

Preliminary Examination

Detailed Solutions of Electrical Engineering (Set-A)

Click here for detailed solutions

www.madeeasy.in

Corporate Office: 44-A/1, Kalu Sarai, New Delhi - 110016 | Ph: 011-45124612, 9958995830

Delhi | Hyderabad | Noida | Bhopal | Jaipur | Lucknow | Indore | Pune | Bhubaneswar | Kolkata | Patna

MADE EASY India's Best Institute for IES, GATE & PSUs ESE 2020 Preliminary Examination Electrical Engineering | Set-A

Expected Cutoff of ESE 2020 Prelims (Out of 500 Marks)			Actı	u al Cutol (Out	ff of ESE 2 of 500 Ma	2019 Preli arks)	ms		
Branch	Gen	ОВС	SC	ST	Branch	Gen	OBC	SC	ST
CE	210-220	205-215	170-180	170-180	CE	188	185	143	159
ME	245-255	245-255	210-220	210-220	ME	187	187	166	169
EE	225-235	215-225	195-205	195-205	EE	221	211	191	172
E&T	235-245	225-235	185-195	185-195	E&T	226	221	176	165

Electrical Engineering Paper Analysis ESE 2020 Prelims Exam

SI.	Subjects	Number of Questions
1	Engineering Mathematics	12
2	Electrical Materials	11
3	Electric Circuits	6
4	Signals and Systems	12
5	Power Systems	12
6	Measurements	12
7	Computer Fundamentals	8
8	Digital Electronics	3
9	Microprocessos	3
10	Analog Electronics	17
11	Communication Systems	9
12	Control Systems	12
13	Electrical Machines	14
14	Power Electronics	13
15	Electromagnetic Theory	6

ESE 2020 Streams : CE, ME, EE, E&T

Batches commencing from

Admission open

Mains Classroom Course

Conventional Questions Practice Programme

with ESE Mains Test Series

Features :

- 350 Hrs of comprehensive course.
- Classes by senior faculty.
- Classes in synchronization with Mains Test Series.
- Well design workbook for every subject.

Corporate office : 44-A/1, Kalu Sarai, New Delhi 🕓 011-45124612, 9958995830 / 🌐 WWW.Madeeasy.in

ESE 2020 Preliminary Examination

Electrical Engineering | Set-A

By Runge Kutta method of second order,

E

India's Best Institute for IES, GATE & PSUs

ADE

$$y_{1} = y_{0} + k$$

$$k = \frac{k_{1} + k_{2}}{2}$$

$$k_{1} = hf(x_{0}, y_{0})$$

$$= 0.1 \ [3(1) + (1.2)^{2}]$$

$$= 0.1[3(1) + (1.2)^{2}]$$

$$= 0.1[4.4] = 0.44$$

$$k_{2} = hf(x_{0} + h, y_{0} + k_{1})$$

$$= 0.1 \ [3(1.1) + (1.64)^{2}]$$

$$= 0.1[3(1.1) + (1.64)^{2}]$$

$$= 0.1[6] = 0.6$$

$$k = \frac{0.44 + 0.6}{2} = \frac{1.04}{2} = 0.52$$

$$y_{1} = y_{0} + k$$

$$= 1.2 + 0.52 = 1.72 \approx 1.7$$

End of Solution

4. The expression $\left(\frac{\Delta^2}{E}\right)e^x \cdot \frac{Ee^x}{\Delta^2 e^x}$ (the interval of differencing being *h*) is

(d)
$$e^{x}$$
 (d) $2e^{x}$

Ans. (c)

$$\left(\frac{\Delta^2}{E}\right)e^x \cdot \frac{Ee^x}{\Delta^2 e^x} = \left[(E-1)^2 E^{-1}\right]e^x \cdot \frac{e^{x+h}}{(E-1)^2 e^x} \qquad [We have, \Delta = E-1]$$
$$= (E-1)^2 e^{x-h} \cdot \left[\frac{e^{x+h}}{(E-1)^2 e^x}\right]$$
$$= e^{-h}\left[(E-1)^2 e^x\right] \cdot \frac{e^{x+h}}{\left[(E-1)^2 e^x\right]} = e^x$$

End of Solution

5. The solution of differential equation $(x^2y - 2xy^2) dx - (x^3 - 3x^2y)dy = 0$, is

(a)
$$\frac{x}{y} - 2\log x + 3\log y = c$$

(b) $\frac{y}{x} - 2\log y + 3\log x = c$
(c) $\frac{x}{y} + 2\log x - 3\log y = c$
(d) $\frac{y}{x} + 2\log y - 3\log x = c$

ESE 2020 Preliminary Examination

Electrical Engineering | Set-A

...(i)

Ans. (a)

$$(x^{2}y - 2xy^{2}) dx - (x^{3} - 3x^{2}y) dy = 0$$

$$M = x^{2}y - 2xy^{2}$$

$$\frac{\partial M}{\partial y} = x^{2} - 4xy$$

$$N = -x^{3} + 3x^{2}y$$

$$\frac{\partial N}{\partial x} = -3x^{2} + 6xy$$

 $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$ equation (i) is non exact.

🔁 MADE EASY

🔤 India's Best Institute for IES, GATE & PSUs

I.F. =
$$\frac{1}{Mx + Ny}$$

= $\frac{1}{x^3y - 2x^2y^2 - x^3y + 3x^2y^2} = \frac{1}{x^2y^2}$

Equation (i) \times I.F.,

$$\left(\frac{x^{2}y - 2xy^{2}}{x^{2}y^{2}}\right)dx - \left(\frac{x^{3} - 3x^{2}y}{x^{2}y^{2}}\right)dy = 0$$

$$\left(\frac{1}{y} - \frac{2}{x}\right)dx - \left(\frac{x}{y^{2}} - \frac{3}{y}\right)dy = 0$$
...(ii)
$$M = -\frac{1}{2}$$

$$M_{1} = \frac{1}{y} - \frac{1}{x}$$

$$N_{1} = -\frac{x}{y^{2}} + \frac{3}{y}$$

$$\frac{\partial M_{1}}{\partial y} = -\frac{1}{y^{2}}$$

$$\frac{\partial N_{1}}{\partial x} = -\frac{1}{y^{2}}$$

$$\frac{\partial M_{1}}{\partial y} = \frac{\partial N_{1}}{\partial x}$$

Equation (ii) is exact The solution is,

 $\int M_1 dx + \int (\text{Terms in } N_1 \text{ free from } x) dy = C$

$$\int \left(\frac{1}{y} - \frac{2}{x}\right) dx + \int \frac{3}{y} dy = C$$
$$\frac{x}{y} - 2\ln x + 3\ln y = C$$

End of Solution

ESE 2021 **GATE** 2021

1 Year/2Years **Classroom Courses**

Regular

Weekend

Early Start... • Extra Edge...

BATCH COMMENCEMENT DATES

Delhi and	Noida	Rest of India
REGULAR BATCHES DELHI Evening : 16 th & 20 th Jan'20 Morning : 12 th & 18 th Feb'20	WEEKEND BATCHES DELHI 11 th Jan, 2020 NOIDA 12 th Jan, 2020	Patna : 24-02-2020 Lucknow : 20-02-2020 Bhopal : 16-01-2020 Indore : 20-02-2020 Pune : 20-01-2020 Hyderabad : 16-03-2020 Bhubaneswar : 23-01-2020 Kolkata : 25-01-2020 Jaipur : 16-02-2020

(011-45124612, 9958995830

🌐 www.madeeasy.in

ESE 2020 Preliminary Examination Electrical Engineering | Set-A

6. If
$$u = x \log xy$$
, where $x^3 + y^3 + 3xy = 1$, then $\frac{du}{dx}$ is
(a) $1 - \log xy + \frac{x(x^2 + y)}{y(y^2 + x)}$ (b) $1 - \log xy - \frac{y(x^2 + y)}{x(y^2 + x)}$

India's Best Institute for IES, GATE & PSUs

(c)
$$1 + \log xy - \frac{x(x^2 + y)}{y(y^2 + x)}$$
 (d) $1 + \log xy + \frac{x(x^2 + y)}{y(y^2 + x)}$

Ans. (c)

R

$$u = x \log(xy) \text{ and } x^3 + y^3 + 3xy = 1 \qquad \dots \text{(ii)}$$
$$\frac{\partial u}{\partial x} = \frac{\partial}{\partial x} [x \log(xy)]$$

$$= x \left[\frac{1}{xy} \cdot y \right] + \log(xy) (1) = 1 + \log(xy)$$
$$\frac{\partial u}{\partial y} = \frac{\partial}{\partial y} [x \log xy] = x \left[\frac{1}{xy} \cdot x \right] = \frac{x}{y}$$

Again,

i.e.,

Now differentiating (ii) with respect to x in an ordinary way.

$$\frac{d}{dx}(x^{3}) + \frac{d}{dx}(y^{3}) + 3\frac{d}{dx}(xy) = 0 \qquad \dots (i)$$

$$3x^{2} + 3y^{2}\frac{dy}{dx} + 3\left[x\frac{dy}{dx} + y\right] = 0$$

i.e.,
$$\frac{dy}{dx} = -\frac{(x^{2} + y)}{(y^{2} + x)}$$

Now by total differentiation concept,

$$du = \left(\frac{\partial u}{\partial x}\right) dx + \left(\frac{\partial u}{\partial y}\right) dy$$
$$\frac{\partial u}{\partial x} = \left(\frac{\partial u}{\partial x}\right) + \left(\frac{\partial u}{\partial y}\right) \frac{dy}{dx}$$
$$= 1 + \log(xy) - \frac{x}{y} \left[\frac{x^2 + y}{y^2 + x}\right]$$

ESE 2020 Preliminary Examination MADE EASY India's Best Institute for IES, GATE & PSUs

Electrical Engineering | Set-A

7. The solution of differential equation
$$\frac{\partial^3 z}{\partial x^3} - 3\frac{\partial^3 z}{\partial x^2 \partial y} + 4\frac{\partial^3 z}{\partial y^3} = e^{x+2y}$$
 is
(a) $z = f_1(y-x) + f_2(y+2x) + xf_3(y+2x) + \frac{e^{x+2y}}{27}$
(b) $z = f_1(y-x) + f_2(y+2x) + xf_3(y+2x) + \frac{e^{x+2y}}{27}$
(c) $z = f_1(y-x) + f_2(y-2x) + xf_3(y+2x) + \frac{e^{x+2y}}{27}$
(d) $z = f_1(y-x) + f_2(y-2x) + xf_3(y+2x) + \frac{e^{x+2y}}{23}$
Ans. (a)
 $\frac{\partial^3 z}{\partial x^3} - \frac{\partial^3 z}{\partial x^3 \partial y} + 4\frac{\partial^3 z}{\partial y^3} = e^{x+2y}$
Writing, $\frac{\partial}{\partial x} = D$ and $\frac{\partial}{\partial y} - D^r$ we get
 $[D^3 - 3D^2D^r + 4D^3] z = e^{x+2y}$...(1)
Auxiliary equation is $m^3 - 3m^2 + 4 = 0$
 $(m+1)(m-2)^2 = 0$
 $\Rightarrow m = -1$ and $2, 2$
So, $C.F. = f_1(y-x) + f_2(y+2x) + xf_3(y+2x)$
 $P.I. = \frac{1}{f_1(D,D)}(e^{x+2y}) = \frac{1}{D^3} - \frac{1}{3D^2D^2 + 4D^3}(e^{x+2y})$
 $= \frac{1}{t^2 - 3(t)(2 + 4(2)^3}(e^{x+2y}) = \frac{e^{t+2y}}{27}$
Hence, solution of (1) is,
 $Z = C.F. + P.I.$
 $Z = f_1(y-x) + f_2(y+2x) + xf_3(y+2x) + \frac{e^{t+2y}}{27}$
Auxiliary equation $f_2 = u + iv$, then $f_1(z)$ is
(a) (1 + 2)e^2 + c (b) $z e^2 + c$
(c) $z e^{2y} + c$ (c) (1 - 2)e^{y} + c
Ans. (b)
 $v_x = e^{y}(\sin y) + (x \sin y + y \cos y)e^{z}$

Corporate Office: 44-A/1, Kalu Sarai, New Delhi-110016 🖂 info@madeeasy.in 🕢 www.madeeasy.in

ESE 2020 Preliminary Examination

Electrical Engineering | Set-A

$$v_{y} = e^{x}(x \cos y + \cos y - y \sin y)$$

$$f'(z) = u_{x} + iv_{x}$$

$$= v_{y} + iv_{x}$$

$$f'(z) = e^{x}(x \cos y + \cos y - y \sin y) + e^{x}(\sin y + x \sin y + y \cos y)$$

Put, $x = z$, $y = 0$ in $f'(z)$,

$$f'(z) = e^{z}(z + 1 - 0) + e^{z}(0 + 0 + 0)$$

$$\int f'(z)dz = \int (ze^{z} + e^{z}) dz$$

$$f(z) = ze^{z} - e^{z} + e^{z} + C$$

$$f(z) = ze^{z} + C$$

End of Solution

ADE EASY

dia's Best Institute for IES. GATE

The first four terms of the Taylor series expansion of $f(z) = \frac{z+1}{(z-3)(z-4)}$, when $z = \frac{z+1}{(z-3)(z-4)}$ 9. 2 is (a) $\frac{11}{4}(z-2) + \frac{27}{8}(z-2)^2 + \frac{59}{16}(z-2)^3 + \dots$ (b) $\frac{11}{4}(z+2) - \frac{27}{8}(z-2)^2 - \frac{59}{16}(z+2)^3 + \dots$ (c) $\frac{3}{2} + \frac{11}{4}(z-2) + \frac{27}{8}(z-2)^2 + \frac{59}{16}(z-2)^3 + \dots$ (d) $\frac{3}{2} - \frac{11}{4}(z-2) - \frac{27}{8}(z-2)^2 - \frac{59}{16}(z-2)^3 + \dots$ (c) Ans. Let. z - 2 = t $f(z) = \frac{z+1}{(z-3)(z-4)}$ Then, $f(t) = \frac{t+3}{(t-1)(t-2)}$ \Rightarrow $= \frac{-4}{t-1} + \frac{5}{t-2} = 4[1-t]^{-1} - \frac{5}{2} \left(1 - \frac{t}{2}\right)^{-1}$ $= 4[1+t+t^{2}+...]-\frac{5}{2}\left(1+\frac{t}{2}+\frac{t^{2}}{4}+...\right)$ $=\frac{3}{2}+\frac{11}{4}(t)+\frac{27}{8}t^2+\dots$ $= \frac{3}{2} + \frac{11}{4}(z-2) + \frac{27}{8}(z-2)^2 + \dots$ End of Solution

UPPSC Assistant Engineer Examination, 2019 Total Posts : 692

We are launching **Comprehensive Classroom Course**

at **DELHI & LUCKNOW** Centres

Batches from **10th Feb**, **2020** | Streams: CE, ME, EE

• 650 Hrs of comprehensive course. • General Studies and Hindi covered.

• Exclusive study materials as per requirement of UPPSC.

Other courses available:

Useful for candidates who are not able to join Classroom Courses.

Technical books covering well illustrated theory with solved examples and previous solved papers. GS and Hindi also included.

Online test series on standard and pattern of UPPSC examination. Quality Questions with detailed solutions.

ESE 2020 Preliminary Examination

Electrical Engineering | Set-A

10. The mean deviation about mean μ of a normal distribution is nearly

(a)
$$\frac{3}{5}\sigma$$
 (b) $\frac{5}{3}\sigma$
(c) $\frac{4}{5}\sigma$ (d) $\frac{5}{4}\sigma$

MADE EASY

India's Best Institute for IES, GATE & PSUs

Ans. (c)

N

Mean deviation about mean $\boldsymbol{\mu}$ of normal distribution is,

$$E\{|x-\mu|\} = \int_{-\infty}^{\infty} |x-\mu| f(x) dx$$
$$= \int_{-\infty}^{\infty} |x-\mu| \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{\left(\frac{x-\mu}{\sigma}\right)^2}{2}} dx$$
$$= \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\infty} |x-\mu| \cdot e^{-\frac{\left(\frac{x-\mu}{\sigma}\right)^2}{2}} dx$$

Let,

$$\frac{x-\mu}{\sigma} = t$$

$$x - \mu = \sigma t$$

$$x = \mu + \sigma t$$

$$dx = \sigma dt$$

$$= \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\infty} \sigma |t| \cdot e^{-t^2/2} \cdot \sigma dt$$

$$= \frac{\sigma^2}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\infty} |t| e^{-t^2/2} dt$$

$$= \frac{\sigma}{\sqrt{2\pi}} \cdot 2 \int_{0}^{\infty} t e^{-t^2/2} = \frac{\sqrt{2}}{\sqrt{\pi}} \sigma = \sqrt{\frac{2}{\pi}} \sigma$$

Which is approximately $\frac{4}{5}\sigma$.

End of Solution

11. Consider the following regression equations obtained from a correlation table :

$$y = 0.516 x + 33.73$$

x = 0.512 y + 32.52

The value of the correlation coefficient will be

(a)	0.514	(b)	0.586
(C)	0.616	(d)	0.684

MADE EASY	MADE EASY India's Best Institute for IES, GATE & PSUs	ESE 2020 Preliminary Examination Electrical Engineering Set-A
Ans.	(a) The two regression lines are, $y = 0.516x + b_{yx} = 0.516$ $x = 0.512y + b_{xy} = 0.512$ Coefficient of correlation is	- 33.73 - 32.52
	$r = \sqrt{b_{yx} \cdot b_x}$ $= \sqrt{0.516}$	 y <0.512 = 0.514 <i>End of Solution</i>
12.	If the probability of a bad reaction fr of 2000 individuals, more than two (a) 0.72 (c) 0.32	om a certain injection is 0.001, the chance that out will get a bad reaction will be (b) 0.54 (d) 0.14
Ans.	(c) Probability of a bad reaction from a p = 0.001 $n = 2000$ Mean, $\lambda = np = 20$ $\lambda = 2$ $p(x > 2) = 1 - p(x)$ $= 1 - \{p(x) = 1 - \{$	a certain injection is, $00 (0.001) = 2$ $\leq 2)$ $= 0) + p(x = 1) + p(x = 2)$ $\frac{\lambda^{0}}{1} + \frac{e^{-\lambda}\lambda^{1}}{1!} + \frac{e^{-\lambda}\lambda^{2}}{2!}$ $1 + \lambda + \frac{\lambda^{2}}{2}$ $1 + 2 + 2$ $26 = 0.324$ End of Solution
13.	As per de Broglie's relationship, the v is (a) $\frac{h}{mv}$ (c) $\frac{hm}{v}$ Where: h = Planck's constant	e wavelength λ related to its mass <i>m</i> and velocity (b) $\frac{hv}{m}$ (d) $\frac{mv}{h}$
Corporate	e Office: 44-A/1, Kalu Sarai, New Delhi-110016	info@madeeasy.in 💽 www.madeeasy.in Page 10

Ans.	(a)
	According to de Broglie's relationship
	$\lambda = \frac{h}{p} = \frac{h}{mv}$
	$\lambda = wavelength$
	h = Planck's constant $\rho = momentum$
	m = mass
	v = velocity
	End of Solution
14.	Which of the following statements regarding an atom are correct?
	1. If two atoms with similar ionization potential form a bond, then this bond will mo
	 probably be either covalent or metallic. When atoms with different ionization potentials form a bond, the bond will be main
	ionic.
	3. If the atom or molecule already has its outer shells completely full, then the bondir
	(a) 1 and 2 only (b) 1 and 3 only
	(c) 2 and 3 only (d) 1, 2 and 3
Ans.	(d)
	All statements are correct.
	End of Solution
15.	A barium titanate crystal is inserted in a parallel plate condenser of area 10 mm $ imes$ 10 mm
	The plates having a separation of 2 mm, give a capacitance of 10^{-9} F. If the value
	$\varepsilon_0 = 8.854 \times 10^{-12}$ Fm ⁻¹ , the relative dielectric constant of the crystal will be nearly (a) 2640 (b) 2450
	(c) 2260 (d) 2080
Ans.	(c)
	$\epsilon_r \epsilon_0 A$
	$C = \frac{d}{d}$
	$\Rightarrow \qquad \in_r = \frac{c.d}{c}$
	$' \in_0 A$
	$\Rightarrow \qquad \in_{c} = \frac{10^{-9} \times 2 \times 10^{-3}}{12 \times 10^{-3}} = 2258.8$
	$' 8.854 \times 10^{-12} \times 100 \times 10^{-0}$
	Nearest option (c).
	End of Solutio

10.	A transformer core is wound with a of 50 Hz. The hysteresis loop has a units of 10 ⁻⁴ Wb m ⁻² and 10 ² Am ⁻¹ . volume of 0.01 m ³ , the power loss (a) 300 W (c) 400 W	 coil carrying an alternating current at a frequency n area of 60000 units when the axes are drawn in lf the magnetization is uniform throughout the core due to hysteresis will be (b) 350 W (d) 450 W
Ans.	(a) Hysteresis loss = Area of = (60000) = 300 W	Hysteresis loop × Frequency × Volume of core $(10^{-4} \times 10^2)$ (50) (0.01)
17.	When ferromagnetic or ferrimagnetic m in any domain will be rotated from its behaviour. On removal of the magne have a non-zero value. This behavi (a) Crystal anisotropic (c) Shape anisotropic	naterials are magnetized, the direction of magnetization preferential direction. This will show an anisotropic etizing force, the total magnetization will in genera our is due to (b) Stress anisotropic (d) Crystal, stress and shape anisotropic
Ans.	(d)	
18.	The paramagnetic susceptibility varie fields and temperatures. It is given $\chi = \frac{C}{T}$ The relation is known as (a) Phenomenon of magnetostriction (c) Hall Effect	s inversely with the absolute temperature for ordinar by the relation (b) Curie law of paramagnetism (d) Diamagnetism
Ans.	(b) Curie law for paramagnetic material $\chi = \frac{C}{T}$	ls,
	χ = susceptibility; <i>C</i> = Curie const	ant; $T =$ temperature in K
19.	If the interaction between the atomic and the individual dipole moments (a) Ferromagnetic material	c permanent dipole moments is zero or negligibl are oriented at random, the material will be a (b) Ferrimagnetic material (d) Antiforromagnetic material

National Through Scholarship

BST For ESE & GATE 202

Scholarship applicable on Long Term Classroom Courses for ESE & GATE

Date of Test : 1st Mar, 2020

Valid on batches commencing from Apr-June, 2020

Students may opt any one of the following paper:

• Technical Paper : CE, ME, EE, EC, CS, IN

Avail upto

- 50 Questions; • 100 Marks; 1 Hour duration
- Aptitude Based Paper : Maths + Reasoning + English

🕓 09599946203, 09599946204 🛛 🖂 nst@madeeasy.in For registration, visit: www.madeeasy.in

India's Best Institute for IES, GATE & PSUs

Ans. (c)

Paramagnetic materials contain randomly oriented permanent dipoles. There is no interaction among the dipoles, hence net permanent dipole moment is zero in the absence of field.

End of Solution

- (a) Electron spin angular momentum
- (b) Nuclear spin angular momentum
- (c) Orbital angular momentum of the electrons
- (d) Centrifugal angular momentum

Ans. (c)

Diamagnetism is a very weak form of magnetism that is non-permanent and persists only while an external field is being applied. It is induced by a change in the orbital motion of electrons due to an applied magnetic field.

End of Solution

21. The inductance of an air-cored coil is proportional to

- 1. The square of the number of turns.
- 2. The diameter of the coil.
- 3. A form factor, F, dependent on the ratio of coil radius to coil length plus winding depth.

Which of the above statements are correct?

 (a) 1 and 2 only
 (b) 1 and 3 only

 (c) 2 and 3 only
 (d) 1, 2 and 3

Ans. (b)

Ans.

(a)

$$L = \frac{N^2 \mu a}{l} = \frac{N^2 \mu \pi}{l} \frac{D^2}{4}$$
$$L \propto N^2$$
$$L \propto D^2$$

So second statement is incorrect.

End of Solution

- **22.** Light is capable of transferring electrons to the free-state inside a material thus increasing the electrical conductivity of the material. When the energy imparted to the electrons is quite large, the latter may be emitted from the material into the surrounding medium. This phenomenon is known as
 - (a) Photoemissive effect
 - (c) Photoconductivity effect
- (b) Photovoltaic effect
- (d) Photo absorptive effect

End of Solution

Rank Improvement Batches

for **GATE 2021 & ESE 2021**

Syllabus Covered Complete GATE syllabus & Technical syllabus of ESE **Course Duration** Approximately 5 months 450-475 teaching hours

Class Timing

5-6 days a week 4 hours a day

Features :

- Comprehensive problem solving sessions.
- Techniques to improve accuracy & speed.
- Doubt clearing sessions.
- Weekly class tests for performance improvement.
- Specially designed workbooks for technical subjects.
- Smart techniques to solve problems.
- Systematic & cyclic revision of all subjects.
- Inclusive of interview guidance for PSUs.

Batches commencing from Mid May, 2020 Admission Open

Corporate office : 44-A/1, Kalu Sarai, New Delhi 🕓 011-45124612, 9958995830

🕽 www.madeeasy.in

ADE EASY	India's Best Institute for IES, GATE & PSUs Electrical Engineering Set-A
39.	The moving iron instruments when measuring voltages or currents,
	values of current.
	(b) Indicate higher values of the measurement for ascending values of current.
	(c) Indicate higher values of the measurement for descending values of current.
	(d) Indicate lower values of the measurement for both ascending and descending valu of current.
Ans.	(c)
	End of Solution
40.	True RMS-reading voltmeter
	 Measures the RMS value of voltage accurately. Eliminates the error due to waveform.
	3. Uses the thermocouple for heating.
	Which of the above statements are correct?
	(a) 1 and 2 only (b) 1 and 3 only
	(c) 2 and 3 only (d) 1, 2 and 3
Ans.	(d)
11	Instrument transformers are
	(a) Used to extend the range of the AC measuring instruments only.
	(b) Used to isolate the measuring instruments from the high voltage only.
	(c) Used to extend the range and isolate the measuring instruments.
	(a) Not used at generating stations and transformer stations.
Ans.	(C)
42.	The power in a 3-phase circuit is measured with the help of 2-wattmeters; the readin
	of one of the wattmeters is positive and that of the other is negative. The magnitu
	of readings is different. It can be concluded that the power factor of the circuit will
	(a) Only (b) Zero (c) 0.5 (d) Less than 0.5
Ane	(d)
	End of Solution
43.	In a Q-meter, distributed capacitance of a coil is measured by changing the capacitan
	of the tuning capacitor. The values of tuning capacitor are C_1 and C_2 for resonant frequencies f and 2f respectively. The value of distributed capacitance will be
	inequencies I_1 and $2I_1$ respectively. The value of distributed capacitance will be
	(a) $\frac{c_1 - c_2}{2}$ (b) $\frac{c_1 - 2c_2}{3}$
	•
	$C_1 - 4C_2$ $C_1 - 3C_2$
	(c) $\frac{C_1 - 4C_2}{3}$ (d) $\frac{C_1 - 3C_2}{2}$

ADE EASY	India's Best Institute	for IES, GATE & PSUs	Electrical Enginee	ering Set-A
Ans.	(c)			
		$C_{d} = \frac{C_{1} - nC_{2}}{(n^{2} - 1)}$	<u>-</u>	
		n = 2		
	\rightarrow	$C_{1} = \frac{C_{1} - 4C_{2}}{C_{1} - 4C_{2}}$	<u>-</u>	
	,	³ 3		
				End of Solutio
44.	auto zeroing. T	heter, during start of c	onversion, zero indication is displ	ayed and is calle
	(a) Using a po	sitive reference volta	ge	
	(c) Properly ch	arging the differentia	tor circuit capacitance to ground	d
A no	(d) Properly dis	scharging the integra	tor circuit capacitance to ground	d
Ans.	(u)			End of Solution
45.	A CRT has an all apart. The scre to the deflecting required to def (a) 1 V (c) 5 V	node voltage of 2000 en is 30 cm from the plates through ampl lect the beam throug	 I and parallel deflecting plates 2 centre of the plates. If the input fiers having an overall gain of 100 (h 3 cm will be (b) 3 V (d) 7 V 	cm long and 5 m voltage is applie), the input voltas
Ans.	(a)			
		$V_a = 2000 \text{ V},$ $l_d = 2 \text{ cm},$		
		d = 5 mm =	0.5 cm,	
		D = 3 cm,		
		$V_d = ?$		
		$D = \frac{L l_d \cdot V_d}{2 V_a \cdot d}$		
	\Rightarrow	$V_d = \frac{2V_a \cdot d \cdot l_d}{L \cdot l_d}$	2	
		$V_d = \frac{2 \times 2000}{30}$	$\frac{0 \times 0.5 \times 3}{\times 2} = 100 \text{ Volt} V_i$	A = 100
		$V_i = \text{Input} =$	$\frac{V_d}{\text{gain}} = \frac{100 \text{ Volt}}{100} = 1 \text{ volt}$	
				End of Solutio

General Studies & Engineering Aptitude for ESE 2021 Prelims

BATCHES COMMENCEMENT DATES

Regular Batches Delhi 18th Feb, 2020 Weekend Batches Delhi & Noida 22nd Feb, 2020

🕓 011-45124612, 9958995830 🛛 🌐 www.madeeasy.in

49.	The hexadecimal of the binary number	er (11010011) ₂ is
	(a) $D3_{16}$ (c) $C3_{16}$	(d) $C4_{16}$
Ane		() - 10
	To convert a binary number into hexa from groups of 4 binary digits. Next, w of 4 bits.	adecimal, we start from the LSB binary digit ar re write the hexadecimal equivalent of each grou
	<u>110</u>	ນ ຜ້າງ
	D	
		End of Solutio
50.	Which one of the following relations operation cannot be verified when A (a) AB = BA (c) A1 = 1	from the Boolean algebra pertaining to, 'ANA and B can take on only the value 0 or 1? (b) AA = A (d) A0 = 0
Ans.	(c)	
	Given, $A \cdot 1 = A$	
	A can be either 0 or 1	
	A = 0, then, $A = 0 = 0If A = 1, then, A = 1 = 1$	
	Hence, $A \cdot 1 = 1$ cannot be verified.	
		End of Solutio
51.	Which of the following design levels of	a computer are widely used in computer design
	1. Gate level	
	2. Processor level	
	 Register level User level 	
	(a) 1 and 3 only	(b) 2 and 4 only
	(c) 3 and 4 only	(d) 1, 2 and 3 only
Ans.	(b)	
		End of Solutio
52.	Which one of the following is a powe	erful web platform for web applications and we
	services, built-in virtualization technolo	ogies, variety of new security tools, enhancemen
	and streamlined configuration and ma	anagement tools?
	(a) Internet Explorer(c) Web Matrix	(b) Internet Information Services (d) Visual Web Developer
\ne	(d)	
115.		
		End of Solutio

	India's Best Institute for IES, GATE & PSUs Electrical Engineering Se	et-A
53.	 Which one of the following is the correct sequence of steps for executing an ins during CPU's processing ? (a) Fetch instruction, Read data, Decode instruction, Store data and Execute ins (b) Decode instruction, Read data, Execute instruction, Fetch Next instruction an data (c) Decode instruction, Decode next operands, Fetch Next instruction and Store (d) Fetch instruction, Decode instruction, Read operands, Execute instruction an data 	tructior tructior nd Store ore data nd Store
Ans.	. (a) Basic steps of execution of an instruction.	Solution
54.	 Which one of the following is the correct combination of registers in DMA cor (a) Data register, Stack pointer and Data counter (b) Data register, Address register and Data counter (c) Data register, Stack pointer and Address register (d) Data register, Program counter and Data counter 	ntroller?
Ans.	 (b) Address register to store source address, count register → to hold count of no. of Data registers → To hold data from memory I/o while transferring. 	of bytes
55.	A multiprocessing technology which enables software to treat a single processor processors to utilize the processing power in the chip that would otherwise go and lets the chip operate more efficiently resulting in faster processing is cal (a) Systematic multiprocessing (b) Massively parallel processing (c) Co-processing (d) Hyper threading	r as two unused led
Ans.	. (d)	Solution
56.	A physical implementation of the type declaration in high-level programming lan where major information types should be assigned formats for identification is (a) Storage order (b) Tag	guages s called
	(c) Error correction (d) Error detection	

57.	Which of the following factors are to be considered while selecting number representation to be used in a computer?
	1. Number types to be represented
	2. Range of values to be encountered
	 Cost of the hardware to store and process the numbers Desitional potation with fixed weight
	(a) 1.2 and 4 only (b) 1.3 and 4 only
	(c) 2, 3 and 4 only (d) 1,2 and 3 only
Ans.	(a)
	End of Solution
58.	If a negative binary number is to be represented by n-bits, then the standard form will be
	(a) Sign bit '0' on left and magnitude right
	(b) Sign bit '1' on left and magnitude on right
	(d) Sign bit '1' on right and magnitude on left
Ans.	(b)
	In signed binary number representation, the MSB represents the sign of the numb
	Sign bit Magnitude bits Moreover, if the number is positive the sign bit = 0 ; and if the number is negative
	the sign bit = 1 .
	End of Solution
59.	The physical address translation in virtual memory address with Memory Manageme
	(a) Multiply virtual, address by some constant
	(b) Translation lookaside buffer (TLB)
	(c) Encryption key
	(d) Using general purpose register in CPU
Ans.	(b) End of Solution
60.	Which one of the following satellite systems is most often used for Global Positionir
	System (GPS) ?
	(a) Geosynchronous (b) Geostationary
A = a	
ANS.	(u)
	End of Solutio

An initiative of **MADE EASY** Group

🔀 cst@nextia<u>s.com 🕓 8800338066</u>

www.nextias.com

	India's Best Institute for IES, GATE & PSUs	ESE 2020 Preliminary Examination Electrical Engineering Set-A
76.	 Which one of the following statements i of communications and signal process (a) It is more economical (b) It does not cause loading of the s (c) It is easier to tune or adjust (d) It exhibits insertion loss 	s not correct for an active filter used in the field sing ? ource or load.
Ans.	(d) Active filter will not have insertion loss	S. End of Solution
77.	A two-step procedure in a typ complementary-error-function Gaussia step respectively as (a) Predeposition and Drive-in	ical diffusion apparatus to obtain the n distribution involves the first step and second (b) Predeposition and Drive-out
	(c) Drive-in and Postdeposition	(d) Drive-out and Postdeposition
Ans.	(a)Impurity diffusion is of two types:(i) Predeposition which results in com(ii) Drive in diffusion which results in	plementary error function profile. Gaussian distribution profile.
78.	In AM modulation, the equation of the r If the amplitude of the carrier wave is A efficiency will be	nodulating signal is given by $f(t) = A_m \cos \omega_m t$. and there is no over-modulation, the modulation
	(a) 33.3% (c) 43.3%	(b) 38.6%(d) 48.6%
Ans.	(a) In AM: For no over modulation $\mu \leq 1$ Max. $\mu = 1$	
	Modulation efficiency = $\frac{\mu^2}{2+\mu^2} = \frac{1}{3}$	= 33.3%
79.	For a binary phase-shift keying modula bit rate of 10 Mbps, the maximum Upp Side Frequency (LSF) are respectively	tor with a carrier frequency of 70 MHz and input ber Side Frequency (USF) and minimum Lower
	(a) 85 MHz and 65 MHz (c) 55 MHz and 45 MHz	(b) 75 MHz and 65 MHz(d) 55 MHz and 45 MHz

Page 31

	India's Best Institute for IES, GATE & PSUs ESE 2020 Preliminary Examination Electrical Engineering Set-A
85.	During transformation of independent variable, if two signals identical in shape are displaced relative to each other, then the difference in propagation time from point of origin of transmitted signal results in (a) Time shift (b) Time reversal (c) Time scaling (d) Time reduction
Ans.	(a)
86.	 Which of the following statements is/are correct? 1. A continuous-time system is a system in which, continuous-time input signals are applied; resulting in continuous-time output signals. 2. A system is said to be linear if it follows the superposition theorem. 3. A system is said to be non-linear if it follows the superposition theorem. (a) 1 only (b) 1 and 2 only (c) 2 only (d) 1 and 3 only
Ans.	(b)
87.	A discrete time signal is said to be unit sample sequence if (a) $\delta(n) = 1$ for $n = 0$ (b) $\delta(n) = 2$ for $n = 0$ $= 0$ for $n \neq 0$ $= 0$ for $n \neq 0$ (c) $\delta(n) = -1$ for $n = 0$ (d) $\delta(n) = -2$ for $n = 0$ $= 0$ for $n \neq 0$ $= 0$ for $n \neq 0$
Ans.	(a)
88.	 A signal is said to be 1. Deterministic if there is no uncertainty over the signal at any instant of time. 2. Deterministic if it is expressible through a mathematical equation. 3. Random or non-deterministic if there is uncertainty over the signal at the instant of time. 4. Random or non-deterministic if it is not expressible through a mathematical equation. Which of the above statements are correct? (a) 1,2 and 3 only (b) 1,2 and 4 only (c) 3 and 4 only (d) 1, 2, 3 and 4
Ans.	(d)
Corporate	e Office: 44-A/1, Kalu Sarai, New Delhi-110016 🖂 info@madeeasy.in

Page 35

GATE 2020 Online Test Series Stream : CE, ME, EE, EC, CS, IN, PI

- Newly designed quality questions as per standard of GATE.
- Video solutions by senior faculties.
- **B** Fully explained and well illustrated solutions.
- Comprehensive and detailed analysis report of test performance.

PACKAGES

Complete Package

- Part Syllabus Topicwise Tests : 24
- Single Subject Tests : 12
- Multi Subject Tests : 6
- Full Syllabus Tests : 12

Only Full Syllabus Tests

12 TESTS

Full syllabus tests on standard & pattern on actual GATE exam.

Test Series available on

Helpline no.: 98180 98817

TESTS

Register online at www.madeeasy.in

ESE 2020 Preliminary Examination Electrical Engineering | Set-A

92. Consider an LTI system with a system function

FD

$$H(z) = \frac{1}{1 - \frac{1}{4}z^{-1}}$$

Its difference equation will be

(a)
$$y(n) - \frac{1}{2}y(n-1) = x(n)$$

(b) $y(n) - \frac{1}{4}y(n-1) = x(n)$
(c) $y(n) + \frac{1}{2}y(n-1) = x(n)$
(d) $y(n) - \frac{1}{4}y(n+1) = x(n)$

Ans. (b)

MADE

India's Best Institute for IES, GATE

$$H(z) = \frac{Y(z)}{X(z)} = \frac{1}{1 - \frac{1}{4}z^{-1}}$$

$$Y(z) - \frac{1}{4}z^{-1} \cdot Y(z) = X(z)$$
$$y[n] - \frac{1}{4}y[n-1] = x[n]$$

End of Solution

- 93. It is assumed that quantization error, e(n) is a sequence of random variable where
 - 1. The statistics do not change with time.
 - 2. It is a sequence of uncorrelated random variables.
 - 3. It is uncorrelated with the quantizer input x(n).
 - 4. The probability density function is uniformly distributed over the range of values of quantization error.

Which of the above statements are correct?

- (a) 1, 2 and 3 only (b) 1, 2 and 4 only
- (c) 3 and 4 only (d) 1, 2, 3 and 4

Ans. (b)

End of Solution

94. For a given differential equation,

$$\frac{d^2 y(t)}{dt^2} + 4 \frac{dy(t)}{dt} + 5y(t) = 5x(t)$$

with

$$y(0^{-}) = 1 \text{ and } \frac{dy(t)}{dt}\Big|_{0^{-}} =$$

and input x(t) = u(t). The output y(t) will be (a) $2u(t) - 2e^{-2t} \sin t$ (c) $u(t) - e^{-t} \sin t$

(b) $u(t) + 2e^{-2t} \sin t$ (d) $2u(t) + e^{-t} \sin t$

2

Ans.	(b) $[c^2 \vee (c) - c \vee (c^{-}) - v' \vee (c^{-})] + 4[c \vee (c)]$	$\sqrt{(0-)}$ + $\sqrt{(0)}$ - $\sqrt{(0)}$
	$[S^{-}I(S) - SY(0) - Y(0)] + 4[SI(S)$	$-y(0)$] + $5T(5) = 5 \land (5)$
	So,	$Y(s) = \frac{s + 6s + 5}{s(s^2 + 4s + 5)}$
		$y(t) = u(t) + 2e^{-2t} \sin t$
		End of Soluti
95.	The Nyquist rate for the signal $x(t)$:	$=\frac{1}{2\pi}\cos(4000 \pi t)\cos(1000 \pi t)$ will be
	(a) 5 kHz	(b) 10 kHz
	(c) 15 kHz	(d) 20 kHz
Ans.	(a)	
	$x(t) = \frac{1}{2\pi}\cos 4$	000πt · cos1000πt
	So, $f_m = 2000 + 3$	500 = 2.5 kHz
	So, $f_s = 5 \text{ kHz}$	
	 If the output of a system y(n) deput not on past outputs, then it If the output of a system y(n) deput not on past outputs, then it (a) 1 only (c) 1 and 3 only 	epends only on the present input and past input is called a non-recursive system. epends only on the present input and past input t is called a recursive system. (b) 1 and 2 only (d) 3 only
Ans.	(b)	
		End of Soluti
97.	The value of the steady state error for	r first order system, $\frac{1}{sT+1}$ with Unit Ramp Funct
97.	The value of the steady state error for will be	r first order system, $\frac{1}{sT+1}$ with Unit Ramp Funct
97.	The value of the steady state error for will be (a) $\frac{1}{T}$	r first order system, $\frac{1}{sT+1}$ with Unit Ramp Funct (b) T
97.	The value of the steady state error for will be (a) $\frac{1}{T}$ (c) $T\left(1-e^{-\frac{t}{T}}\right)$	r first order system, $\frac{1}{sT+1}$ with Unit Ramp Funct (b) T (d) $\frac{1}{T}e^{-\frac{t}{T}}$

	Image: Sect Institute for IES, GATE & PSUs Est
100.	Consider the sinusoidal transfer function in time-constant form
	$G(i\omega) = \frac{2(1+j\omega)}{2}$
	$\left(1+\frac{j\omega}{12}\right)^2$
	Asymptotic log magnitude characteristic of factor $(1 + i\omega)$ is straight line of
	1. 0 dB for $\omega \leq 1$.
	2. +20 dB/decade for $\omega \ge 1$. 320 dB/decade for $\omega \ge 1$.
	Which of the above relations is/are correct?
	(a) 1 only (b) 1 and 2 only (c) 1 and 3 only (d) 2 only
Ans	(b)
	End of Solution
101	A graphical technique for plotting the closed loop poles of rational system functions as
101.	a function of the value of gain for both continuous-time and a discrete-time system is
	(a) Root locus method (b) Nyquist criterion method
	(c) Bode plot method (d) Routh-Hurwitz criterion method
Ans.	(a)
	End of Solution
102.	Which one of the following statements regarding 'Root locus' is not correct?
	stability of system decreases.
	(b) By addition of zero towards left, the root locus shifts towards left half, since root
	(c) By addition of zero towards left side, the root locus shifts towards left half, the relative
	stability remains same.
	of zeros towards left half, the stability of system increase.
Ans.	(c)
	By addition of zero towards left side, the root locus shifts towards left half, the relative
	right half, the relative stability decreases.
	End of Solution
103.	In time domain, the relative stability is measured by maximum overshoot and damping
	ratio. In frequency domain, the relative stability is measured by
	(a) Steady state error (b) Damping ratio (c) Resonant peak (d) Bandwidth
Ans.	(c)
	In frequency domain the relative stability is measured by resonant peak. Hence option
	(c) is correct.
	End of Solution
orporate	Office: 44-A/1, Kalu Sarai, New Delhi-110016 🖂 info@madeeasy.in 💽 www.madeeasy.in

ESE 2020 Preliminary Examination MADE F Electrical Engineering | Set-A Consider a feedback system with the characteristic equation 104. $1+K\frac{1}{s(s+1)(s+2)}=0$ for root locus, The angles of asymptotes ϕ_A and the centroid of the asymptotes- σ_A are respectively (a) 60°, 120°, 180° and -1 (b) 45°, 90°, 300° and 0 (c) 60°, 180°, 300° and −1 (d) 45°, 90°, 180° and 0 Ans. (c) 1 + G(s)H(s) = 0 $1 + \frac{K}{s(s+1)(s+2)} = 0$ $G(s)H(s) = \frac{K}{s(s+1)(s+2)}$ Centroid (σ) = $\frac{-1-2}{3} = -1$ Ζ. P-Z Angle of asymptotes 180° 1 2 +90,270 3 60°, 180°, 300° 4 45°, 135°, 225°, 315°

End of Solution

- **105.** Which one of the following statements regarding an effect of phase lead network is *not* correct?
 - (a) The velocity constant is usually increased.
 - (b) The slope of the magnitude curve is reduced at the gain crossover frequency, as a result relative stability improves.
 - (c) Phase margin increased.
 - (d) The bandwidth decreased

Ans. (d)

Effect of phase lead network:

- 1. The velocity constant is usually increased.
- 2. The slope of the magnitude curve is reduced at the gain cross over frequency, hence relative stability improves.
- 3. Phase margin increased.
- 4. The bandwidth is increased.
- 5. Transient response improves.

End of Solution

ESE 2020 Preliminary Examination MADE Electrical Engineering | Set-A 106. A lead compensator 1. Speeds up the transient response. 2. Increases the margin of stability of system. 3. Helps to increases the system error constant though to a limited extent. Which of the above statements are correct? (a) 1 and 2 only (b) 1 and 3 only (c) 2 and 3 only (d) 1, 2 and 3 (d) Ans. End of Solution 107. Which of the following statements are correct? 1. The pair (AB) is controllable implies that the pair $(A^T B^T)$ is observable. 2. The pair (AB) is controllable implies that the pair $(A^{T}B^{T})$ is unobservable. 3. The pair (AC) is observable implies that the pair $(A^T C^T)$ is controllable. 4. The pair (AC) is observable implies that the pair $(A^T C^T)$ is uncontrollable. (a) 1 and 3 only (b) 1 and 4 only (c) 2 and 3 only (d) 2 and 4 only where : A, B and C are having their standard meanings. Ans. (a) The pair AB is controllable implies that the pair $A^{T}B^{T}$ is observable. The pair AC is observable implies that the pair $A^{T}C^{T}$ is controllable. End of Solution Bounded-input bounded-output stability implies asymptotic stability for 108. 1. Completely controllable system 2. Completely observable system 3. Uncontrollable system 4. Unobservable system Which of the above statements are correct? (a) 1 and 4 only (b) 1 and 2 only (c) 2 and 3 only (d) 3 and 4 only Ans. (b) BIBO stability implies asymptotic stability for completely controllable and completely observable system. End of Solution 109. The degree of humming level of the noise caused in the transformers may be reduced by (b) High flux density in core (a) Magnetostriction (c) Tightening of core by clamps (d) Quality of transformer oil Ans. (c) End of Solution Corporate Office: 44-A/1, Kalu Sarai, New Delhi-110016 🛛 info@madeeasy.in 🛛 💽 www.madeeasy.in Page 41

ESE 2020 Preliminary Examination Electrical Engineering | Set-A

110. A transformer with a 10 : 1 ratio and rated at 50 kVA, 2400/240 V, 50 Hz is used to step down the voltage of distribution system. The low tension voltage is to be kept constant at 240 V. If the transformer is fully loaded at 0.8 power factor (lag), the load impedance connected to low-tension side will be nearly,

(a)	3.15 Ω	(b)	2.60	Ω
(C)	1.15 Ω	(d)	0.60	Ω

FD

Ans. (c)

.

MADE

India's Best Institute for

2400/240 V, 50 kVA transformer fully loaded @0.8 p.f. lagging ∴ Load in kW = 50 × 0.8 = 40 kW $V_2I_2 \cos\phi_2 = 40 \text{ kW}$ ∴ $I_2 = \frac{40 \times 1000}{240 \times 0.8} = 208.33 \text{ A}$

. Load impedance
$$Z_L = \frac{V_2}{I_2} = 1.15 \ \Omega$$

End of Solution

111. A DC shunt generator supplies a load of 7.5 kW at 200 V. If the armature resistance is 0.6 Ω and field resistance is 80 $\Omega,$ the induced emf will be

(a)	224 V	(b) 218 V
(C)	212 V	(d) 204 V

Ans. (a)

End of Solution

- **112.** A 4-pole DC motor is lap-wound with 400 conductors. The pole shoe is 20 cm long and the average flux density over one-pole-pitch is 0.4 *T*, the armature diameter is 30 cm. When the motor is drawing 25 A and running at 1500 rmp, the torque developed will be nearly
 - (a) 30 Nm (b) 40
 - (c) 50 Nm

(b) 40 Nm(d) 60 Nm

Ans.	(a) Z = 400 P = 4 A = 4 N = 1500 $I_a \simeq I_L \simeq 25 \text{ A}$ l = 20 cm d = 30 cm	
	$Z = 400$ $P = 4$ $A = 4$ $N = 1500$ $I_a \simeq I_L \simeq 25 \text{ A}$ $l = 20 \text{ cm}$ $d = 30 \text{ cm}$	
	$P = 4$ $A = 4$ $N = 1500$ $I_a \simeq I_L \simeq 25 \text{ A}$ $l = 20 \text{ cm}$ $d = 30 \text{ cm}$	
	$A = 4$ $N = 1500$ $I_a \simeq I_L \simeq 25 \text{ A}$ $l = 20 \text{ cm}$ $d = 30 \text{ cm}$	
	$N = 1500$ $I_a \simeq I_L \simeq 25 \text{ A}$ $l = 20 \text{ cm}$ $d = 30 \text{ cm}$	
	$l_a = l_L = 20 \text{ cm}$ $l = 20 \text{ cm}$ $d = 30 \text{ cm}$	
	d = 30 cm	
	B = 0.4 T	
	Flux = Flux density	/ × area
	Area/pole = $\frac{\pi DL}{P} = \frac{3.14}{2}$	$\frac{4 \times 30 \times 10^{-2} \times 20 \times 10^{-2}}{4} = 0.0471 \text{ m}^2$
	$\phi = 0.4 \times 0.047$	1 = 0.01884 Wb
	$T = \frac{60}{2\pi N} \times E_b I_a$	N-m
	$E_s = \frac{\phi ZNP}{60.A} = \frac{0.0}{2}$	$\frac{01884 \times 400 \times 1500 \times 4}{60 \times 4} = 188.4 \text{ V}$
	$\therefore \qquad T = \frac{60}{2\pi(1500)}(1$	88.4)(25)
	<i>T</i> = 30 N-m	
		End of Solution
13.	In an unloaded shunt generator, when swhich leads to generation of still large	witch is closed, a small field current is produce
	(a) Armature voltage	(b) Residual flux voltage
	(c) Generated voltage	(d) Voltage drop
ne	(b)	
		End of Solution
14.	The generator efficiency of a shunt ger	nerator will be maximum when its variable lo
	is equal to	
	(a) Constant loss	(b) Stray loss
	(C) Iron loss	(d) Friction and windage loss
ns.	(a)	
		End of Solution
15.	Induction motor can be regarded as a g	eneralized transformer due to certain similariti
	except rated	
	(a) Frequency	(b) Flux
	(c) Speed	(d) Induced emf
ns.	(c)	
		End of Solution

MADE EASY	India's Best Institute for IES, GATE & PS	ESE 2020 Preliminary Examination
120. Ans.	In which of the following respect large industrial motors? 1. They produce high torque 2. They are capable of holdir 3. They do not overheat at st 4. Due to low-inertia they are (a) 1, 2, 3 and 4 (c) 1, 2 and 4 only (b)	ets, the servomotor differ in application capabilities from at all speeds including zero speed. Ing a static position. tandstill or lower speeds. not able to reverse direction quickly. (b) 1, 2 and 3 only (d) 3 and 4 only
		End of Solution
121.	 Which of the following statement 1. The boiler must be capable 2. The boiler should have no 3. The boiler must be capable (a) 1 and 2 only (c) 2 and 3 only 	ents regarding steam boilers are correct? le of quick starting and loading. joints exposed to flames. le of burning low ash content coal efficiently. (b) 1 and 3 only (d) 1, 2 and 3
Ans.	(d)	
122. Ans.	 Which of the following are the 1. Generating stations 2. Transmission systems 3. Distribution network (a) 1 and 2 only (c) 2 and 3 only (d) 	main parts of a power system? (b) 1 and 3 only (d) 1, 2 and 3
		End of Solution
123.	 Which of the following factors 1. Atmospheric conditions, te 2. Current of conductor 3. Waveform 4. Condition of surface of conductor (a) 1, 2 and 3 only 	affect Corona? Imperature, humidity, moisture, ice and fog nductors, smoothness and dust (b) 1, 3 and 4 only
	(c) 1, 2 and 4 only	(d) 2, 3 and 4 only

127.	Consider the following balanced line-to	o-neutral voltages with <i>abc</i> sequence:	
	Γν]Γ	277∠∩∘]	
	$V_{P} = \begin{bmatrix} V_{an} \\ V_{bn} \\ V_{cn} \end{bmatrix} = \begin{bmatrix} 27 \\ 27 \end{bmatrix}$	$77 \angle -120^{\circ}$ $77 \angle +120^{\circ}$ volts	
	The values of V_0 , V_1 and V_2 are respectively.	ectively	
	(a) 0, 177 ∠ 0° and 177 ∠ 0° (c) 0, 277 ∠ 0° and 0	(b) 277 ∠ 0°, 0 and 0 (d) 277 ∠ 0°, 0 and 177 ∠ 0°	
Ans.	(c) Since the given voltage is balance and in it.	hence only +ve sequence component is prese	
128	In an HVDC transmission, the DC or	Itout voltage can be controlled to get invert	
20.	operation when the firing angle α is		
	(a) $\alpha = 0^{\circ}$	(b) $0^{\circ} < \alpha < 90^{\circ}$	
	(c) $90^{\circ} < \alpha < 180^{\circ}$	(d) $0^{\circ} < \alpha < 180^{\circ}$	
Ans.	(c)	End of Colution	
129.	In an HVDC transmission mode, the link	which has two circuits that are almost independe	
	(a) Monopolar link	(b) Bipolar link	
	(c) Homopolar link	(d) Dualpolar link	
Ans.	(c)		
100		End of Solution	
130.	In a photovoltaic system, there is a thermally generated small reverse saturation current which flows even in the absence of light, called		
	(a) Photon current	(b) Diode current	
	(c) Leakage current	(d) Dark current	
Ans.	(d)		
		End of Solution	
131.	redundancy, the ability to serve all pov time, is due to	ver demands without failure over long periods	
	(a) Power system quality(c) Computers and microprocessors	(b) Power system reliability(d) Reserve generating capacity	
Ans.	(b)		

ADE EASY	India's Best Institute for IES, GATE & PSUs	Electrical Engineering Set-A
132.	In wind power, the speed which	is considered as the single most important paramete
	(a) Wind speed (c) Tip speed	(b) Peripheral speed(d) Blade speed
Ans.	(c)	End of Solution
133.	Communication circuitry is an ex (a) Line-commutated thyristors (c) Force-commutated thyristors	xtra circuit used to turn off (b) Phase-commutated thyristors (d) Reverse-commutated thyristors
Ans.	(c)	End of Solution
134.	TRIAC as a bidirectional triode thyristor is used to control the output voltage by varying conduction time or firing delay angle in (a) AC-DC converters (Controlled rectifiers) (b) AC-AC converters (AC voltage controllers) (c) DC-DC converters (DC choppers) (d) DC-AC converters (Inverters)	
Ans.	(b)	
135.	For large power output, multipha of harmonics by increasing the f (a) Diode rectifier (c) Star rectifier	End of Solution ase rectifiers are used along with filters to reduce leve fundamental frequency in (b) Bridge rectifier (d) Delta rectifier
Ans.	(c)	
136.	In a Bipolar Junction Transistor (hot spots are produced causing lo This switching limit is called (a) Forward-Biased Safe Operat (b) Reverse-Biased Safe Operat (c) Power Derating (d) Second Breakdown (SB)	(BJT) due to current flow to small portion of the base ocalized excessive heating and damaging the transisto ting Area (FBSOA) ting Area (RBSOA)
Ans.	(d)	
		End of Solution

137.	In a three-phase inverter with 180°	conduction, there are six modes of operation in
	(a) 90°	(b) 75°
	(c) 60°	(d) 45°
Ans.	(c)	
		End of Soluti
138.	In a closed-loop control of squirrel ca implemented is	age induction motor, the field oriented control strate
	(a) Scalar control	(b) Vector control
	(c) Adaptive control	(d) Frequency control
Ans.	(b)	
		End of Soluti
139.	In a DC motor drive, if the armature producing a braking torque, then t (a) Motoring mode	current is revised by keeping field current posit the drive is said to be operating is (b) Regenerative braking mode
	(c) Dynamic braking mode	(d) Plugging mode
Ans.	(b)	
140.	If the induction motor drive is capa	End of Soluti
140. Ans.	If the induction motor drive is capa of speed control is required for large (a) Static conductance drive (c) Static compressive drive (b)	End of Solutional power flow where limited range power applications, then this arrangement is cal (b) Static Scherbius drive (d) Static reluctance drive
140. Ans.	If the induction motor drive is capa of speed control is required for large (a) Static conductance drive (c) Static compressive drive (b)	End of Solution ble of bidirectional power flow where limited ran power applications, then this arrangement is cal (b) Static Scherbius drive (d) Static reluctance drive End of Solution
140. Ans. 141.	If the induction motor drive is capa of speed control is required for large (a) Static conductance drive (c) Static compressive drive (b) In a DC-DC switched-mode conver voltage, then this inverting regulate	End of Solution ble of bidirectional power flow where limited ran power applications, then this arrangement is cal (b) Static Scherbius drive (d) Static reluctance drive End of Solution ter if the output voltage polarity is opposite to in por is called
140. Ans. 141.	If the induction motor drive is capa of speed control is required for large (a) Static conductance drive (c) Static compressive drive (b) In a DC-DC switched-mode conver voltage, then this inverting regulator (a) Buck regulator	End of Solution ble of bidirectional power flow where limited ran power applications, then this arrangement is cal (b) Static Scherbius drive (d) Static reluctance drive (d) Static reluctance drive End of Solution ter if the output voltage polarity is opposite to in or is called (b) Boost regulator (d) Cuk regulator
140. Ans. 141.	If the induction motor drive is capa of speed control is required for large (a) Static conductance drive (c) Static compressive drive (b) In a DC-DC switched-mode conver voltage, then this inverting regulato (a) Buck regulator (c) Buck-Boost regulator	End of Solution ble of bidirectional power flow where limited ran power applications, then this arrangement is cal (b) Static Scherbius drive (d) Static reluctance drive (d) Static reluctance drive End of Solution ter if the output voltage polarity is opposite to in or is called (b) Boost regulator (d) Cuk regulator
140. Ans. 141. Ans.	If the induction motor drive is capa of speed control is required for large (a) Static conductance drive (c) Static compressive drive (b) In a DC-DC switched-mode conver- voltage, then this inverting regulato (a) Buck regulator (c) Buck-Boost regulator (c)	End of Solution ble of bidirectional power flow where limited ran power applications, then this arrangement is cal (b) Static Scherbius drive (d) Static reluctance drive (d) Static reluctance drive <i>End of Solution</i> (b) Boost regulator (c) Cuk regulator
140. Ans. 141. Ans.	If the induction motor drive is capa of speed control is required for large (a) Static conductance drive (c) Static compressive drive (b) In a DC-DC switched-mode conver voltage, then this inverting regulato (a) Buck regulator (c) Buck-Boost regulator (c) In a zero current switching resonant of due to presence of capacitive coup	End of Solution ble of bidirectional power flow where limited ran power applications, then this arrangement is cal (b) Static Scherbius drive (d) Static reluctance drive End of Solution ter if the output voltage polarity is opposite to in or is called (b) Boost regulator (d) Cuk regulator (d) Cuk regulator End of Solution End of Solution End of Solution Converter, the switching loss and noise are increase poling-called
140. Ans. 141. Ans.	If the induction motor drive is capa of speed control is required for large (a) Static conductance drive (c) Static compressive drive (b) In a DC-DC switched-mode conver voltage, then this inverting regulate (a) Buck regulator (c) Buck-Boost regulator (c) In a zero current switching resonant of due to presence of capacitive coup (a) Miller capacitor (c) Parallel resonant capacitor	End of Solution ble of bidirectional power flow where limited ran power applications, then this arrangement is call (b) Static Scherbius drive (d) Static reluctance drive End of Solution ter if the output voltage polarity is opposite to in or is called (b) Boost regulator (d) Cuk regulator (d) Cuk regulator End of Solution End of Solution Converter, the switching loss and noise are increase poling-called (b) Series resonant capacitor (d) Switch capacitor
140. Ans. 141. Ans. 142.	If the induction motor drive is capa of speed control is required for large (a) Static conductance drive (c) Static compressive drive (b) In a DC-DC switched-mode conver voltage, then this inverting regulato (a) Buck regulator (c) Buck-Boost regulator (c) In a zero current switching resonant of due to presence of capacitive coup (a) Miller capacitor (c) Parallel resonant capacitor (a)	End of Solution ble of bidirectional power flow where limited ran power applications, then this arrangement is call (b) Static Scherbius drive (d) Static reluctance drive End of Solution ter if the output voltage polarity is opposite to in or is called (b) Boost regulator (d) Cuk regulator End of Solution Converter, the switching loss and noise are increase bling-called (b) Series resonant capacitor (d) Switch capacitor
140. Ans. 141. Ans. 142.	If the induction motor drive is capa of speed control is required for large (a) Static conductance drive (c) Static compressive drive (b) In a DC-DC switched-mode conver voltage, then this inverting regulato (a) Buck regulator (c) Buck-Boost regulator (c) In a zero current switching resonant of due to presence of capacitive coup (a) Miller capacitor (c) Parallel resonant capacitor (a)	ble of bidirectional power flow where limited rar power applications, then this arrangement is call (b) Static Scherbius drive (d) Static reluctance drive <i>End of Soluti</i> ter if the output voltage polarity is opposite to in or is called (b) Boost regulator (d) Cuk regulator <i>End of Soluti</i> converter, the switching loss and noise are increase bling-called (b) Series resonant capacitor (d) Switch capacitor

ESE 2020 Preliminary Examination ADE dia's Best Institute for IES. GATE & PSUs Electrical Engineering | Set-A 143. Which one of the following devices is not a switched-mode DC power supply? (a) Fly back forward converter (b) Full bridge converter (c) Push-pull converter (d) Resonant converter Ans. (d) End of Solution 144. The ideal core should exhibit very high permeability in case of transformers and inductor core due to magnetic saturation caused by DC imbalance condition that can be minimized by (a) Low permeability core only (b) High permeability core only (c) Low and high permeability combination core (d) No permeability core Ans. (b) End of Solution Directions : Each of the next Six (6) items consists of two statements, one labelled as 'Statement (I)' and the other as 'Statement (II)'. You are to examine these two statements carefully and select the answers to these items using the codes given below: Codes: (a) Both Statement (I) and Statement (II) are individually true and Statement (II) is the correct explanation of Statement (I) (b) Both Statement (I) and Statement (II) are individually true; but Statement (II) is not the correct explanation of Statement (I) (c) Statement (I) is true; but Statement (II) is false (d) Statement (I) is false; but Statement (II) is true 145. Statement (I) : In a substitutional semiconductor, atom is replaced by an occasional foreign atom. The imperfections may be deliberately controlled or created in transistor material. Statement (II): The lattice vacancies created when certain atoms in a semiconductor are missing are known as Schottky defects. Ans. (b) Both statements are individually true. End of Solution 146. **Statement (I)**: A cache is a memory unit placed between the CPU and main memory M and is used to store instructions, data or both. Statement (II) : The cache's effect is to increase the average time required to access an instruction or data word, typically to just a single-clock cycle. Ans. (c) End of Solution

147.	Statement (I) : A buffer is not an area in RAM or on the hard drive designated to holioput and output on their way in or out of the system.
	Statement (II) : The process of placing items in a buffer so they can be retrieved b
	the appropriate device when needed is called spooling.
Ans.	(b)
	End of Solution
148.	Statement (I) : The power diodes are three-layer devices.
	Statement (II): The impurity concentrations of power diodes vary layer to layer.
Ans.	(b)
	End of Solution
149.	Statement (I) : Registers are used for storage of small data in the microprocessor Statement (II) : All registers are accessible to the user through instructions.
Ans.	
	All registers are not accessible by the programmer/user.
0450	
Q 150.	proportional to standstill reactance.
	Statement (II): In a three-phase induction motor, the speed or the slip at which maximum torque occurs is determined by the rotor resistance.
Ans.	(d)
	End of Solution