				Ш				DE SO	TAILED LUTION
			MF	DE	E	AS	Ч		
			India's Be	st Institu	te for IES	, gate &	PSUs		
Test (Centres: De	lhi, Noida,	Hyderabad	, Bhopal, Jai	pur, Luckno	w, Bhubanes	war, Indore,	, Pune, Kolka	ata, Patna
ESE 2020 : Prelims Exam E & T Test 6 CLASSROOM TEST SERIES Section A : Electronic Devices & Circuits + Advanced Communication Topics Section R : Control Systems 1 + Mignet response and Mignet response to the section 1									
		Sec	tion C : N	Network T	heory-2 +	Digital Ci	rcuits-2		
1.	(a)	16.	(b)	31.	(a)	46.	(c)	61.	(b)
2.	(d)	17.	(d)	32.	(d)	47.	(d)	62.	(b)
			(1)						
3.	(b)	18.	(b)	33.	(c)	48.	(d)	63.	(c)
3. 4.	(b) (c)	18. 19.	(b) (c)	33. 34.	(c) (b)	48. 49.	(d) (c)	63. 64.	(c) (c)
3. 4. 5.	(b) (c) (c)	18. 19. 20.	(b) (c) (b)	33. 34. 35.	(c) (b) (c)	48. 49. 50.	(d) (c) (b)	63. 64. 65.	(c) (c) (c)
 3. 4. 5. 6. 	(b) (c) (c) (b)	 18. 19. 20. 21. 	(b) (c) (b) (d)	33. 34. 35. 36.	(c) (b) (c) (c)	48. 49. 50. 51.	(d) (c) (b) (c)	63. 64. 65. 66.	(c) (c) (c) (c)
 3. 4. 5. 6. 7. 	 (b) (c) (c) (b) (a) 	 18. 19. 20. 21. 22. 	(b) (c) (b) (d) (c)	33.34.35.36.37.	(c) (b) (c) (c) (a)	48. 49. 50. 51. 52.	(d) (c) (b) (c) (d)	63.64.65.66.67.	 (c) (c) (c) (c) (a)
 3. 4. 5. 6. 7. 8. 	 (b) (c) (c) (b) (a) (c) 	 18. 19. 20. 21. 22. 23. 	 (b) (c) (d) (c) (b) 	 33. 34. 35. 36. 37. 38. 	 (c) (b) (c) (c) (a) (d) 	48.49.50.51.52.53.	 (d) (c) (b) (c) (d) (a) 	63.64.65.66.67.68.	 (c) (c) (c) (c) (a) (b)
 3. 4. 5. 6. 7. 8. 9. 	 (b) (c) (b) (a) (c) (a) (c) (a) 	 18. 19. 20. 21. 22. 23. 24. 	 (b) (c) (d) (c) (b) (a) 	 33. 34. 35. 36. 37. 38. 39. 	 (c) (b) (c) (c) (a) (d) (c) 	48. 49. 50. 51. 52. 53. 54.	 (d) (c) (b) (c) (d) (a) (c) 	 63. 64. 65. 66. 67. 68. 69. 	 (c) (c) (c) (a) (b) (c)
 3. 4. 5. 6. 7. 8. 9. 10. 	 (b) (c) (b) (a) (c) (a) (b) 	 18. 19. 20. 21. 22. 23. 24. 25. 	 (b) (c) (d) (c) (b) (a) (d) 	 33. 34. 35. 36. 37. 38. 39. 40. 	 (c) (b) (c) (c) (d) (c) (b) 	 48. 49. 50. 51. 52. 53. 54. 55. 	 (d) (c) (d) (d) (a) (c) (b) 	 63. 64. 65. 66. 67. 68. 69. 70. 	 (c) (c) (c) (a) (b) (c) (a)
 3. 4. 5. 6. 7. 8. 9. 10. 11. 	 (b) (c) (b) (a) (c) (a) (b) (a) (b) (a) 	 18. 19. 20. 21. 22. 23. 24. 25. 26. 	 (b) (c) (d) (c) (b) (a) (d) (b) 	 33. 34. 35. 36. 37. 38. 39. 40. 41. 	 (c) (b) (c) (c) (d) (c) (b) (a) 	 48. 49. 50. 51. 52. 53. 54. 55. 56. 	 (d) (c) (d) (d) (a) (c) (b) (d) 	 63. 64. 65. 66. 67. 68. 69. 70. 71. 	 (c) (c) (c) (a) (b) (c) (a) (b)
 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 	 (b) (c) (b) (a) (c) (a) (b) (a) (c) (c) 	 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 	 (b) (c) (d) (c) (b) (a) (d) (b) (d) (d) (d) 	 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 	 (c) (b) (c) (c) (a) (c) (b) (a) (a) (a) 	 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 	 (d) (c) (b) (c) (d) (c) (b) (d) (d) (d) 	 63. 64. 65. 66. 67. 68. 69. 70. 71. 72. 	 (c) (c) (c) (a) (b) (c) (a) (b) (d)
 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 	 (b) (c) (b) (a) (c) (a) (b) (a) (c) (d) 	 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 	 (b) (c) (d) (c) (b) (a) (d) (b) (d) (d) (d) (c) 	 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 	 (c) (b) (c) (c) (a) (d) (c) (b) (a) (a) (a) (a) 	 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 58. 	 (d) (c) (b) (c) (d) (c) (b) (d) (d) (d) (c) 	 63. 64. 65. 66. 67. 68. 69. 70. 71. 72. 73. 	 (c) (c) (c) (a) (b) (c) (a) (b) (d) (a)
 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 	 (b) (c) (b) (a) (c) (a) (b) (a) (c) (d) (d) 	 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 	 (b) (c) (d) (c) (b) (a) (d) (b) (d) (c) (c) (c) (c) 	 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 	 (c) (b) (c) (c) (a) (d) (c) (b) (a) (a) (a) (a) (a) (a) (a) 	 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 58. 59. 	 (d) (c) (b) (c) (d) (c) (d) (d) (d) (c) (a) (c) (a) 	 63. 64. 65. 66. 67. 68. 69. 70. 71. 72. 73. 74. 	 (c) (c) (c) (a) (b) (c) (a) (d) (a) (c)

DETAILED EXPLANATIONS

Section A : Electronic Devices & Circuits + Advanced Communication Topics

1. (a)

Connecting a resistor from base of a transistor to ground/negative voltage helps in reducing the switching time of the transistor. When transistor saturate, there is stored charge in the base that must be removed before it turns off.

2. (d)

	Maximum electric field,	$E_{\max} = \frac{2(V_{bi} + V_R)}{W}$
	Where, $V_{bi} = 2 \text{ V}; V_R = 5 \text{ V};$	$W = 7 \ \mu m$
		$E_{\rm max} = \frac{2(2+5)}{7 \times 10^{-4}} {\rm V/cm}$
		$E_{\rm max} = 20 \rm kV/cm$
3.	(b)	
	Diffusion capacitance,	$C_D = \frac{\tau I_f}{\eta V_T}$
	or	$C_D = \frac{\tau}{r_d}$; where r_d = dynamic resistance
	or	$C_D = \tau g_d$; where g_d = dynamic conductance
	·· 2	$\times 10^{-7} = 5 \times 10^{-6} \times g_d$
		$g_d = \frac{2 \times 10^{-7}}{5 \times 10^{-6}} = 40 \text{ mV}$
4.	(c)	
	The recombination rate,	$R = \frac{\delta n}{\tau} = \frac{10^{15}}{10^{-6}} = 10^{21} \text{ cm}^{-3} \text{ sec}^{-1}$

5. (c)

Current in strip,
$$I = neAv_d$$

where, v_d is drift velocity = $\frac{E}{B}$

$$\therefore v_d = \frac{1.5 \times 10^{-3}}{0.3} = 5 \times 10^{-3} \text{ m/sec}$$

$$\therefore Current, I = 8 \times 10^{28} \times 1.6 \times 10^{-19} \times 5 \times 10^{-6} \times 5 \times 10^{-3}$$

$$\therefore I = 320 \text{ A}$$

6. (b)

Given: Peak electric field, $E = 4 \times 10^5 \text{ V/cm}$ Width of depletion region on *n*-side,

$$N_N = 2 \,\mu m = 2 \times 10^{-4} \,\mathrm{cm}$$

 $N_D = \frac{E\varepsilon_{\rm si}}{qW_N} = \frac{4 \times 10^5 \times 1 \times 10^{-12}}{1.6 \times 10^{-19} \times 2 \times 10^{-4}} = 1.25 \times 10^{16} \text{ cm}^{-3}$

$$|E| = \frac{q}{\epsilon} N_D W_N$$

...

7. (a)

Given: Drift velocity, $v_d = 50$ m/sec and Length, $L = 20 \ \mu$ m Time taken to travel 20 μ m distance,

$$t = \frac{L}{v_d} = \frac{20}{50} = 0.4 \,\mu s$$

8. (c)

9. (a)

In Schottky diode, forward current is due to thermionic emission.

10. (b)

Change in temperature, $\Delta T = 50^{\circ}\text{C} - 25^{\circ}\text{C} = 25^{\circ}\text{C}$ The reduction in the power due to derating factor,

$$\Delta P_d = \Delta T \times \text{(derating factor)}$$

$$\Delta P_d = 25^{\circ}\text{C} \times 3 \text{ mW/}^{\circ}\text{C}$$

$$\Delta P_d = 75 \text{ mW}$$

 \therefore Net power dissipation rating at 50°C = 300 mW - 75 mW = 225 mW

11. (a)

Open-circuit voltage in solar cell,

$$V_{OC} = V_T \ln \left[1 + \frac{I_L}{I_s} \right]$$
$$I_L = 0$$
$$V_{OC} = V_T \ln[1] = 0 \text{ V}$$

If no light falls on solar cell, \therefore

We know that, reverse current I_s

$$I_s = \frac{qAD_n n_i^2}{L_n N_A} + \frac{qAD_p n_i^2}{L_p N_D}$$

For $N_D >> N_A$ $I_s \approx \frac{qAD_n n_i^2}{L_n N_A}$

So, when $N_D >> N_{A'} V_{OC}$ depends on N_A .

15

12. (c)

13. (d)

Given: $I_{DSS} = 10 \text{ mA}$, $V_p = -4 \text{ V}$

$$I_D = I_{DSS} \left[1 - \frac{V_{GS}}{V_p} \right]^2$$

By KVL in the input loop,

$$-2.5 - V_{GS} = 0 \implies V_{GS} = -2.5 \text{ V}$$
$$I_D = 10 \times 10^{-3} \left[1 - \frac{2.5}{4} \right]^2 \simeq 1.4 \times 10^{-3} \text{ A}$$

By KVL in the outer loop,

$$\begin{split} 15 - I_D &\times 2 \ \text{k}\Omega - V_{DS} &= 0 \\ V_{DS} &= 15 - I_D \times 2 \ \text{k}\Omega = 15 - 2.8 \\ V_{DS} &= 12.2 \ \text{V} \end{split}$$

14. (d)

Common base current gain,

$$\alpha = \frac{\Delta I_C}{\Delta I_E} = \frac{0.995 \times 10^{-3}}{1 \times 10^{-3}} = 0.995$$

: Common collector current gain,

$$\gamma = 1 + \beta = 1 + \frac{\alpha}{1 - \alpha} = \frac{1}{1 - \alpha} = \frac{1}{1 - 0.995}$$
$$\gamma = \frac{1}{0.005} = \frac{1000}{5} = 200$$

÷

15. (a)

In *n*-type Si sample,

The diffusion current density,

$$J_{(n \text{ diff})} = qD_n \frac{dn}{dx}$$

$$J_{(n \text{ diff})} = 1.6 \times 10^{-19} \times 225 \times \frac{[10^{18} - (7 \times 10^{17})]}{0.1} \text{ A/cm}^2$$

$$J_{(n \text{ diff})} = 108 \text{ A/cm}^2$$

16. (b)

Channel resistance is controlled using gate to source voltage.

Under the pinch-off condition depletion region meets near the drain end and saturation current flows, since high electric field drifts the carriers in the depletion region.

17. (d)

A small reverse bias is applied between source and substrate to prevent latch-up condition. The equivalent circuit that depicts the interaction of parasitic BJTs formed due to built-in transition layers is shown below.

Latch up condition

18. (b)

19. (c)

The shape of *C*-*V* plot for low and high frequency operation are

For High-frequency

So, the given *C*-*V* plots are obtained at high frequency.

The minimum capacitance for high frequency *C*-*V* plot can be given by,

$$C_{\min} = \frac{C_s C_{ox}}{C_s + C_{ox}}$$
$$C_s = \frac{\varepsilon_s}{X_{d(\max)}}$$
$$X_{d(\max)} = \sqrt{\frac{2\varepsilon_s}{qN_A}(2\phi_F)}$$
$$\phi_F = \frac{kT}{q} \ln\left(\frac{N_A}{n_i}\right)$$

Even though N_A is changed by a large value, the corresponding change in ϕ_F is very small.

So, as
$$N_A \uparrow \left(\frac{\phi_F}{N_A}\right) \downarrow X_{d(\max)} \downarrow C_s \uparrow C_{\min} \uparrow$$

Hence, the correct relation between doping concentrations is $N_{A1} > N_{A2} > N_{A3}$.

20. (b)

Bit synchronization is done in physical layer. So, statement-2 is incorrect.

21. (d)

Transmission time = $\frac{\text{Data size}}{\text{Bandwidth}} = \frac{50000 \times 8 \text{ bits}}{10^6 \text{ bits/sec}} = 400 \text{ msec}$ Propagation time = $\frac{\text{Distance}}{\text{Velocity}} = \frac{10000 \times 10^3 \text{ m}}{2 \times 10^8 \text{ m/sec}} = 50 \text{ msec}$

22. (c)

$$(224)_{10} = (11100000)_2$$

Total number of hosts = $2^5 - 2 = 32 - 2 = 30$.

23. (b)

Statement (b) is not true. A bridge operates at layer 2 (Data Link Layer), so it uses MAC address.

A router operates at layer 3 (Network Layer), so it uses IP addresses.

24. (a)

Statement-1 is true because TCP has its congestion control and flow control mechanisms. UDP itself does not have any flow control or congestion control mechanism. Therefore, statement-2 is false.

25. (d)

The Address Resolution Protocol (ARP), allows a host to find the MAC (Physical) address of a target host on the same physical network, given only the destination IP address.

26. (b)

Source address field of IP header is NOT modified by a router.

27. (d)

Computer and network security address four requirements: Confidentiality: Requires that data only be accessible by authorized parties. Integrity: Requires that only authorized parties can modify data. Availability: Requires that data are available to authorized parties. Authenticity: Requires that a host or service be able to verify the identity of a user.

28. (c)

In a pure silica fiber, ZMD exists at 1.276 μ m.

29. (c)

$$\begin{aligned} \sigma_m &= 12 \text{ ns/km} \\ \sigma_s &= 17 \text{ ns/km} \end{aligned}$$

Total rms pulse broadening,
$$\sigma_T &= \sqrt{\sigma_m^2 + \sigma_s^2} = \sqrt{(12)^2 + (17)^2} = \sqrt{433} \text{ ns/km} \approx 20.81 \text{ ns/km} \end{aligned}$$

30. (c)

For a step-index fiber, total number of modes that can propagate in the fiber is,

$M \approx$	$\frac{V^2}{2}$; $V = $ normalized frequency
V =	$\frac{2\pi a}{\lambda}$ (N.A.)
$V \propto$	a; $a = core radius$
$M \propto$	$V^2 \propto a^2$
$\frac{M_2}{M_1} =$	$\left(\frac{a_2}{a_1}\right)^2 = \left(\frac{2a_1}{a_1}\right)^2 = 4$
$M_2 =$	$4M_1$
% Increment =	$\frac{M_2 - M_1}{M_1} \times 100\% = \frac{4M_1 - M_1}{M_1} \times 100\% = 300\%$

- 31. (a)
- 32. (d)
- 33. (c)

LOS distance,

$$d \propto \sqrt{h_t}$$

 $\frac{d_2}{d_1} = \sqrt{\frac{h_{t2}}{h_{t1}}}$
 $d_2 = 1.2d_1$
So,
 $\frac{h_{t2}}{h_{t1}} = \left(\frac{d_2}{d_1}\right)^2 = (1.2)^2 = 1.44$
 $h_{t2} = 1.44h_{t1} = 1.44 \times 100 \text{ m} = 144 \text{ m}$

34. (b)

$$[FSL] = 32.44 + 20\log_{10}(f_{MHz} d_{km}) dB$$

$$f = 2 GHz = 2000 MHz$$

$$d = 16 km$$

So,

$$[FSL] = 32.44 + 20\log_{10}(2000 \times 16) dB$$

$$= 32.44 + 60 + 20\log_{10}(32) dB$$

$$= 92.44 + 100\log_{10}(2) \simeq 122.5 dB$$

35. (c)

Linear velocity of a satellite in the circular orbit can be given by,

$$v = \frac{\text{Circumference of the orbit}}{\text{Orbital period}} = \frac{2\pi a}{T}$$

Radius of the orbit (*a*) = 6400 + 29600 = 36000 km

© Copyright: MADE EASY

www.madeeasy.in

From Kepler's third law,

$$T^{2} = \frac{4\pi^{2}a^{3}}{\mu}$$

$$T = \frac{2\pi a\sqrt{a}}{\sqrt{\mu}}$$

$$v = \frac{2\pi a}{T} = \frac{2\pi a}{(2\pi a\sqrt{a}/\sqrt{\mu})} = \sqrt{\frac{\mu}{a}}$$

$$= \sqrt{\frac{4\times10^{5} \text{ km}^{3}/\text{s}^{2}}{36000 \text{ km}}} = \frac{20}{6} \text{ km/s} \approx 3.33 \text{ km/s}$$

36. (c)

So,

$$\left(\frac{C}{N_o}\right) = \left(\frac{E_b}{N_o}\right)R_b$$

In decilogs,
$$\left[\frac{C}{N_o}\right] = \left[\frac{E_b}{N_o}\right] + 10\log_{10}(R_b)$$
$$= 9 + 10\log_{10}(4 \times 10^7) \text{ dB-Hz}$$
$$\simeq 9 + 76 = 85 \text{ dB-Hz}$$

/

1

37. (a)

Power received,

$$P_r = \frac{P_t G_t}{4\pi R^2} A_{eff}$$

Given that,
 $P_t = 10 W$
 $[G_t] = 27 dB \Rightarrow G_t = 500$ [Note : $10\log_{10}(1000) = 30 dB$]
 $R = 4000 \text{ km} = 4 \times 10^6 \text{ m}$
 $A_{eff} = 10 \text{ m}^2$
So,
 $P_r = \frac{10 \times 500 \times 10}{4\pi \times 16 \times 10^{12}} W = \frac{50}{64\pi} \text{ nW} = \frac{25}{32\pi} \text{ nW} \approx 0.25 \text{ nW}$
(d)

38.

 $Q = \sqrt{3N} = \sqrt{3 \times 7} = \sqrt{21} \simeq 4.58$ Co-channel reuse ratio,

39. (c)

Cluster size,
$$N = 4$$

Total number of cell clusters $= \frac{20}{4} = 5$
Voice channels available $=$ Voice channels per cluster $= 1000$
System capacity $= 5 \times 1000 = 5000$

40. (b)

Maximum speed of the vehicle, $v_m = f_{dm} \times \lambda_c$

$$f_{dm} = 70 \text{ Hz}$$

$$\lambda_{c} = \frac{3 \times 10^{8}}{900 \times 10^{6}} = \frac{1}{3} \text{ m}$$

$$v_{m} = 70 \times \frac{1}{3} = \frac{70}{3} \text{ mps}$$

$$v_{m} = \frac{70}{3} \times \frac{3600}{1000} = 84 \text{ kmph}$$

41. (a)

42. (a)

43. (a)

For *p*-type substrate,

$$V_{SB} = +ve \quad (0 - (-V_B))$$

$$Q_d = \sqrt{2\epsilon_{si}} eN_d (2\phi_{FP} + V_{SB})$$
and

$$\Delta V_T = \text{Change in threshold voltage} = \frac{\Delta Q_d}{C_{ox}}$$

So, V_T increases with increase in V_{SB} or V_B .

- 44. (a)
- 45. (c)

Single-mode fibers have smaller diameters compared to multi-mode fibers.

Section B : Control Systems-1 + Microprocessors and Microcontroller-1

46. (c)

Open loop transfer function of the given feedback control system.

$$G(s) = \frac{K}{(s+1)(1+2s)}$$

Steady state error due to step input,

$$e_{ss} = \frac{1}{1+K_p} \text{ where, } K_p = \lim_{s \to 0} G(s)$$
$$K_p = \lim_{s \to 0} \frac{K}{(s+1)(1+2s)} = K$$
$$\frac{1}{1+K} = 0.1 \implies K = 9$$

also given $e_{ss} = 0.1$.

47. (d)

Forward paths:

 $\begin{array}{rcl} P_{1} & \Rightarrow & 1-2-3-4-5-6-7-8 \\ P_{2} & \Rightarrow & 1-2-3-6-7-8 \\ P_{3} & \Rightarrow & 1-2-4-5-6-7-8 \\ P_{4} & \Rightarrow & 1-2-4-5-3-6-7-8 \end{array}$

Individual loops:

 $\begin{array}{rcl} L_1 & \Rightarrow & 7-7 \\ L_2 & \Rightarrow & 5-6-5 \\ L_3 & \Rightarrow & 3-4-5-3 \\ L_4 & \Rightarrow & 3-6-5-3 \\ L_5 & \Rightarrow & 2-3-4-5-6-7-2 \\ L_6 & \Rightarrow & 2-4-5-6-7-2 \\ L_7 & \Rightarrow & 2-4-5-3-6-7-2 \\ L_8 & \Rightarrow & 2-3-6-7-2 \end{array}$

48. (d)

Closed-loop gain is lower than the open loop gain for a negative feedback system. Hence, statement-3 is incorrect.

49. (c)

Given, input signal	$r(t) = (1 - e^{-t})u(t)$
	$R(s) = \frac{1}{s} - \frac{1}{s+1}$
response,	$C(t) = (1 - e^{-2t})u(t)$
	$C(s) = \frac{1}{s} - \frac{1}{s+2}$
∴ Transfer function,	$T(s) = \frac{C(s)}{R(s)} = \frac{\frac{1}{s} - \frac{1}{s+2}}{\frac{1}{s} - \frac{1}{s+1}}$
	$T(s) = \frac{2(s+1)}{(s+2)}$

50. (b)

51. (c)

Steady state error analysis relies on the use of final value theorem.

52. (d)

53. (a)

From the given system, $\frac{C(s)}{R(s)} = \frac{\frac{1}{Ks(1+3s)}}{1+\frac{1}{Ks(1+3s)}}$

characteristic equation,

$$Ks(1 + 3s) + 1 = 0$$

$$3Ks^{2} + Ks + 1 = 0$$

$$s^{2} + \frac{1}{3}s + \frac{1}{3K} = 0$$

$$\omega_{n}^{2} = \frac{1}{3K}; \quad 2\xi\omega_{n} = \frac{1}{3}$$

$$2\xi \times \frac{1}{\sqrt{3K}} = \frac{1}{3}$$

for under damped case, $\xi < 1$

$$\xi = \frac{1}{6}\sqrt{3K}$$
$$\xi < 1 \Rightarrow \frac{\sqrt{3K}}{6} < 1$$
$$3K < 36$$
$$K < 12$$

 \therefore Option (a) is possible.

54. (c)

MVI C, 7FH	;	C = 7FH
MVI B, 3EH	;	B = 3EH
MOV A, B	;	A = 3EH = 0011 1110
RLC	;	A = 0111 1100
RLC	;	A = 1111 1000
ANA C	;	$1111\ 1000$
		(AND) 0111 1111
		$A \Rightarrow 011111000 = 78H$

So, the final contents of the accumulator will be 78H.

55. (b)

MVI A, 55H ; A = 55H MVI C, 25H ; C = 25H ADD C ; 01010101 1101111010 ; AC = 0 and CY = 0

DAA ;
$$01111010$$

 00000110
 111111
 10000000 = 80H

So, the final contents of the accumulator will be 80H.

56. (d)

Address 2020H: The contents of lower and higher address lines are same i.e. 20H. So, this indicates that the technique is I/O mapped I/O and the address of I/O device is 20H. Data 24H: This indicates that the content of accumulator is 24H, which have to sent to I/O port.

IO/ \overline{M} (Logic High): IO/ \overline{M} high indicates that this is I/O operation.

10

 $\overline{\text{RD}}$ (Logic High): $\overline{\text{RD}}$ logic high indicates that read operation is inactive.

WR (Logic Low): \overline{WR} logic low indicates that write operation is active.

So, by observing all the statuses, the appropriate instruction is OUT 20H.

57. (d)

From the given root locus.

$$G(s)H(s) = \frac{K}{(s+4)(s^2+2s+2)}$$

Characteristic equation,
$$1 + G(s)H(s) = 0$$

 $s(s^2 + 2s + 2) + 4(s^2 + 2s + 2) + K = 0$
 $s^3 + 6s^2 + 10s + (8 + K) = 0$
 $s^3 | 1 = 10$
 $s^2 | 6 = 8 + K$
 $s^1 | 60 - (8 + K) = 0$
 $s^0 | 8 + K = 0$
Row $s^1 = 0$, at $8 + K = 60$
 $K = 52$
For intersection point with "jw" axis,
 $6s^2 + (8 + K) = 0$
 $6s^2 + 60 = 0$
 $s^2 = -10$
 $s = \pm j\sqrt{10}$

58. (c)

- $S_G^M = \frac{1}{1+GH}$ is less than unity i.e., insensitive to the parameter variations.
- In a closed-loop negative feedback control system, the control action is dependent on output.
- 59. (a)
- 60. (a)

Section C : Network Theory-2 + Digital Circuits-2

61. (b)

	$\begin{array}{c c} I_1 & I_2 \\ \hline + & \\ V_1 & \\ \hline Z_{in} \end{array} \end{array} $
Here,	$V_2 = -4I_2$
From given equations	$-4I_2 = 3I_1 + 2I_2$
	$-6I_2 = 3I_1$
or	$I_2 = -\frac{3}{6}I_1$
\because	$V_1 = 5I_1 + 3I_2 = 5I_1 - 3\left(\frac{3}{6}\right)I_1$
	$V_1 = \frac{30-9}{6}I_1$
	$\frac{V_1}{I_1} = \frac{21}{6} = 3.5 \Omega$

62. (b)

From *h* parameter model,

$$\begin{split} V_1 &= h_{11}I_1 + h_{12}V_2 \\ I_2 &= h_{21}I_1 + h_{22}V_2 \\ h_{12} &= \left. \frac{V_1}{V_2} \right|_{I_1 = 0} \end{split}$$

The circuit can be redrawn as

By KVL at the left mesh, we get,

we get,

$$V_{1} = 4(0.5V_{1}) + 3I_{2}$$

$$V_{1} = 2V_{1} + 3I_{2}$$
or

$$V_{1} = -3I_{2}$$
...(i)
By KCL at node 'X', we get,

$$I_{2} = \frac{V_{2}}{1} + 0.5V_{1} = V_{2} + 0.5V_{1}$$

$$= V_{2} + 0.5(-3I_{2})$$
or

$$2.5I_{2} = V_{2}$$

$$\therefore$$

$$V_{1} = -3I_{2} = -3\left(\frac{V_{2}}{2.5}\right) = -1.2V_{2}$$
and

$$h_{12} = \frac{V_{1}}{V_{2}} = -1.2$$

63. (c)

From transmission parameters,

—	
	$V_1 = AV_2 - BI_2$
	$I_1 = CV_2 - DI_2$
From <i>h</i> -parameters,	$V_1 = h_{11} I_1 + h_{12} V_2$
	$I_2 = h_{21} I_1 + h_{22} V_2$

64. (c)

Given
$$[T]_{\alpha} = \begin{bmatrix} 4 & 5 \\ 3 & 4 \end{bmatrix}$$
 and $[T]_{\beta} = \begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix}$

For cascade combination individual transmission line parameters are multiplied. $\therefore \qquad [T]_{\alpha \ \beta} = [T]_{\alpha} \times [T]_{\beta}$

$$= \begin{bmatrix} 4 & 5 \\ 3 & 4 \end{bmatrix} \times \begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix}$$
$$= \begin{bmatrix} 12+10 & 16+15 \\ 9+8 & 12+12 \end{bmatrix} = \begin{bmatrix} 22 & 31 \\ 17 & 24 \end{bmatrix}$$

65. (c)

The impedance matrix is given by,

$$\begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} j\omega L_1 & -j\omega M \\ -j\omega M & j\omega L_2 \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \end{bmatrix}$$

Here $L_1 = 3$ H, $L_2 = 8$ H, and $M = 2$ H
From figure (B), $L_{eq} = L_1 + L_2 + 2M = 3 + 8 + 4 = 15$ H

66. (c)

Every cutset has an even number of branches in common with every loop.

67. (a)

- -

Total propagation delay = 50 + 20 = 70 ns $f_{\text{max}} = \frac{1}{70} \times 10^9 = 14.28 \text{ MHz}$

Fan-out low = $\frac{I_{OL}}{I_{IL}} = \frac{0.02}{0.001} = 20$

Fan-out high = $\frac{I_{OH}}{I_{IL}} = \frac{0.02}{0.001} = 20$

Fan-out = $min\{20, 20\} = 20$

69. (c)

So,

70. (a)

$$\frac{V_{FS}}{2^n - 1} \times 100 < (0.4) V_{FS}$$
$$\frac{1}{2^n - 1} < 0.004$$
$$2^n - 1 > 250$$
$$n_{\min} = 8$$

71. (b)

:..

Total number of states 110011 = 6 States Thus, the number of flip-flops required,

$$2^n - 1 \ge 6$$
$$n_{\min} = 3$$

72. (d)

Decimal equivalent of output =
$$\frac{V_a}{V_r} \times 2^N \times T_C$$

73. (a)

The expression for next state is,

$$Y^{+} = AB + AY + \overline{B}Y = AB + \overline{B}Y$$

When B = 1, $Y^+ = A$ When B = 0, $Y^+ = Y$ So, the given circuit acts as a gated *D*-latch.

74. (c)

For transmission parameter,

$$A = D \implies$$
 for Symmetry
 $AD - BC = 1 \implies$ for Reciprocity

These conditions remain same for inverse transmission parameters too.

75. (b)

0000