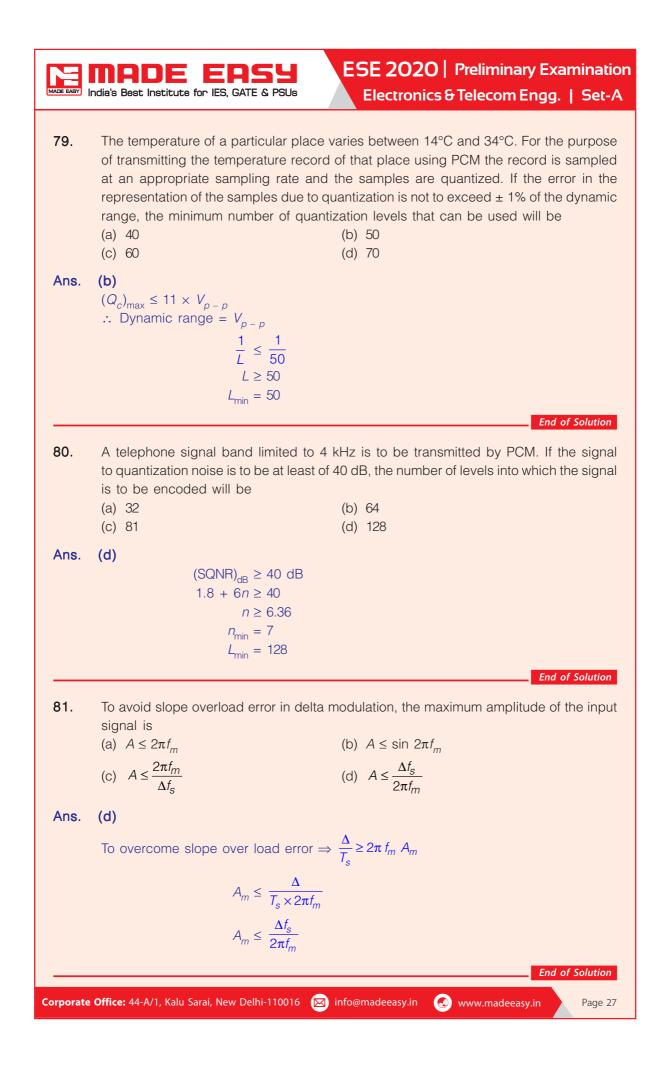
Batches commencing from Mid May, 2020 Admission Open


Corporate office : 44-A/1, Kalu Sarai, New Delhi 🕓 011-45124612, 9958995830

🕽 www.madeeasy.in

AADE EASY	India's Best Institute for IES, GATE & PSUs	tronics & Telecom Engg. Set-
66.	Master-Slave flip-flop is also called(a) Pulse triggered flip-flop(b) Latch(c) Level triggered flip-flop(d) Buffe	
Ans.	(a)	
67.	The resolution of 6-bit DAC will be nearly (a) 4.6% (b) 3.2% (c) 1.6% (d) 1.2%	
Ans.	(c) The percent resolution of a <i>n</i> -bit DAC is given b	by
	% resolution = $\frac{1}{2^{n}-1} \times 100\%$	
	Hence, the percent resolution of a 6-bit DAC wi	ill be given by
	$=\frac{1}{2^{6}-1}\times 100\% = \frac{1}{63}\times 100\%$	100%
	$2^{-} - 1$ 63 = 1.587% = 1.67%	
		End of Solution
		
68.	An expression $f = \overline{AB} + \overline{A} + AB$ can be reduced (a) A (b) B	to
	(c) 0 (d) 1	
Ans.	The following two standard theorems of Boolean given boolean expression: (a) De Morgan's theorem theorem: $\overline{A + B + C} = \overline{A} \cdot \overline{B} \cdot \overline{C}$ (b) Involution theorem $\overline{\overline{A}} = A$ Now, given expression is $f = \overline{\overline{AB} + \overline{A} + AB} = \overline{\overline{AB}} \cdot \overline{\overline{A}}$	· ĀB
	$= AB \cdot A \cdot \overline{AB} = AB \cdot (\overline{A} + B) \cdot \overline{A} = AB \cdot \overline{A} + AB \cdot \overline{B}$	+ <i>B</i>)
	= 0 + 0 = 0	
	^	End of Solution

69.	K-map is used to minimize the number of	
	(a) Flip-flops in digital circuits(b) Layout spaces in digital circuits for fabrication(c) Functions of 3, 4, 5 or 6 variables(d) Registers in CPU	
Ans.	(c) Before implementing a Boolean function in the form of a digital circuit, it is simplified To simplify Boolean functions of 3, 4, 5, 6 variables, we use <i>K</i> -map. For larger number of variables, we generally use the tabulation method like the Quine Mc Cluskey algorith <i>End of Solution</i>	
70.	A finite state machine (a) is same as that of abstract model of sequential circuit (b) consists of combinational logic circuits only (c) contains infinite number of memory devices (d) does not exist in practice	
Ans.	(a)	
71.	A logic circuit that accepts several data inputs and allows only one of them at a time to get through to the output is called (a) Multiplexer (b) De-multiplexer (c) Transmitter (d) Receiver	
Ans.	(a) A multiplexer is combinational circuit that has multiple data inputs and a single output At any instant, any one of the multiple data inputs gets through the output of the circuit Data Inputs	
72.	End of Solution The memory technology which needs the least power is (a) ECL (b) MOS (c) CMOS (d) TTL	

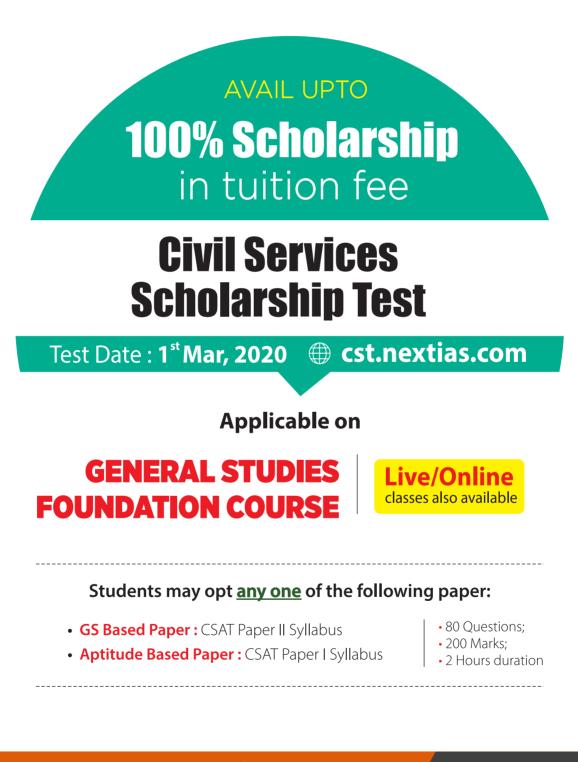

General Studies & Engineering Aptitude for ESE 2021 Prelims

BATCHES COMMENCEMENT DATES

Regular Batches Delhi 18th Feb, 2020 Weekend Batches Delhi & Noida 22nd Feb, 2020

🕓 011-45124612, 9958995830 🛛 🌐 www.madeeasy.in

ADE EABY	ndia's Best Institute for IES, GATE & PSUs Electronics & Telecom Engg. Set-	
Ans.	(a)	
	$I_{t} = I_{C}\sqrt{1 + \frac{\mu^{2}}{2}}$ 11 = 9\sqrt{1 + \frac{\mu^{2}}{2}}	
	$11 = 9\sqrt{1 + \frac{\mu^2}{2}}$	
	$\mu \simeq 0.99$	
76.	End of SolutionFrequency modulated signal with single-tone modulation-has a frequency deviation of15 kHz and bandwidth of 50 kHz. The frequency of the modulating signal will be(a) 05 kHz(b) 10 kHz(c) 20 kHz(d) 30 kHz	
Ans.	(b) $BW = 2[\Delta f + f_m]$ $50 \ k = 2[15k + f_m]$ $f_m = 10 \ kHz$	
77.	End of SolutionWhen the carrier and one of the sidebands are suppressed in an AM wave modulatedto a depth of 50%, the power saving will be(a) 84.4%(b) 88.6%(c) 94.4%(d) 98.6%	
Ans.	(c) % of power saving = $\frac{4 + \mu^2}{4 + 2\mu^2}$ $\mu = 0.5$ % Power saving = 94.5%	
78.	An output of balanced modulator contains (a) Carrier, LSB and USB (b) Modulation frequency, carrier frequency and LSB (c) Modulation frequency, carrier frequency and USB (d) Modulation frequency, LSB and USB	
Ans.	(d)	
	End of Solution	



	India's Best Institute for IES, GATE & PSU	ESE 2020 Preliminary Examination Electronics & Telecom Engg. Set-A
82.	If bandwidth is of primary conce considered?	ern, which one of the following scheme is generally not
	(a) PSK(c) DPSK	(b) ASK (d) FSK
Ans.	(d)	End of Solution
83.		ch one of the sample values of the message signal, a d set of a finite number of such discrete values is called (b) Noise removal (d) Quantization
Ans.	(d)	End of Solution
84.		es of fiber suffers with modal dispersion? er (b) Multimode graded-index fiber
Ans.	(c)	End of Solution
85.	An inductor is described by inp	
	لا	$\chi(t) = \frac{1}{L} \int_{-\infty}^{t} x(\tau) d\tau$
	The operation representing the	inverse system $x(t)$ will be
	(a) $L\frac{d}{dt}y(t)$	(b) <i>L</i>
	(c) $\frac{d}{dt}y(t)$	(d) <i>Ly</i> (<i>t</i>)
Ans.	(a)	End of Solution
86.	 Step response of the system is defined as 1. The output due to a unit step input signal. 2. The running sum of impulse response. 3. The running integral of impulse response for a continuous-time system. (a) 1 and 2 only (b) 1 and 3 only 	
4.55	(c) 2 and 3 only	(d) 1, 2 and 3
Ans.	(d) Step response = $\int_{0}^{t} (Im)$	npulse response) · <i>dt</i>
		End of Solution
orporate	e Office: 44-A/1, Kalu Sarai, New Delhi-11001	16 🖂 info@madeeasy.in 📀 www.madeeasy.in 🛛 Page 28

MADE EASY	Image: Sest Institute for IES, GATE & PSUs ESE 2020 Preliminary Examination India's Best Institute for IES, GATE & PSUs Electronics & Telecom Engg. Set-	
87.	 The signal flow graph of a system is constructed from its (a) Differential equations (b) Algebraic equations (c) Algebraic equations through the cause-and-effect relations (d) Differential equations through the cause-and-effect relations 	
Ans.	(c) SFG is graphical representation mathematical relation between variables of a system in the form of set of linear algebraic equation in cause-effect form. End of Solution	
88.	If all the roots of the characteristic equation have negative real parts, the system is(a) Stable(b) Unstable(c) Marginally stable(d) Conditionally stable	
Ans.	(a) For a stable system all closed loop poles (CLP) must be in left side of <i>s</i> -plane.	
89.	A unity feedback system is characterized by the open loop transfer function $G(s) = \frac{1}{s(0.5s+1)(0.2s+1)}$ The steady state errors for unit-step and unit-ramp inputs are respectively	
Ans.	(a) 0 and 0 (b) 0 and 1 (c) 1 and 0 (d) 1 and 1 (b)	
	For a type-1 system, steady state error for (i) Step input = 0 (ii) Ram input = $\frac{1}{K_v} = \frac{1}{1} = 1$	
90.	 Which of the following statements are correct? 1. A continuous time system is said to be time invariant if the parameters of the system do not change with time. 2. The characteristics of time-invariant system are fixed over a time. 3. If the input to the time invariant system is delayed by t₀ seconds, the characteristic of the output response is also delayed by t₀ seconds. (a) 1 and 2 only (b) 1 and 3 only (c) 2 and 3 only (d) 1, 2 and 3 	
Ans.	(b) End of Solution	
orporate	Office: 44-A/1, Kalu Sarai, New Delhi-110016 🖂 info@madeeasy.in 📀 www.madeeasy.in Page 2	

An initiative of **MADE EASY** Group

🔀 cst@nextia<u>s.com 🕓 8800338066</u>

www.nextias.com

ADE EASY	MADE EASY India's Best Institute for IES, GATE & PSUs	ESE 2020 Preliminary Examinat Electronics & Telecom Engg. Set
91.		n has a positive real part or if there is a repeate
	root on the <i>j</i> ω-axis, then the system (a) Limitedly stable (c) Stable	s (b) Conditionally stable (d) Unstable
Ans.	(d) If any closed loop poles (CLP) is in r $j\omega$ -axis then the system is unstable.	ight side of <i>s</i> -plane (or) if multiple CLP lies o
92.	The angle of departure from a real oper loop zero is always equal to	End of Solution
	(a) 0° only (c) 180° only	(b) 90° only (d) 0° or 180°
Ans.	(d)	
		End of Solution
93.	 The important aspects in the study of 1. Sensitivity 2. Effect of an internal disturbance 3. Distortion in a nonlinear system (a) 1 and 2 only 	feedback systems are to control (b) 1 and 3 only
	(c) 2 and 3 only	(d) 1, 2 and 3
Ans.	(d) Feedback in control system is used to linearities.	control sensitivity, effect of disturbance and no
94.		<i>End of Solution</i> first undershoot occurs at a time <i>t</i> (with standar
	notations) is (a) $\frac{\pi}{\omega_d}$	(b) $\frac{2\pi}{\omega_d}$
	(c) $\frac{\pi}{2\omega_d}$	(d) $\frac{2\omega_d}{\pi}$
Ans.	(b) $t_{p} = \frac{n\pi}{\omega_{d}}$	
	For first undershoot $n = 2$.	
		End of Solution

ADE EASY	India's Best Institute for IES, GATE & PSUs	Electronics & Telecom Engg. Set-
95.	The compensator required to improv (a) Lag (c) Lag-lead	re the steady state response of a system is (b) Lead (d) Zero
Ans.	(a) Lag compensator is analogous to Pl	controller, improves steady state response.
96.	Which one of the following types of (a) Proportional (c) Derivative	controller is sometimes called automatic reset? (b) Integral (d) PID
Ans.	(b) Integral controller is also called rese	t controller.
97.	The transfer time T of the disk is	
	(a) $\frac{2b}{rN}$	(b) <u><i>rb</i></u>
	(c) $\frac{rN}{b}$	(d) $\frac{b}{rN}$
		of bytes to be transferred
	N = Number of	of bytes on a track
A = =	r = Rotation s	speed in rps
Ans.	(d)	1
		ec. So, time for 1 revolution will be $\frac{1}{r}$ sec.
	Since "N" bytes are transferred in o $=\frac{b}{rN}$	ne rotation so "b" bytes will be transferred in
	_ rN	End of Solution
98.	A core of processor chip consists of	
	1. ALU	
	 Instruction logic Load/store logic 	
	4. L3 cache	
	5. L1 data cache (a) 1, 2, 3 and 4 only	(b) 1, 2, 3 and 5 only
	(c) 2, 3, 4 and 5 only	(d) 1, 4 and 5 only
Ans.	(b)	
		End of Solution

JE EASY	India's Best Institute for IES, GATE & PSUs	Electronics & Telecom Engg. Set-
99.	Which of the following will cause int1. Stack overflow2. Attempt to divide by zero3. I/O device finished transfer of c4. Power failure	lata
	(a) 1 and 2 only (c) 3 and 4 only	(b) 2 and 3 only (d) 1 and 4 only
Ans.	(a)	
4115.		external interrupts like DMA and TRAP.
100.	In an assembly language program ((a) Machine instruction (c) Micro instruction	END is a/an (b) Pseudo instruction (d) Interrupt
Ans.	(b) END is an assembler directive/pseu	udo instruction.
101.	Booth algorithm is associated with (a) Binary division (c) Sorting binary integers	(b) Binary integer multiplication(d) Searching of binary data
Ans.	(b)	End of Solution
102.	The memory that communicates dire (a) Auxiliary memory (c) Main memory	
Ans.	(c)	
100		End of Solution
103.	Virtual memory is normally impleme (a) Demand paging (c) Device drivers	(b) Buses (d) Bus matrix
Ans.	(a)	End of Colution
104.	Which of the following are the comp 1. Access time (Latency) 2. Memory cycle time 3. Transfer rate	<i>End of Solution</i> puter memory performance parameters?
	(a) 1 and 2 only(c) 2 and 3 only	(b) 1 and 3 only (d) 1, 2 and 3

Ans.	(d)
	` ~'

From a user's point of view, the two most important characteristics of memory are capacity and performance. Three performance parameters are used:

Access time (latency): For random-access memory, this is the time it takes to perform a read or write operation, that is, the time from the instant that an address is presented to the memory to the instant that data have been stored or made available for use. For non-random-access memory, access time is the time it takes to position the readwrite mechanism at the desired location.

Memory cycle time: This concept is primarily applied to random-access-memory and consists of the access time pulse any additional time may be required for transients to die out on signal lines or to regenerate data if they are read destructively. Note that memory cycle time is concerned with the system bus, not the processor.

Transfer rate: This is the rate at which data can be transferred into or out of a memory unit. For random-access memory, it is equal to 1/(cycle time).

End of Solution

- 105. What are the components of a memory management unit?
 - 1. A facility for dynamic storage relocation.
 - 2. Provision for preventing users for sharing programs stored in memory by different users.
 - 3. Protection of information against unauthorised access.
 - 4. Provision for users for changing operating system functions.
 - (a) 1 and 3 only

(b) 1 and 4 only

(c) 2 and 3 only

(d) 2 and 4 only

Ans. (b)

106. Which one of the following makes permanently recorded transaction in the database? (a) View (b) Commit

(c) Roll back

- (d) Flash back

Ans. (b)

End of Solution

End of Solution

End of Solution

- 107. The advantage of optimistic locking is
 - (a) The lock is obtained only after the transaction has processed
 - (b) The lock is obtained only before the transaction has processed
 - (c) The lock never needs to be obtained
 - (d) The lock transactions are best suited with a lot of activity

Ans. (a)

GATE 2020 Online Test Series Stream : CE, ME, EE, EC, CS, IN, PI

- Newly designed quality questions as per standard of GATE.
- Video solutions by senior faculties.
- **Fully explained and well illustrated solutions.**
- Comprehensive and detailed analysis report of test performance.

PACKAGES

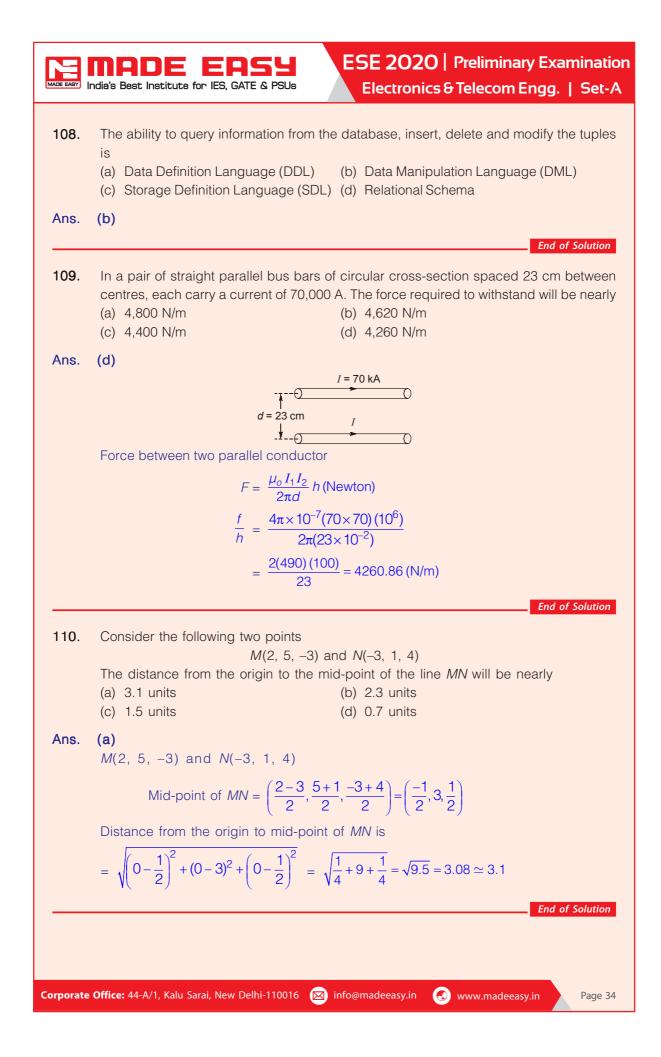
Complete Package

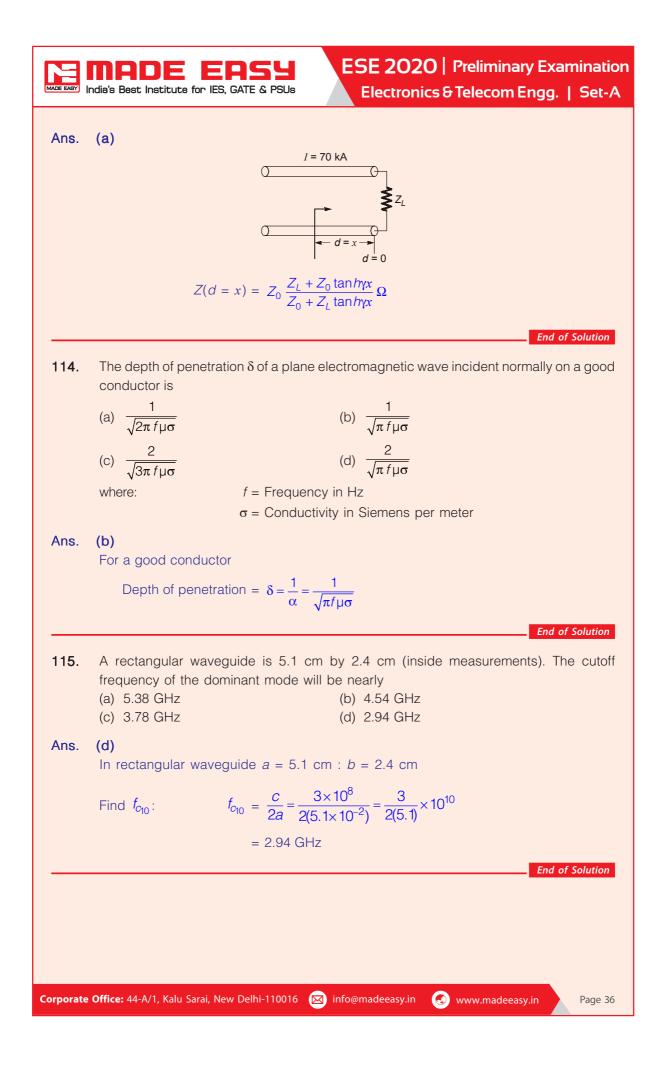
- Part Syllabus Topicwise Tests : 24
- Single Subject Tests : 12
- Multi Subject Tests : 6
- Full Syllabus Tests : 12

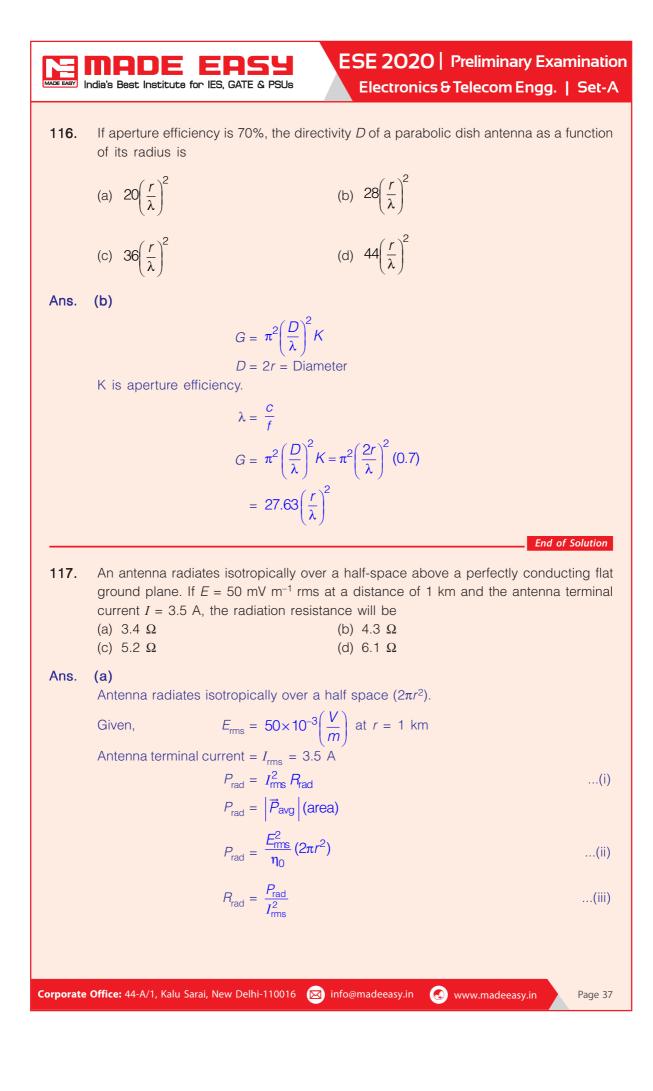
Only Full Syllabus Tests

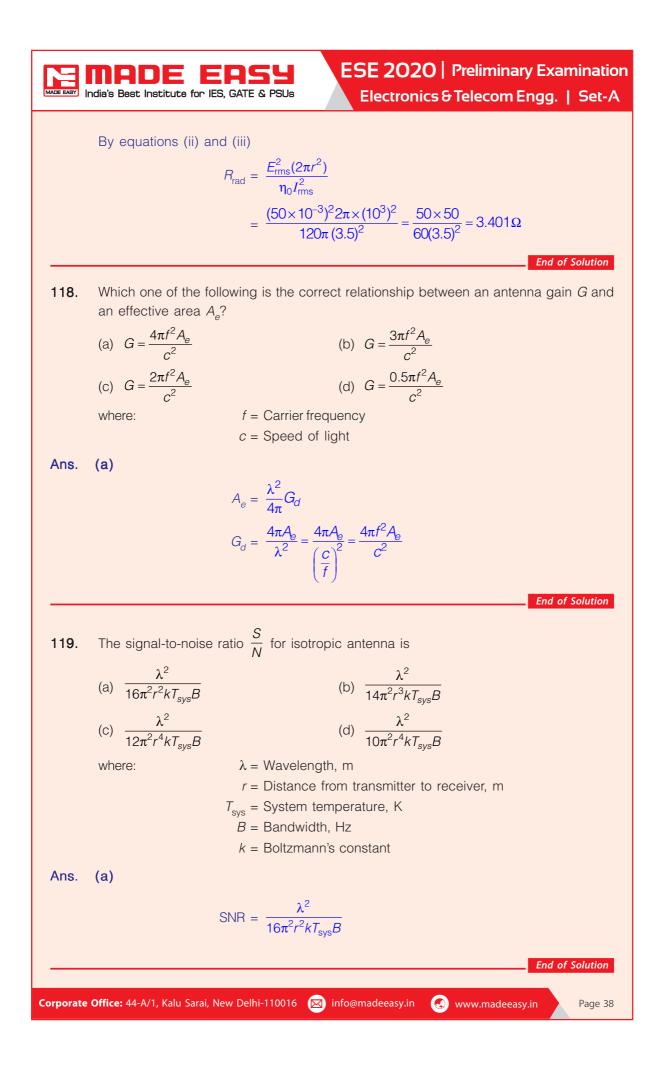
12 Fu on on

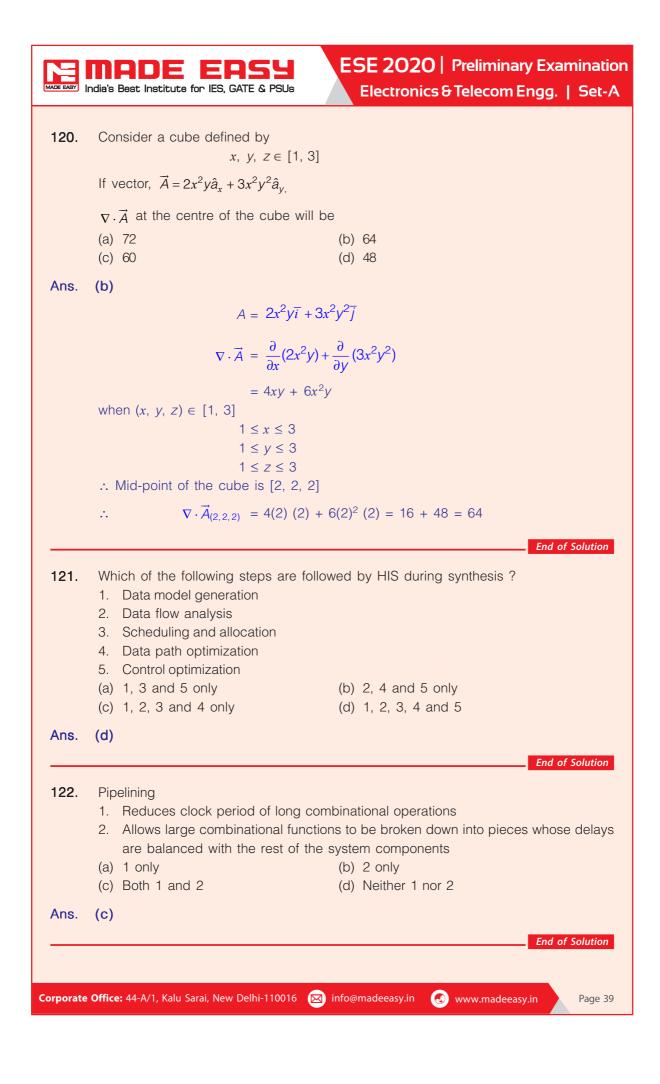
Full syllabus tests on standard & pattern on actual GATE exam.


Test Series available on

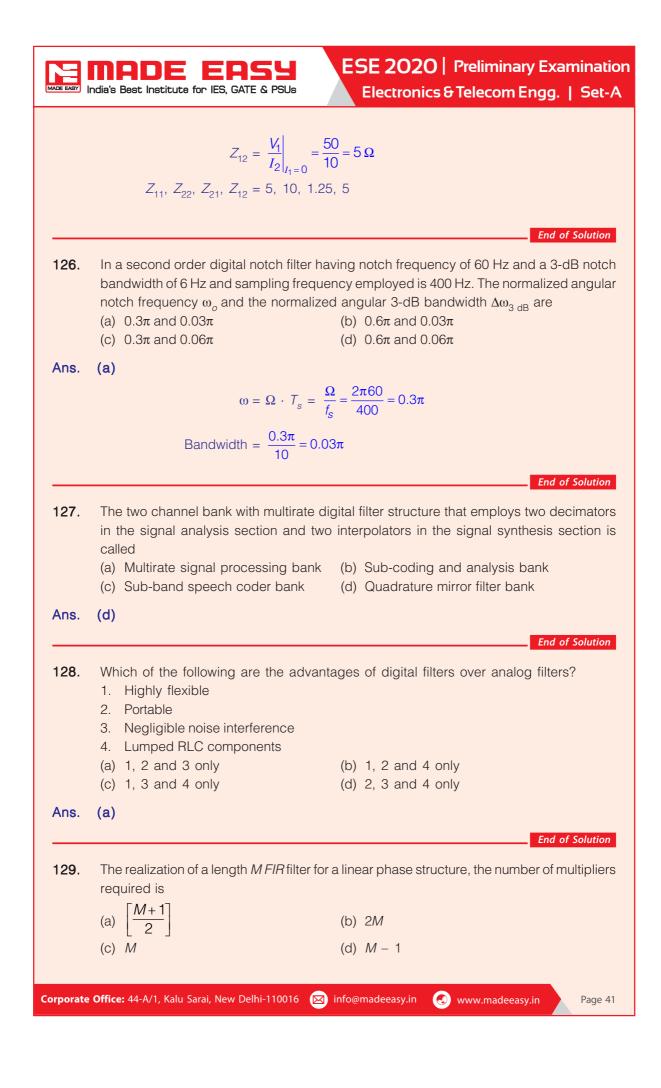

Helpline no.: 98180 98817


TESTS


Register online at www.madeeasy.in



	MADE EASY India's Best Institute for IES, GATE & PSUs	ESE 2020 Preliminary Examination Electronics & Telecom Engg. Set-A
111.	Consider $\vec{D} = 10x\hat{a}_x - 4y\hat{a}_y + kz\hat{a}_z \mu C/m$ equation for region $\sigma = 0$ and $\rho_v = 0$, (a) -8 $\mu C/m^3$ (c) -4 $\mu C/m^3$	m ² and $\vec{B} = 2\hat{a}_y$ mT, to satisfy the Maxwell's the value of <i>k</i> will be (b) -6 μC/m ³ (d) -2 μC/m ³
Ans.	(b)	
		$4y\hat{a}_y + kz\hat{a}_z \mu C/m^2$
	Given, $\rho_v = 0$ and satisfies Maxwell er $\vec{\nabla} \cdot \vec{D} = 0$	quation
	$\frac{\partial D_x}{\partial x} + \frac{\partial D_y}{\partial y} + \frac{\partial D_z}{\partial z} = 0$	
	$\frac{\partial}{\partial x}(10x) + \frac{\partial}{\partial y}(-4y) + \frac{\partial}{\partial z}(kz) = 0$	
	10 - 4 + k = 0	
	$\Rightarrow \qquad \qquad k = -6 \frac{\mu C}{m^3}$	
		End of Solution
112.	A 4-pole, wave wound armature having 1200 rpm. If the flux per pole is 0.016 (a) 534.4 V (c) 518.4 V	g 45 slots with 18 conductors/slot is driven at Wb, the generated emf will be (b) 526.8 V (d) 502.8 V
Ans.	(c)	
	Total conductors = 45×18 N = 1200 rpm	
	Flux per pole = ϕ = 0.016 V P = 4	Vb, A = 2
	$E_g = \frac{\varphi PN}{60} \times \frac{Z}{A} =$	$= \frac{0.016 \times 4 \times 1200}{60} \times \frac{45 \times 18}{2} \text{ V} = 518.4 \text{ V}$
		End of Solution
113.	load will be	ine, the impedance Z_x at a distance x from the
	(a) $Z_0 \frac{Z_L + Z_0 \tan h\gamma x}{Z_0 + Z_L \tan h\gamma x} \Omega$	(b) $Z_L \frac{Z_L + Z_0 \tan h\gamma x}{Z_0 + Z_L \tan h\gamma x} \Omega$
	(c) $Z_0 \frac{Z_L + jZ_0 \tan h\gamma x}{Z_0 + jZ_L \tan h\gamma x} \Omega$	(d) $Z_L \frac{Z_L + jZ_0 \tan h\gamma x}{Z_0 + jZ_L \tan h\gamma x} \Omega$
	where: $Z_0 = \text{Characterist}$	tics impedance of line, Ω
	$Z_L = \text{Load imped}$	
		constant = α + $j\beta$, m^{-1} constant, Np m ⁻¹
	$\beta = Phase cons$	· · · · · · · · · · · · · · · · · · ·
orp <u>orate</u>	• Office: 44-A/1, Kalu Sarai, New Delhi-110016 🛛 🖂 i	nfo@madeeasy.in 💽 www.madeeasy.in Page 35



	India's Best Institute for IES, GATE & PSUs Electronics & Telecom Engg. Set-A
123.	 Superscalar processor consists of (a) Single pipeline for instruction execution (b) Multiple-instruction pipelines for instruction execution (c) No pipelines for instruction execution (d) Multiple combination of hardware for execution
Ans.	(b)
	End of Solution
124.	 Which of the following statements is /are correct? 1. In hybrid parameter representation, both short and open circuit terminal conditions are utilized 2. The voltage of output port and the current of input port are expressed in terms of current of output and voltage of input port (a) 1 only (b) 2 only (c) Both 1 and 2 (d) Neither 1 nor 2
Ans.	(a) <i>h</i> -parameters, $V_1 = h_{11} I_1 + h_{12} V_2$ $I_2 = h_{21} I_1 + h_{22} V_2$ The voltage of input port and current of output port are expressed in terms of output voltage and input current. <i>End of Solution</i>
125.	 Consider the following measurements on a two terminal network: 1. When a voltage of 100∠0° volts applied at input port with output port open, I₁ = 20∠0° A and V₂ = 25∠0° V. 2. When a voltage of 100∠0° volts applied at output port with input port open, I₂ = 10∠0° A and V₁ = 50∠0° V. The driving point impedances Z₁₁, Z₂₂ and transfer impedances Z₂₁, Z₁₂ respectively are (a) 5 Ω, 10 Ω and 1.25 Ω, 5 Ω (b) 10 Ω, 5 Ω and 1.25 Ω, 5 Ω (c) 5 Ω, 1.25 Ω and 5 Ω, 10 Ω (d) 10 Ω, 1.25 Ω and 5 Ω, 5 Ω
Ans.	(a) $Z_{11} = \frac{V_1}{I_1}\Big _{I_2 = 0}$ $Z_{11} = \frac{100}{20} = 5 \Omega$ $Z_{21} = \frac{V_2}{I_1}\Big _{I_2 = 0} = \frac{25}{20} = 1.25 \Omega$ $Z_{22} = \frac{100}{10} = 10 \Omega$
Corporate	e Office: 44-A/1, Kalu Sarai, New Delhi-110016 🖂 info@madeeasy.in 📀 www.madeeasy.in Page 40

	Image: Sest Institute for IES, GATE & PSUs ESE 2020 Preliminary Examination Electronics & Telecom Engg. Set-A
Ans.	(a) End of Solution
130.	 Which one of the following statements is not correct regarding a usage of virtual memory? (a) To free user programs from the need to carryout storage allocation and to permit efficient sharing of the available memory space among different users (b) To make program independent of the configuration and capacity of the physical memory for their execution (c) To achieve higher CPU performance (d) To achieve the very low access time and cost per bit that is possible with a memory hierarchy
Ans.	(C) End of Solution
131.	In the 8051 microcontroller, direct addressing mode is used in (a) Internal data memory (c) Internal program memory (d) External program memory
Ans.	(a) In internal RAM stack allows only direct addressing mode. They don't occupy any memory space but resemble as instruction. End of Solution
132.	PUSH and POP operations are performed by(a) Program counter register(b) General purpose register(c) Stack pointer register(d) Link register
Ans.	(c) PUSH and POP are used w.r.t. stack memory and the relevant register is stack pointer. End of Solution
133.	Network Interface Card (NIC) has a unique six-byte permanent address as(a) IP address(b) MAC address(c) DNS address(d) Local address
Ans.	(b)
134.	 The data-link layer is responsible for (a) Incoming bit stream and simply repeats to other devices connected (b) An error free communication across the physical link connecting primary and secondary stations within a network (c) An end-to-end integrity of data message propagated through the network between two devices (d) Logical connection at application layer
Corporate	Office: 44-A/1, Kalu Sarai, New Delhi-110016 🖾 info@madeeasy.in 🕢 Page 42

Ans.	(b)		
		rror control through retransmission and CRC.	
		End of Solutio	
135.	are nearly	and receive carrier frequency f_r for AMPS channels	
	(a) 875 MHz and 870 MHz (c) 875 MHz and 830 MHz	(b) 825 MHz and 870 MHz(d) 825 MHz and 830 MHz	
Ans.	(b)		
		End of Solution	
136.	Which one of the following moc between two stations?	le is called a two-way simultaneous, communication	
	(a) Simplex (SX) (c) Full duplex (FDX)	(b) Half duplex (HDX)(d) Full/Full duplex (F/FDX)	
Ans.	(c)		
		End of Solutio	
137.	a queue awaiting a free channe		
	(a) Lost Calls Cleared (LCQ(c) Lost Calls Held (LCH)	(b) Lost Calls Delayed (LCD)(d) Lost Calls Hand off	
Ans.	(b)		
		End of Solutio	
138.	Satellite communication among stations in different areas can be achieved if the satelli has the ability to switch time slots from one beam to another. This is known as satelli switched		
	(a) TDMA	(b) TSMA	
	(c) FAMA	(d) SCPC	
Ans.	(a)		
139.	A apharant hinany phase shift kay	<i>End of Solutio</i> ved (BPSK) transmitter operates at a bit rate of 20 Mbp	
139.		$\frac{C}{N} = 8.8 \text{ dB}$, the minimum theoretic	
	$\frac{E_b}{N_0}$ ratio for a receiver bandwidth equal to the minimum double-sided Nyquist bandwidth		
	will be		
	(a) 4.8 dB (c) 8.8 dB	(b) 6.4 dB (d) 10.4 dB	

 140. For a to energy (a) 10 (c) 30 Ans. (b) 141. A comb (a) Dire (b) Hyb (c) Dire (d) Hyb (c) Dire (c	$\frac{E_b}{N_o} = \frac{C \times T_b}{N/B} =$ $C = \text{Carrier pr}$ $N = N_o B$ $N_o = \frac{N}{B}$ sinc (or) Nyquist pulses $BW \text{ of } BPSK = R_b$ $\frac{E_b}{N_o} = \frac{C \times R_b}{N \times R_b}$ $\frac{E_b}{N_o} = \frac{C}{N}$ $\frac{E_b}{N_o} = 8.8 \text{ dB}$ tal transmit power (<i>P</i> _t) of 100 per bit (<i>E_b</i>) will be	5
 ∵ For s ∴ For a to energy (a) 10 (c) 30 Ans. (b) 141. A comband (b) Hyb (c) Dire (b) Hyb (c) Dire (d) Hyb (c) Dire (d	$C = \text{Carrier pr}$ $N = N_o B$ $N_o = \frac{N}{B}$ winc (or) Nyquist pulses $BW \text{ of } BPSK = R_b$ $\frac{E_b}{N_o} = \frac{C \times R_b}{N \times R_b}$ $\frac{E_b}{N_o} = \frac{C}{N}$ $\frac{E_b}{N_o} = 8.8 \text{ dB}$ tal transmit power (P _t) of 100	power
 ∵ For s 140. For a to energy (a) 10 (c) 30 Ans. (b) 141. A comband (b) Hyb (c) Dire (b) Hyb (c) Dire (d) Hyb (c) Dire (c	$C = \text{Carrier pr}$ $N = N_o B$ $N_o = \frac{N}{B}$ winc (or) Nyquist pulses $BW \text{ of } BPSK = R_b$ $\frac{E_b}{N_o} = \frac{C \times R_b}{N \times R_b}$ $\frac{E_b}{N_o} = \frac{C}{N}$ $\frac{E_b}{N_o} = 8.8 \text{ dB}$ tal transmit power (P _t) of 100	power
 ∵ For s 140. For a to energy (a) 10 (c) 30 Ans. (b) 141. A comband (b) Hyb (c) Dire (b) Hyb (c) Dire (d) Hyb (c) Dire (c	$N = N_o B$ $N_o = \frac{N}{B}$ where $N_o = \frac{N}{B}$ where $N_o = \frac{N_o}{N \times R_b}$ $\frac{E_b}{N_o} = \frac{C \times R_b}{N \times R_b}$ $\frac{E_b}{N_o} = \frac{C}{N}$ $\frac{E_b}{N_o} = 8.8 \text{ dB}$ that transmit power (P_t) of 100	End of Solution
 140. For a to energy (a) 10 (c) 30 Ans. (b) 141. A comb (a) Dire (b) Hyb (c) Dire (d) Hyb (c) Dire (c	tinc (or) Nyquist pulses BW of BPSK = R_b $\frac{E_b}{N_o} = \frac{C \times R_b}{N \times R_b}$ $\frac{E_b}{N_o} = \frac{C}{N}$ $\frac{E_b}{N_o} = 8.8 \text{ dB}$ tal transmit power (P_t) of 100	
 140. For a to energy (a) 10 (c) 30 Ans. (b) 141. A comb (a) Dire (b) Hyb (c) Dire (d) Hyb (c) Dire (c	tinc (or) Nyquist pulses BW of BPSK = R_b $\frac{E_b}{N_o} = \frac{C \times R_b}{N \times R_b}$ $\frac{E_b}{N_o} = \frac{C}{N}$ $\frac{E_b}{N_o} = 8.8 \text{ dB}$ tal transmit power (P_t) of 100	
energy (a) 10 (c) 30 Ans. (b) 141. A comb (a) Dire (b) Hyb (c) Dire (d) Hyb Ans. (d)	$\frac{E_b}{N_o} = \frac{C \times R_b}{N \times R_b}$ $\frac{E_b}{N_o} = \frac{C}{N}$ $\frac{E_b}{N_o} = 8.8 \text{ dB}$ tal transmit power (<i>P</i> _t) of 100	
energy (a) 10 (c) 30 Ans. (b) 141. A comb (a) Dire (b) Hyb (c) Dire (d) Hyb Ans. (d)	$\frac{E_b}{N_o} = \frac{C}{N}$ $\frac{E_b}{N_o} = 8.8 \text{ dB}$ tal transmit power (<i>P</i> _t) of 100	
energy (a) 10 (c) 30 Ans. (b) 141. A comb (a) Dire (b) Hyb (c) Dire (d) Hyb Ans. (d)	$\frac{E_b}{N_o} = 8.8 \text{ dB}$ tal transmit power (<i>P</i> _t) of 100	
energy (a) 10 (c) 30 Ans. (b) 141. A comb (a) Dire (b) Hyb (c) Dire (d) Hyb Ans. (d)	$\frac{E_b}{N_o} = 8.8 \text{ dB}$ tal transmit power (<i>P</i> _t) of 100	
energy (a) 10 (c) 30 Ans. (b) 141. A comb (a) Dire (b) Hyb (c) Dire (d) Hyb Ans. (d)	tal transmit power (P_t) of 100	
energy (a) 10 (c) 30 Ans. (b) 141. A comb (a) Dire (b) Hyb (c) Dire (d) Hyb Ans. (d)		
(a) Dire (b) Hyb (c) Dire (d) Hyb Ans. (d)		(b) 20 μJ (d) 40 μJ
(a) Dire (b) Hyb (c) Dire (d) Hyb Ans. (d)	$E_b = P \times T_b = -$	$\frac{P}{R_b} = \frac{1000}{50 \times 10^6} = 20 \mu\text{J}$
(b) Hyb (c) Dire (d) Hyb Ans. (d)		End of Solution
(d) Hyb Ans. (d)	ect sequence hopping prid direct frequency hopping	g
Ans. (d)	ect sequence frequency hopp prid direct sequence frequence	
142. Each ea		
HZ. Laure	arth station's transmission is	encoded with a unique binary word called
()	ion code ess code	encoded with a unique binary word called (b) Chip code (d) Gold code
Ans. (b)		
		End of Solution

143.	For a 300 m optical fibre cable with BLP of 600 MHz-km, the bandwidth will be(a) 8 GHz(b) 6 GHz(c) 4 GHz(d) 2 GHz
Ans.	(d) $BW \times L = 600 \text{ MHz-km}$ $L = 0.3 \text{ km}$ $BW = \frac{600 \text{ MHz-km}}{0.3 \text{ km}} = 2 \text{ GHz}$
144.	Numerical aperture (<i>NA</i>) in optical fibre transmission is used to describe (a) Light spreading ability (b) Light gathering or light collecting ability (c) Light output from external shield (d) Light leakage ability
Ans.	(b)
Direct (I)' and	 ions: Each of the next Six (6) items consist of two statements, one labelled as 'Statement the other as 'Statement (II)'. You are to examine these two statements carefully and sele swers to these items using the code given below: Code: (a) Both Statement (I) and Statement (II) are individually true and Statement (II) is the correct explanation of Statement (I)
Direct (I)' and	ions: Each of the next Six (6) items consist of two statements, one labelled as 'Stateme If the other as 'Statement (II)'. You are to examine these two statements carefully and sele swers to these items using the code given below: Code:
Direct (I)' and	 ions: Each of the next Six (6) items consist of two statements, one labelled as 'Statement's the other as 'Statement (II)'. You are to examine these two statements carefully and sele swers to these items using the code given below: Code: (a) Both Statement (I) and Statement (II) are individually true and Statement (II) is the correct explanation of Statement (I) (b) Both Statement (I) and Statement (II) are individually true but Statement (II) is NC the correct explanation of Statement (I) (c) Statement (I) is true but Statement (II) is false

	ESE 2020 Preliminary Examination India's Best Institute for IES, GATE & PSUs Electronics & Telecom Engg.
146.	Statement (I): Control logic in CMOS is constructed using two-level SOP logic and multi- level logic. Statement (II): Typical PLA uses multi-level logic.
Ans.	(C) End of Solution
147.	Statement (I): ABCD parameters are widely used in analysis of power transmission engineering and termed as circuit parameters. Statement (II): ABCD parameters are called as transmission parameters.
Ans.	(b)
148.	Statement (I): Non-stationary signals such as an image require time-frequency analysis Statement (II): The short time Fourier transform (STFT) can map a one dimensional function $f(t)$ into the two-dimensional function, STFT (f).
Ans.	(b)
149.	End of Solution Statement (I): PCM requires a very complex encoding and quantization circuitry. Statement (II): PCM requires a less bandwidth compared to analog systems.
Ans.	(c) Compared to DM, PCM is complex and compared to analog systems, PCM requires high bandwidth. So, statement I is true and statement II is false.
150.	End of Solution Statement (I): For an unstable feedback system, the gain margin is negative or the phase margin is positive. Statement (II): For a stable feedback system, both gain margin and phase margin mus
Ans.	be positive.(d)For unstable system both GM and PM are negative and for stable system both GM and PM are positive.
	End of Solution
orp <u>orate</u>	Office: 44-A/1, Kalu Sarai, New Delhi-110016 🖂 info@madeeasy.in 💽 www.madeeasy.in Page 46