



# **Mechanical Engineering**

# Theory of Machines

Answer Key of Objective & Conventional Questions





# **Mechanisms and Machines**

### LEVEL 1 Objective Questions

- 1. (c)
- 2. (c)
- 3. (a)
- 4. (a)
- 5. (c)
- 6. (a)
- 7. (d)
- 8. (d)
- 9. (d)
- 10. (a)
- 11. (c)
- 12. (d)
- 13. (d)

# LEVEL 2 Objective Questions

- 14. (6)
- 15. (1)
- 16. (c)
- 17. (1)
- 19. (c)
- 20. (c)
- 21. (b)
- 22. (a)
- 23. (b)
- 24. (b)

© Copyright: Subject matter to MADE EASY Publications, New Delhi. No part of this book may be reproduced or utilised in any form without the written permission.

- 25. (1)
- 26. (a)
- **27.** (180)



# LEVEL 3 Conventional Questions

### Solution: 28

In this mechanism



$$\mu = 95.7^{\circ}$$



$$\mu = 45.6^{\circ}$$



$$\mu = 60^{\circ}$$

And the input angle,  $\theta = 60^{\circ}$ 



### Solution: 29

The mechanism has three sub-chains:

- (i) ABC, a slider-crank chain
- (ii) ABDE, a four-bar chain
- (iii) AEFG, a four-bar chain

(DEF is a locked chain as it has only three links.)

- As the length BC is more than the length AB plus the offset of 2 units, AB acts as a crank and can revolve about A.
- In the chain ABDE,

Length of the longest link = 8, Length of the shortest link = 4, Length of the other links = 8 and 6

Since 8 + 4 < 8 + 6, it belongs to the class-I mechanism. In this case as the shortest link is fixed, it is a double-crank mechanism and thus EF and AG can revolve fully.

• In the chain AEFG,

Length of the longest link = 8, Length of the shortest link = 4, Length of the other links = 6 and 6

Since 8 + 4 = 6 + 6, it belongs to the class-I mechanism. In this case as the shortest link is fixed, it is a double-crank mechanism and thus EF and AG can revolve fully.

AS DEF is a locked chain with three links, the link EF revolves with the revolving of ED. With the revolving of ED, AG also revolves.

### Solution: 30

(a) The mechanism has a sliding pair. Therefore, its degree of freedom must be found from Gruebler's criterion. Total number of links = 8



(At the slider, one sliding pair and two turning pairs)

$$F = 3(N-1) - 2P_1 - P_2$$
  
= 3(8-1) - 2 \times 10 - 0 = 1

Thus, it is a mechanism with a single degree of freedom.

(b) The system has a redundant degree of freedom as the rod of the mechanism can slide without causing any movement in the rest of the mechanism.

$$\therefore \text{ Eeffective degree of freedom} = 3(N-1) - 2P_1 - P_2 - F_r$$
$$= 3(4-1) - 2 \times 4 - 0 - 1 = 0$$

As the effective degree of freedom is zero, it is a locked system.



# Velocity & Acceleration Analysis

### LEVEL 1 Objective Questions

- 1. (b)
- 2. (0.33)
- 3. (d)
- 4. (c)
- 5. (b)
- 6. (d)
- 7. (0)
- 8. (b)
- 9. (1)
- 10. (b)
- 11. (c)

# LEVEL 2 Objective Questions

- 12. (67) (66.5 to 67.5)
- 13. (a)
- 14. (301.59)
- **15.** (2.74)
- 16. (a)
- 17. (3)
- 18. (1000)
- 19. (45)
- 20. (2.69)
- **21**. (8.386)
- **22.** (a)

© Copyright: Subject matter to MADE EASY Publications, New Delhi. No part of this book may be reproduced or utilised in any form without the written permission.



Solution: 23

$$V_d = gd = 0.56 \text{ m/s}$$
  
 $\omega_{ba} = 5.63 \text{ rad/s}$ 

 $\omega_{ba} = 6.3 \text{ rad/s}$ 

counter-clockwise counter-clockwise

Velocity of rubbing at the crank pin

 $B = 0.0268 \, \text{m/s}$ 

Solution: 24

$$V_s = 0.276 \text{ m/s}$$

$$v_{pq} = 0.177 \text{ m/s}$$

 $v_{pq} = 0.177 \text{ m/s}$  $\omega_{rs} = 0.279 \text{ rad/s clockwise}$ 

Solution: 25

$$V_d = 2.28 \text{ m/s}$$

Solution: 26

$$\alpha_{cd} = 33.25 \, \text{rad/s}^2$$

Solution: 27

$$a_{A/0} = 3.507 \times 10^3 \,\text{mm/s}^2$$

$$V_B = 2.3 \times 4 = 9.2 \text{ m/s}$$

$$a_R = 2.6 \times 10^5 \text{ m/s}^2$$

$$\alpha = 6666.67 \, \text{rad/s}^2$$

Acceleration of mid point

$$a_G = 2800 \,\mathrm{m/s^2}$$

Solution: 28

By measurement 
$$V_R$$
 = vector  $O_1 r$  = 1.61 m/s

 $\omega_{DO_2} = 1.112 \text{ rad/s anticlockwise about } O_2$ 

Solution: 29

$$V = 4.1887 \text{ m/s}$$



# **Cams**

### LEVEL 1 Objective Questions

- 1. (c)
- 2. (c)
- 3. (c)
- 4. (a)
- 5. (a)
- 6. (c)
- 7. (c)
- 8. (c)
- 9. (c)
- 11. (c)
- 12. (b)

# LEVEL 2 Objective Questions

- 13. (2.37)
- 14. (720)
- 15. (0.628)
- 16. (1.95)
- 17. (d)
- 18. (b)
- 19. (d)
- 20. (d)
- **21.** (c)

© Copyright: Subject matter to MADE EASY Publications, New Delhi. No part of this book may be reproduced or utilised in any form without the written permission.

- 22. (a)
- 23. (c)
- 24. (b)
- **25.** (a)
- 26. (b)
- 27. (b)
- 28. (a)
- 29. (d)



Solution: 30

 $v_{\text{max}} = 226.3 \text{ mm/s}$ 

 $f_{\text{max}} = 3.413 \text{ m/s}^2$ 

 $v_{\text{max}} = 216 \text{ mm/s}$ During descent

 $f_{\text{max}} = f = 0$ 

Solution: 31

 $v_{\text{max}} = 824.7 \text{ mm/s}$  $v_{\text{max}} = 549.8 \text{ mm/s}$ **During descent** 

 $f_{\text{max}} = 38862 \text{ mm/s}^2 = 38.882 \text{ m/s}^2$  $f_{\text{max}} = 17272 \text{ mm/s}^2 \text{ or } 17.272 \text{ m/s}^2$ 

Solution: 32





Solution: 33





$$v_{\text{max}} = 360 \text{ m/s}$$
  
 $f_{\text{max}} = 4320 \text{ mm/s}^2 \text{ or } 4.32 \text{ m/s}^2$ 

Solution: 34

$$\ddot{x} = 40 \,\omega^2 \cos \theta$$

$$N = 609.9 \,\mathrm{rpm}$$

### Solution: 35

The displacement diagram for the given flat reciprocating follower movement will be as:



Given:  $\phi_a = 120^\circ$ , h(lift) = 20 mm,  $\delta_1 = 30^\circ$ ,  $\phi_d = 120^\circ$ ,  $\delta_2 = 90^\circ$ 

Motion is SHM both during outward and inward stroke, minimum radius of cam ( $r_c$ ) = 25 mm.

Construction:

1. First draw the displacement diagram now construct the cam profile as follows

- 2. Draw a circle with radius ( $r_c = 25 \text{ mm}$ )
- 3. Take angles  $(\phi_{a'}, \delta_1, \phi_d)$  and  $\delta_2$  in the counter clockwise direction if the cam rotation is assumed clockwise
- 4. Divide  $\phi_a$  and  $\phi_d$  into same number of parts as in the displacement diagram. (Example take 6 equal parts)
- 5. Draw radial lines (0-1, 0-2, 0-3,, etc. ....)
- 6. On the radial lines produced, take distances equal to the lift of the follower beyond the circumference of the circle with radius  $r_{c'}$  i.e., 1 1', 2 2', 3 3', etc.



8. Draw a curve tangential to the flat faces of the follower representing the cam profile.

### Solution: 36

Radial component of cam force is given by;

$$F_r = 61 \text{ N}$$
  
Torque = 0.651 N.m

### Solution: 37

In this motion:

$$(V_0)_{\text{max}} = 1.2 \text{ m/s}$$
  
 $a = 72 \text{ m/s}^2$ 



# **Gear and Gear Train**

(a)

(a)

(c)

(0.86)

(10.29)

(9.04)

LEVEL 1 Objective Questions (c) (7.48)(91) (360)(a) (c) (b) (d) (d) 10. (d) (c) 12. (39207.076) LEVEL **Objective Questions** 13. (c) 14. (c) 15. (b) 16. (a) 17. (b) 18. (b) (b)

26. (c) 27. (b) 28. 29. (c) 30. (b) 31. (c) 32. (b) 33. (b) 34. (a) 35. (d) 36. (c) 37. (d) 38. (70) 39. 40. (18) **41.** (c) Publications



### Solution: 42

Velocity of sliding = 57049 mm/min = 950.8 mm/s

Maximum velocity of sliding = 1017.1 mm/s

### Solution: 43

Addendum of the wheel = 8.3 mm

$$r_a^2 = 30271$$

Addendum of the pinion = 14 mm

Arc of contact = 58.2 mm

### Solution: 44

Length of arc of contact = 30.788 mm

n = 1.6334

Angle of action by the pinion,  $\theta_p = 0.54$  radian

 $\theta_D = 30.95^{\circ}$ (a) = 0.388(b) = 0.348(C) = 0

### Solution: 45

T = 49.44

n = 1.78

### Solution: 46

Addendum,  $a = 0.8010 \,\mathrm{m}$ 

Stubbing required = 19.9% or 20%

### Solution: 47

 $T_{\scriptscriptstyle F} = 72$ 

Speed of P,

 $T_S = 18$  $N_P = -166.67 \text{ rpm}$ 

Therefore, speed of planet Gear P is 166.67 rpm in opposite direction to S and A.

### Solution: 48

Speed of output shaft = -50 rpm (clockwise)

Speed of output shaft = 39.5 rpm (clockwise)



# Flywheel and Governors

# (c) (d) (d) (d) (243.17) (0.04)

- 7. (0.38)

  8. (d)

  9. (a)

  10. (d)
- 11 (206.04)
- 12. (b)
- 13. (a)
- 15. (c)
- 16. (d)
- 17. (a)





### LEVEL 3 Conventional Questions

Solution: 37

m = 1217.4 kg

Solution: 38

 $I = 293.3 \,\mathrm{kg.m^2}$ 

Solution: 39

Power of motor = 4276.5 Watt = 4.28 kW

Solution: 40

Motor power = 0.3 kWM = 988.68 kg

Solution: 41

 $N = 167 \, \text{rpm}$ 

Range of speed = 4.163 rpm

Solution: 42

m = 5.2 kg

s = 32.72 N/mm

compression of the spring = 33.2 mm

Solution: 43

 $I = 1394.58 \,\mathrm{kg \cdot m^2}$ 

Solution: 44

K = 0.678%

Solution: 45

 $N = 430.43 \, \text{rpm}$ 

Solution: 46

Power of engine = 261.8 kW

 $I = 785.166 \text{ kg} \cdot \text{m}^2$ 

 $\alpha = 2.547 \, \text{rad/sec}^2$ 

Solution: 47

Initial compression,  $S_1 = 10.03$  cm

 $x_1 = 11.65 \,\mathrm{cm}$ 



# **Balancing and Gyroscope**

### LEVEL 1 Objective Questions

- 1. (c)
- 2. (d)
- 3. (b)
- 4. (a)
- 5. (d)
- 6. (c)
- 7. (a)
- 8. (a)
- 9. (b)

# LEVEL 2 Objective Questions

- 10. (d)
- 11. (c)
- 12. (a)
- 13. (a)
- 14. (a)
- 15. (a)
- 16. (a)

© Copyright: Subject matter to MADE EASY Publications, New Delhi. No part of this book may be reproduced or utilised in any form without the written permission.



### LEVEL 3 Conventional Questions

Solution: 17

 $v = 151 \, \text{km/h}$ 

Solution: 18

 $m_{c1} = 3.13 \text{ kg at } 253^{\circ}$ 

 $m_{c1} = 3.14 \text{ kg}$ 

Solution: 19

 $m_a = 17.37 \text{ kg}$ 

 $\theta_{a} = 294.6^{\circ} \text{ or } 294^{\circ}36'$ 

 $l_d = -309 \, \text{mm}$ 

 $l_b = -376 \text{ mm}$ 

 $l_c = -126 \, \text{mm}$ 

Solution: 20

 $m_4 = 178.7 \text{ kg}$ 

 $\theta_{A} = 248.2^{\circ}$ 

 $m_1 = 178.7 \text{ kg} = m_4$ 

 $\theta_1 = 201.8^{\circ}$ 

Swaying couple = 3030.3 N.m

Variation in tractive force = 10100 N

Balance mass for reciprocating parts only = 74.46 kg

Maximum pressure on rails = 45326 N

Minimum pressure on rails = 23344 N

Velocity of wheels = 88.36 km/h

Solution: 21

 $m_3 = 448 \text{ kg}$ 

 $m_2 = 438 \text{ kg}$ 

Solution: 22

 $R_1 = 4431.8 \,\mathrm{N}$ 

 $R_2 = 8223.8 \,\mathrm{N}$ 

 $R_3 = 2567.2 \,\mathrm{N}$ 

 $R_4 = 6359.2 \,\mathrm{N}$ 

 $R_1 = 8158.2 \,\mathrm{N}$ 

 $R_2 = 4366.2 \,\mathrm{N}$ 

 $R_3 = 6426.8 \,\mathrm{N}$ 

 $R_4 = 2632.8 \,\mathrm{N}$ 



Solution: 23

Reaction at bearing,  $B = 98.6 \,\mathrm{N}$ 

Reaction at bearing, A = 59.4 N

Solution: 24

$$m_A = 9.67 \text{ kg}, m_D = 7.89 \text{ kg}$$

Angular position of the mass at  $D = 252.7^{\circ}$  (w.r.t. B)

Solution: 25

m = 92.8 kg

 $\theta = 201.48^{\circ}$ 

Solution: 26

Resultant = 8224.6 N

M = 40 kg



# **Vibrations**

### LEVEL 1 Objective Questions

- 1. (d)
- 2. (d)
- 3. (d)
- 4. (a)
- 5. (a)
- 6. (3)
- 7. (b)
- 8. (d)
- 9. (d)
- 10. (d)
- 11. (b)
- 12.. (a)

### LEVEL 2) Objective Questions

- 13. (b)
- 14. (a)
- 15. (1.11)
- 16. (c)
- 17. (b)
- 18. (2.28)
- 19. (0.56)
- 20. (26.74)
- 21. (1.9052)
- 22. (a)

© Copyright: Subject matter to MADE EASY Publications, New Delhi. No part of this book may be reproduced or utilised in any form without the written permission.

- 23. (0.667)
- 24. (1)
- **25.** (8)
- 26. (2)
- **27.** (0.05)



Solution: 28

$$\frac{1}{2}al\rho \times 2\dot{x}\ddot{x} + a\rho g \times 2x\dot{x} = 0$$

$$\ddot{x} + \frac{2g}{I}x = 0$$

Solution: 29

$$A = 0.00298 \text{ m} = 2.98 \text{ mm}$$

Solution: 30

$$f_n = 2.85 \, \text{Hz}$$

Solution: 31

$$\delta = 0.693$$

C = 45.809 Nm/rad

periodic time of oscillation =  $1.503 \times 10^{-3}$  sec

$$f_n = 669.2 \, \text{Hz}$$

Solution: 32

$$\omega_d = \sqrt{\frac{k_1 l_1^2 + mgl}{ml^2} - \left(\frac{C l_2}{2ml^2}\right)^2}$$

Solution: 33

$$N_c = 2598 \, \text{r.p.m}$$

Solution: 34

$$C = 400.824 \text{ N/m/s}$$

$$\frac{f_d}{f_n} = 0.99$$
$$T_d = 0.32 \text{ sec}$$

Solution: 35

$$\delta = 0.405$$

Damping coefficient,

C = 32.745 N.m.s/rad

 $\omega_d = 4233.72 \, \text{rad/s}$ 

 $T_d = 1.484 \times 10^{-3} \text{ s}$ 

Solution: 36

$$F_T = 38.6 \text{ N}$$

$$F_{\tau} = 367 \text{ N}$$

Amplitude of the forced vibration of the machine at resonance = 8.7 mm

Solution: 37

C = 2970 N-m/rad

Solution: 38

 $A = 130 \, \text{mm}$ 

 $\phi = 42.4897^{\circ}$ 

Solution: 39

k = 1.607 N/mm



**Publications**