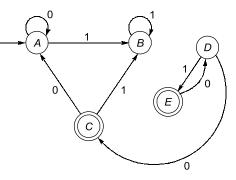

Important Questions for GATE 2022

COMPUTER SCIENCE & IT

Day 3 of 8 Q.51 - Q.75 (Out of 200 Questions)

Theory of Computation

SUBJECT-WISE WEIGHTAGE ANALYSIS OF GATE SYLLABUS


Subject	Average % (last 5 yrs)
Reasoning, Aptitude & English	15.00%
Programming & Data Structure	11.14%
Theory of Computation	9.00%
Algorithms	8.57%
Computer Networks	7.86%
Operating Systems	7.71%
Computer Organization & Archite	cture 7.71%
Data Base Management System	7.71%
Engineering Mathematics	7.15%
Discrete Mathematics	6.71%
Digital Logic	5.87%
Compiler Design	5.57%
Total	100%

Theory of Computation

Q.51 Consider the following DFA:

If above DFA accepts the language denoted by the regular expression (0 + 1)*10(0 + 1), find the missing transitions.

(a)	$\delta(B, 0) = A, \delta(E, 1) = C$	(b) $\delta(B, 0) = B, \delta(E, 1) = B$
(c)	$\delta(B, 0) = D, \delta(E, 1) = B$	(d) $\delta(B, 0) = A, \delta(E, 1) = B$

Q.52 Which of the following is a non-regular language?

(a) $L = \{wxwy \mid x, y, w \in (a + b)^+\}$ (b) $L = \{xwyw \mid x, y, w \in (a + b)^+\}$ (c) $L = \{wxyw \mid x, y, w \in (a + b)^+\}$ (d) All of the above

Q.53 Consider the following PDA:

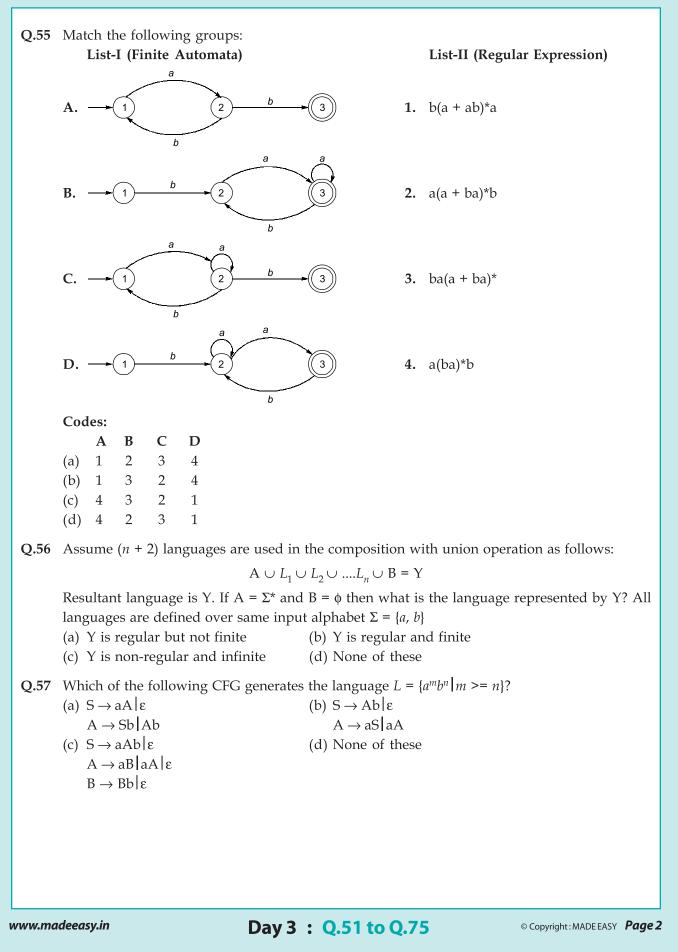
PDA =
$$(Q, \Sigma, \delta, \Gamma, q_0, Z_0, q_f)$$

a, any/a any b, b/bb c, any/ ϵ
 q_0 b, a/ba q_1 c, b/c q_2 \$ Z/Z

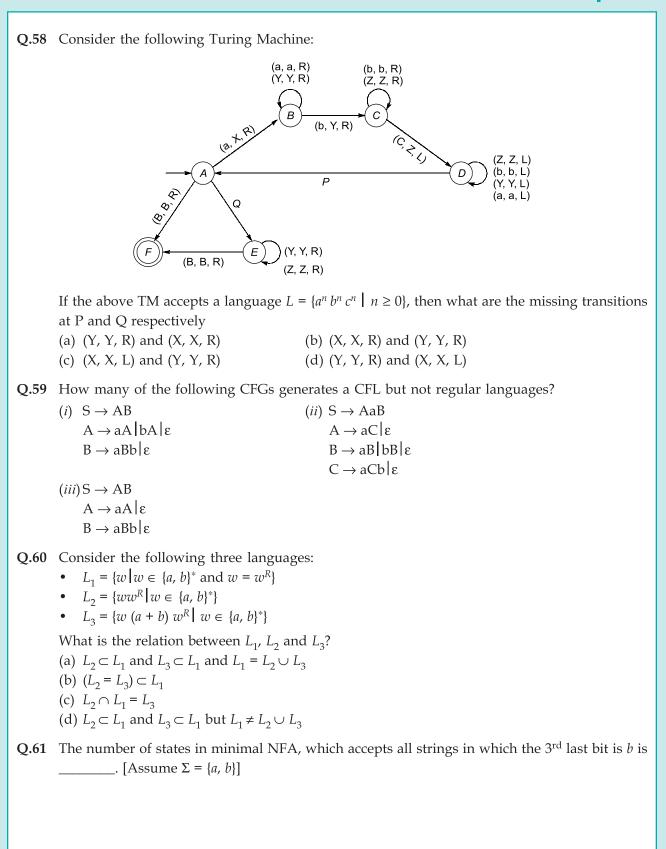
Identify the language accepted by the above PDA?

(a) $\{a^{m}b^{n}c^{k} | m = n = k, m, n, k \ge 1\}$ (b) $\{a^{m}b^{n}c^{k} | m, n, k \ge 1, m = n + k\}$ (c) $\{a^{m}b^{n}c^{k} | m, n, k \ge 1, m + n = k\}$ (d) $\{a^{m}b^{n}c^{k} | m, n, k \ge 1\}$

Q.54 Find the grammar that generates inherently ambiguous context free language.


(b)

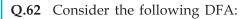
www.madeeasy.in

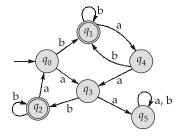


for GATE 2022

rs

for **GATE 2022**


CS


www.madeeasy.in

Day 3 : Q.51 to Q.75

Important QuestionsforGATE 2022CS

The number of states in the minimal DFA obtained by applying minimization algorithm on the above DFA is equal to _____.

Q.63 Consider the following statements:

 S_1 : Pumping lemma can be used to prove given language is regular.

- S_2 : Given a grammar, checking if the grammar is not regular is decidable problem.
- S_3 : If L is a regular and M is not a regular language then L.M. is necessarily non-regular.
- S_4 : The number of derivations step for any strings *W* of length *n* is grammar is CNF and GNF form is (2n 1) and (n) respectively.

Which of the following statement is correct?

(a) Only S_1, S_3 is correct	(b) Only $S_{2'}$, S_4 is correct
(c) Only S_3 is correct	(d) Only $S_{2'}$, S_3 is correct

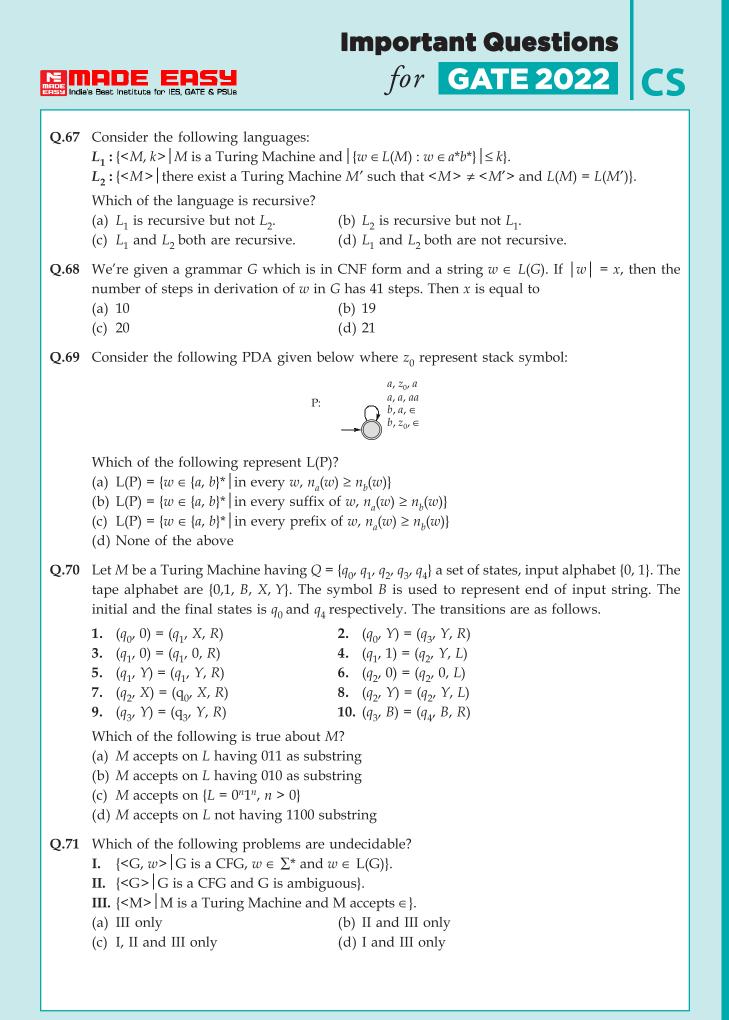
Q.64 Identify the language generated by the following grammar where S is start variable? $S \rightarrow S_1 | S_2$

$$\begin{split} S_1 &\rightarrow S_1 c \mid A \\ A &\rightarrow aAb \mid \epsilon \\ S_2 &\rightarrow aS_2 \mid B \\ B &\rightarrow bBc \mid \epsilon \\ (a) \{a^n b^n c^m \mid n, m \ge 0\} \\ (b) \{a^n b^m c^k \mid n, m, k \ge 0\} \\ (c) \{a^n b^m c^m \mid n, m \ge 0\} \\ (d) \{a^n b^n c^m \mid n, m \ge 0\} \cup \{a^n b^m c^m \mid n, m \ge 0\} \end{split}$$

Q.65 Consider the following problems:

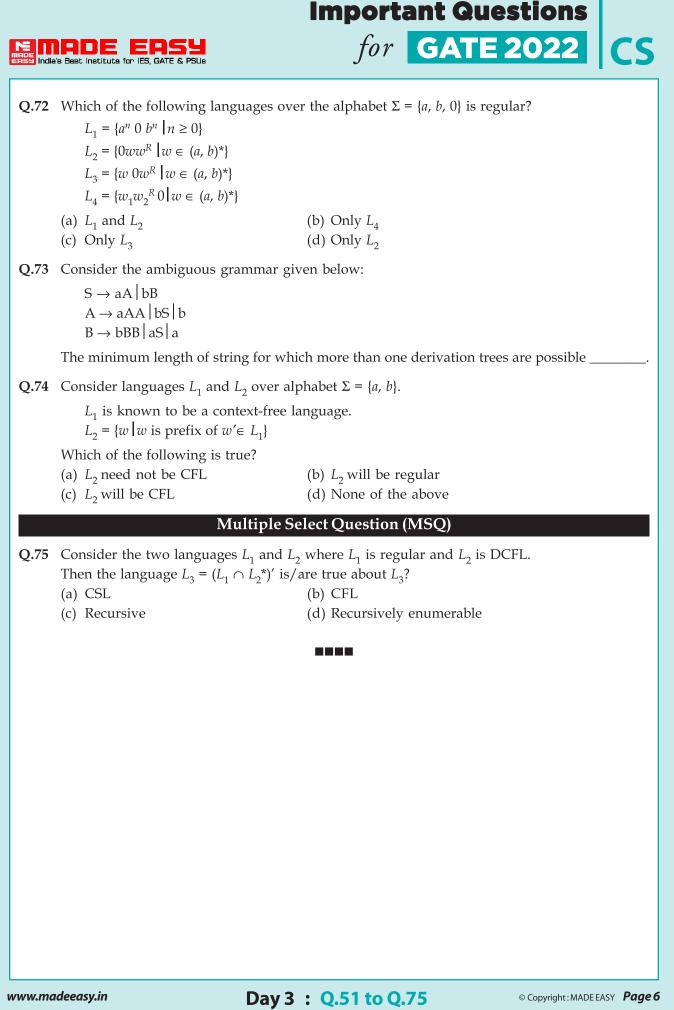
 P_1 : {<M, *x*, k> M is a TM and M does not halt on *x* within k steps}.

 P_2 : {<M> | M is a TM and M accepts at least two strings of different length}.


 P_3 : {<M> | M is a TM and there exist an input whose length is less than 100, on which M halts}. The number of problems which is RE but not REC is _____.

Q.66 Consider the following CFG:

 $S \rightarrow aSa | bSb | a | b | \epsilon$

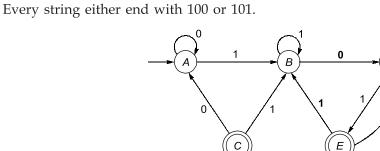

For the above CFG, the total number of strings generated whose length is less than or equal to 6 is _____.

www.madeeasy.in

www.madeeasy.in

Day 3 : Q.51 to Q.75

Delhi | Bhopal | Hyderabad | Jaipur | Lucknow | Pune | Bhubaneswar | Kolkata | Patna



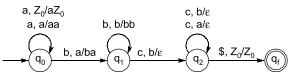
Detailed Explanations

Important Questions

for GATE 2022 CS

 $RE = (0+1)^* 10 (0+1)$

52. (c)


51.

(c)

- (a) $L = \{wxwy \mid x, y, w \in (a + b)^+\}$
 - $L = [a(a+b)^+ a(a+b)^+] + [b(a+b)^+ b(a+b)^+] \Rightarrow L \text{ is regular language.}$
- (b) $L = \{xwyw \mid x, y, w \in (a + b)^+\}$
 - $L = [(a + b)^+ a(a + b)^+ a] + [(a + b)^+ b(a + b)^+ b] \Rightarrow L \text{ is regular language.}$
- (c) $L = \{wxyw \mid x, y, w \in (a + b)^+\} \Rightarrow L$ is non-regular language.

53. (c)

Given PDA can be redrawn as following:

At $q_{0'}$ all a's are pushed.

At q_1 , all b's are pushed.

At $q_{2'}$ all c's are matched with b's and a's.

If #c's = #a's + #b's then goes to final state.

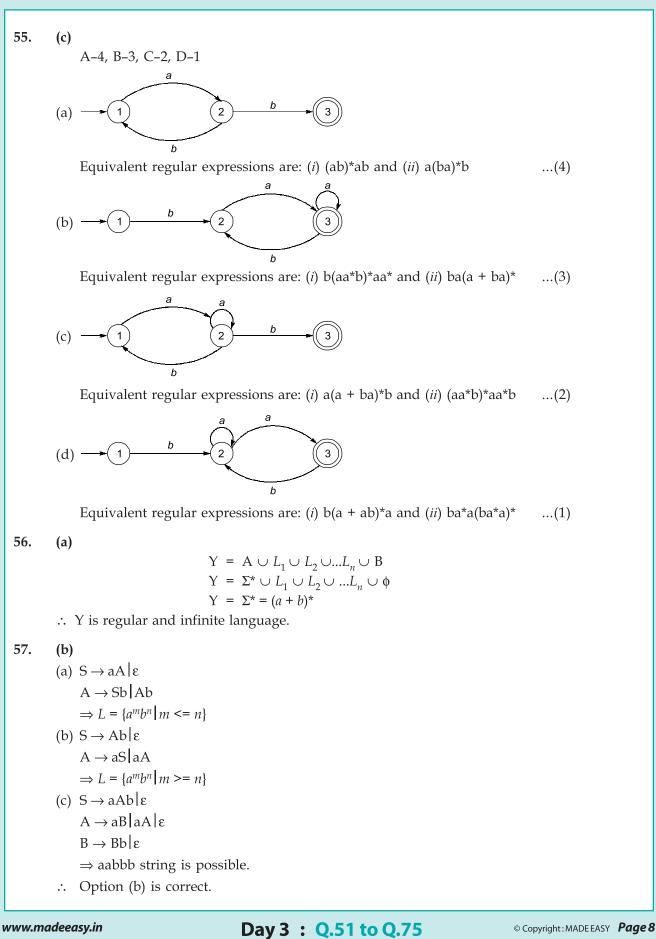
 $\Rightarrow L = \{a^m b^n c^k \mid m, n, k \ge 1, k = m + n\}$

 \therefore Option (c) is correct.

54. (a)

(a) $L = \{a^m b^n c^k | m = n \text{ or } n = k\}$

(b)
$$L = (a + b)^*$$


Option (a) is inherently ambiguous language, because no equivalent unambiguous grammar exist for the language.

Option (b) is unambiguous language, because many unambiguous grammars exist for the language.

www.madeeasy.in

for **GATE 2022**

for **GATE 2022 CS**

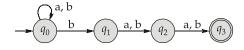
58. (b)

P = (X, X, R); To find the left most 'a', state B will move left until X appears. When X appears, it moves to the right position to read symbol 'a' if exists.

Q = (Y, Y, R); If all a's are written by X's then A will find Y that indicates all b's and all c's are written by Y's and Z's respectively. A \Rightarrow E \Rightarrow F path to read all Y's then all Z's, finally goes to final state.

59. (1)

(i) $S \rightarrow AB$ $A \rightarrow aA |bA|\epsilon$ $B \rightarrow aBb|\epsilon$ $\Rightarrow L = (a + b)^* a^n b^n = (a + b)^*$ is regular. (ii) $S \rightarrow AaB$ $A \rightarrow aC|\epsilon$ $B \rightarrow aB|bB|\epsilon$ $C \rightarrow aCb|\epsilon$ $\Rightarrow L = a(a + b)^*$ is regular. (iii) $S \rightarrow AB$ $A \rightarrow aA|\epsilon$ $B \rightarrow aBb|\epsilon$


 \Rightarrow L = {a^mbⁿ | m ≥ n} is non-regular but CFL. So only (*iii*) is CFL but not regular.

60. (a)

 L_2 is even palindrome on $\{a, b\}^*$ L_3 is odd palindrome on $\{a, b\}^*$ L_1 is any palindrome on $\{a, b\}^*$ Clearly, $L_2 \subset L_1$ and $L_3 \subset L_1$ and $L_1 = L_2 \cup L_3$.

61. (4)

Minimal NFA:

62. (4)

Partition-1: $\{\underline{q_1}, \underline{q_2}\}, \{\underline{q_0}, \underline{q_3}, \underline{q_4}, \underline{q_5}\}$

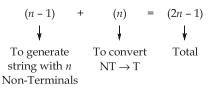
Partition-2: $\{q_1, q_2\}, \{\underline{q_0}, q_3, q_4\}, \{\underline{q_5}\}$

Partition-3: $\{q_1, q_2\}, \{\underline{q_0}, q_4\}, \{\underline{q_3}\}\{q_5\}$

Partition-4: $\{q_1, q_2\}, \{q_0, q_4\}, \{q_3\}\{q_5\}$

Therefore 4 states will be required.

www.madeeasy.in


for **GATE 2022**

63. (b)

- S_1 : Pumping lemma can prove that language is not regular but can't prove that the language is regular. Hence this is false.
- *S*₂: We can check regular grammar by following productions $V \rightarrow T^* V + T^*$ or $V \rightarrow V T^* + T^*$.
- S_3 : Consider 'L' to be ϕ and 'M' to $\{a^n b^n \mid n \le 0\}$
 - L.M. = ϕ , which is regular
- S_4 : In case of CNF, (n 1) derivations are required to generate a string with (n) Non-Terminals, since only one Non-Terminals is added during each derivation.

Further, (n) derivations are required to convert those Non-Terminals to terminals. So, in total, to generate a string of n terminals:

However, in case of GNF: In a single derivation, we get a terminal in addition to our Non-Terminals. $S \rightarrow T(NT)^*$

Therefore, no need for (n - 1) derivations to increase length.

Hence, only (*n*) derivations are required.

64. (d)

$$\begin{split} L_1 : S_1 &\to S_1 c \mid A \Leftarrow \{a^n b^n c^m \mid n, m \ge 0\} \\ A &\to aAb \mid \epsilon = \{a^n b^n \mid n \ge 0\} \\ L_2 : S_2 &\to aS_2 \mid B \Leftarrow \{a^n b^m c^m \mid n, m \ge 0\} \\ B &\to bBc \mid \epsilon \implies \{b^m c^m \mid m \ge 0\} \\ So_r L &= L_1 \cup L_2 = \{a^n b^n c^m \mid n, m \ge 0\} \cup \{a^n b^m c^m \mid n, m \ge 0\}. \end{split}$$

65. (2)

 P_1 : T_{Yes}: When machine does not halt on *x* until *k* steps. T_{No}: When machine halt on *x* within *k* steps. So, recursive.

- P_2 : T_{Yes} : When machine accepts atleast two strings of different length. T_{No} : Not exist, since machine may go into infinite loop So, Re but not REC.
- P_3 : T_{Yes} : Run all strings till 100 steps, if machine halt. T_{No} : Does not exist, since machine may go into infinite loop. So, RE but not REC.

www.madeeasy.in

for **GATE 2022 CS**

66. (29)

INADE EASS India's Best Institute for IES, GATE & PS

The grammar generates the set of all palindromes possible over $\{a, b\}$.

Lets first find the number of even palindromes of length atmost 6 (0, 2, 4, 6 length respectively).

0 length palindromes = $2^{0/2} = 1$

2 length palindromes = $2^{2/2} = 2$ 4 length palindromes = $2^{4/2} = 4$

4 length painteromes $-2^{7} - 4$

6 length palindromes = $2^{6/2} = 8$

So total number of even palindromes of length atmost 6 = 1 + 2 + 4 + 8 = 15

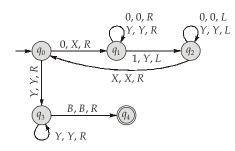
Similarly number of odd palindromes of length atmost 6 = 2 + 4 + 8 = 14

So total palindromes = 29

67. (b)

- L_1 is not recursive but recursive enumerable since string from a^*b^* belongs to L(M) with length less than K is semidecidable, we can say "yes" when machine halt within K steps but if machine is in infinite loop, the we an not say anything. Hence not recursive.
- L_2 is recursive since for every language there are more than one Turing Machine exist, so it is trivially decidable. Hence recursive

68. (d)


In CNF, [number of steps for |w| = x] = (2x - 1)Given, $2x - 1 = 41 \Rightarrow 2x = 42$ x = 21

69. (c)

- (a) Generate string 'bbaa' which is not accepted by PDA 'P'.
- (b) Generate string 'baaa' which is not accepted by PDA 'P'.
- (c) Generate string 'a', 'aa', 'aaa' ab, aab, aaabb, etc. which is generate by PDA.

70. (c)

Drawing the equivalent Turing Machine we have

This is a standard Turing Machine program for $\{0^n \ 1^n | n > 0\}$. Hence (c) is the correct option.

71. (b)

 $I \rightarrow$ membership problem for CFGs; decidable.

II \rightarrow ambiguity problem for CFGs; undecidable.

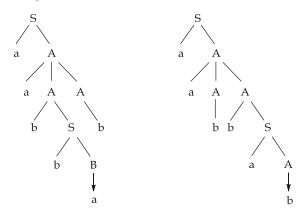
III \rightarrow {<M> | M is a Turing Machine, null string belongs to L(M)}.

• Applying Rice's theorem, since this is a non trivial question on RE language, therefore undecidable.

www.madeeasy.in

Day 3 : Q.51 to Q.75

for **GATE 2022 CS**


72. (b)

INADE ERSY India's Best Institute for IES, GATE & PSU

- L_1 : is CFL since their is comparison between *a* and *b*. To make same number of *b* we have to the remember number of *a*'s. So it is CFL (DCFL).
- L_2 : is CFL since their is comparison between w and w^R .
- *L*₃: is CFL more appropriately said DCFL.

73. (6)

Language contain string: ab, ba, aabb, abab, abba, baab, bbaa, baba For string "aabbab" we get 2 derivation tree

[Note: Grammar generate all strings that are of even length, so, check only for 2, 4, 6]

74. (c)

Let $L_2 = \text{INIT } (L_1)$ Both regular and CFL are closed under INIT operation. Therefore L_2 will be CFL. Hence option (c) is correct.

 $L_3 = (L_1 \cap L_2^*)' = (DCFL^* \cap Regular)'$ = (Regular \cap CFL)' = (CFL)' = CSL {using the closure property}

www.madeeasy.in

Day 3 : Q.51 to Q.75