

System of forces, Centoriod, MOI

LEVEL 1 Objective Questions	© 20. (b)	
1. (c)	20. (b) 21. (b) 22. (a) 23. (b) 24. (a) 25. (b) 26. (b) 27. (c) 28. (b) 29. (c) 30. (b) 31. (c) 32. (b) 33. (c) 33. (c) 34. (a) 35. (c) 26. (c) 36. (c) 37. (d) 38. (b)	
2. (b)	Subject 22. (a)	
3. (a)	matter to (b)	
4. (c)	MA DE 24. (a)	
5. (b)	EASY PE (b)	
6. (c)	26. (b)	
7. (b)	^{ns.} 27. (c)	
8. (b)	Dehi. 28. (b)	
9. (34)	o part of 29. (c)	
10. (10.48)	30. (b)	
11. (3.28)	31. (c)	
12. (b)	32. (b)	
13. (6)	33. (c)	
14. 72.38	34. (a)	
15. (4.26)	in any fc	
16. (-9.5)		Dbjective Questions
17. (5)	out the w	
18. (a)	77. (d)	
19. (c)	armission 38. (b)	
	TADE ERSY	•••
www.madeeasypublications.org	Publications	© Copyright

LEVEL 3 Conventional Questions

Solution: 39

Direction cosines, $l = \cos \alpha = -0.668$, $m = \cos \beta + 0.743$ Unit vector along $S_{PO'}$, $\overline{r} = -0.668i + 0.743j$

Solution: 40

Shown force vector = 72.97 N l = +0.548 m = -0.685n = +0.48

Solution:41

Moment of the couple, $C = 30 \times 2 = +60$ Nm (ccw)

Couple vector, C = 42.42j + 42.42i Nm

Solution: 42

The simplest resultant of the force system is 50 N \downarrow acting at point (–12, 0, 8) m.

 $F_R = -50j \text{ N} + \text{couple } C_R = +400i + 600k \text{ Nm}, |C_R| = 721 \text{ Nm}.$

Solution:43

Simplest resultant is 25.33 kN acting at a distance of 5.37 m from A.

Solution:44

	$ F_R = \sqrt{80^2 + 40^2} = 89.4 \text{ N}$
	$C_R = 150 \text{ Nm} (ccw) \text{ resultant couple}$
If we take	$\bar{x} = 0$, $\bar{y} = -1.875$ m
	$\overline{y} = 0, \ \overline{x} = +3.75 \text{ m}$

Solution:45

Moment of inertia,

 $I_{xx} = 55.25 \,\mathrm{cm}^4$.

Solution:46

I_{xy}	=	300 cm ⁴
$I_{\overline{x}\overline{y}}$	=	-220 cm ⁴

Mechanical Engineering • Engineering Mechanics

Solution: 47

 $\overline{y} = \frac{3}{8}R$ $\overline{x} = \overline{z} = 0.$

Other distances

Solution: 48

 $\overline{x} = 89.18 \text{ mm from } A$ $\overline{y} = 64.59 \text{ mm from } A$

Solution: 49

Magnitude of the resultant force is equal to 45.6 N and acting at an angle of 132 with the horizontal i.e. East-West line.

Solution: 50

Magnitude of the resultant force

$$P = 85.15 \text{ kgf}$$

Angle of the resultant force = 273° 22'

Solution : 51

$$\overline{y} = \frac{V_1 y_1 + V_2 y_2}{V_1 + V_2} = 28.4 \text{ mm}$$

Solution : 52

h = 1.732 r

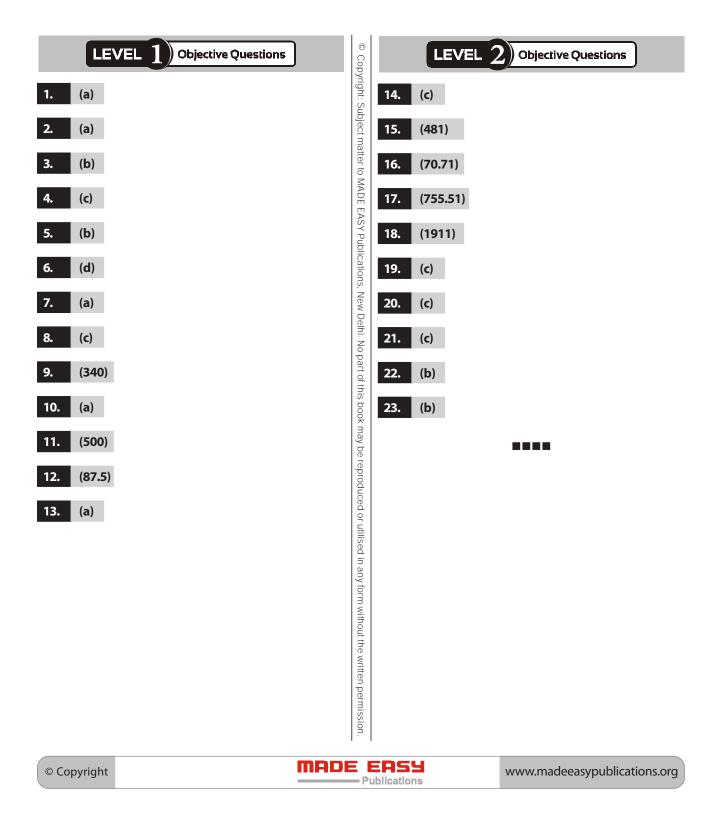
Solution: 53

Now moment of inertia of the whole section about X-X axis,

$$I_{\chi\chi} = 1.824 \times 10^6 \,\mathrm{mm^4}$$

Now moment of inertia of whole section about its base BC,

 $= 4.815 \times 10^{6} \text{ mm}^{4}$


Solution: 54

 $\overline{y} = 2.8 \,\mathrm{cm}$ $I_{\chi\chi} = 117.51 \text{ cm}^4$ $I_{\gamma\gamma} = 498.3 \text{ cm}^4$

2

Equilibrium of Rigid Bodies

Solution:24

Component of 58.8 kN along horizontal direction

 $= 58.8 \times \sin \alpha = 5.85 \text{ kN}$

Solution: 25

Tension, $T_3 = 500 \text{ N}$ Tension, $T_2 = 353.6 \text{ N}$ Tension, $T_1 = 683 \text{ N}$

Solution: 26

 $R_{A} = 601 \, \text{N}$ Reaction, $R_c = 333.5$ N

Solution: 27

Reaction at end O,

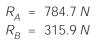
 $x = \frac{WL}{2P}$ $R_0 = \left(P - \frac{W}{2}\right)\uparrow$

Solution:28

 $\alpha = 90^{\circ}$ $P_{\rm min} = 660 \, {\rm N}$

Solution: 29

Reaction, $R_A = \left(W_1 - \frac{W_2 L_4}{L_3}\right)\uparrow$


Solution: 30

 $P = 2.399 \, \text{kN}$

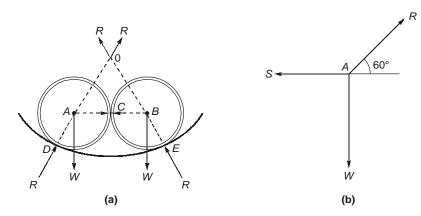
Solution: 31

 $R_{BV} = \frac{W}{4}$ $R_{AV} = \frac{3W}{4}$ $R_{AH} = 0.25W$ $R_{BH} = \stackrel{\leftarrow}{W}$ /4 (for equilibrium)

Solution: 32

MADE EASY Publications

Solution: 33


MADE EAS

Publications

Radius of spheres = 50 mm

Radius of cup = 150 mm

The two spheres with centres *A* and *B*, lying in equilibrium, in the cup with *O* as centre are shown in figure (a). Let the two spheres touch each other at *C*, and touch the cup at *D* and *E*.

S = Reaction between the two spheres at C.

From the geometry of the figure, we find that,

	OD =	150 mm
and	AD =	50 mm
Therefore,	OA =	100 mm
Similarly	<i>OB</i> =	100 mm
We also find that,	AB =	100 mm

Therefore *OAB* is an equilateral triangle. The system of forces at *A* is shown in figure (b). Applying Lami's equation at *A*,

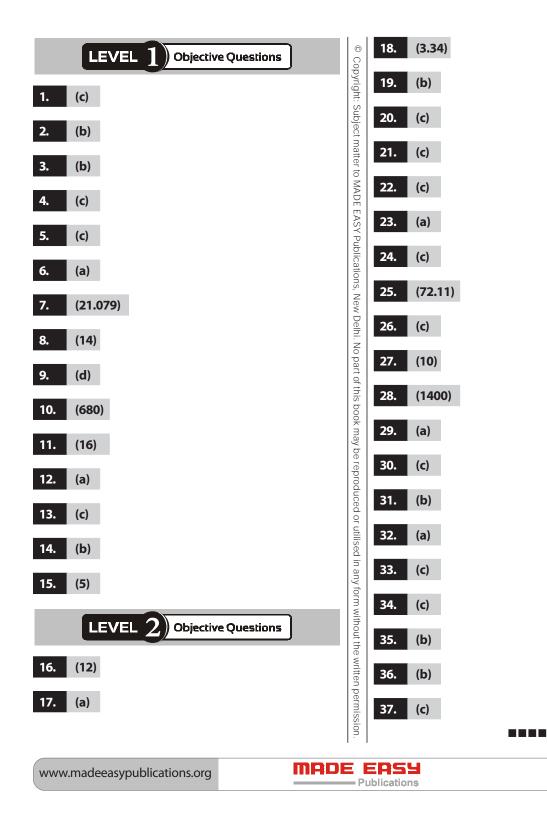
R		S
sin90° =	sin120°	sin150°
$\frac{R}{1} =$	$\frac{W}{\sin 60^{\circ}} =$	S sin30°
<i>R</i> =	$\frac{S}{\sin 30^\circ} =$	$\frac{S}{0.5} = 2S$

...

Hence the reaction between the cup and the sphere is double than that between the two spheres. **Solution : 34**

$$R_{1} = 134.2 N$$

$$R_{2} = 240.8 N$$


$$R_{3} = 154.9 N$$

$$R_{4} = 622.5 N$$

Publications

Kinematics of Point Mass and Rigid Bodies

LEVEL 3) Conventional Questions

Solution: 38

 $S = 1.5t^2 = 1.5 \times 29.856^2 = 1337.1 \,\mathrm{m}$

Solution: 39

Radius of curvature, R = 100 mNormal acceleration, $a_n = 4 \text{ m/s}^2$.

Solution:40

Maximum angular velocity, $\omega = 2.09 \times 10^{-2}$ rad/s

 $\alpha_1 = 6.98 \times 10^{-4} \text{ rad/sec}^2$ $\alpha_2 = 10.45 \times 10^{-4} \text{ rad/s}^2$

Solution: 41

Angular acceleration, $\alpha = -0.333 \text{ rad/s}^2$ t = 26 seconds $\theta = 112.64 \text{ radians}$

Solution: 42

Angular velocity, $\dot{\theta} = -3\pi \sin 4\pi t$

Angular acceleration $\ddot{\theta} = -12\pi^2 \cos 4\pi t$

Solution: 43

V = 7.2 m/s at t = 6 sS = 10.8 m

Solution:44

Velocity, $v_4 = 29.697 \text{ m/s}$ $S_4 = 40.697 \text{ m}$ $a_4 = 16.348 \text{ m/s}^2$

Solution: 45

Tangential acceleration, $a_t = 4.905 \text{ m/s}^2$ Normal acceleration, $a_n = 17.01 \text{ m/s}^2$ Velocity, V = 4.124 m/sAcceleration $a = 17.70 \text{ m/s}^2$

Solution: 46

v = 18 + 0 - 0 = 18 m/s a = 6 m/s² t = 0.5 sec

Publications

(iii) Maximum speed of the particle

The maximum speed of the particle may now be found out by substituting t = 0.5 second in equation (ii),

$$v_{\text{max}} = 18 + 6 \times 0.5 - 6 \ (0.5)^2$$

= 19.5 m/s

Solution:47

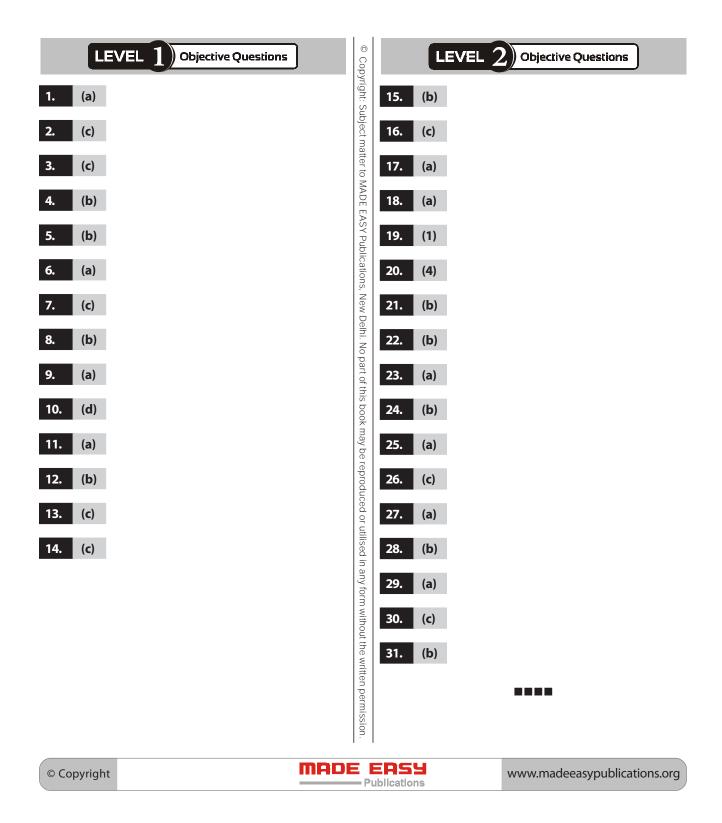
$$V = \frac{672}{400} = 1.68 \text{ m/sec}$$

Solution:48

$a = 5.8 \text{ m/sec}^2$ $T_A = 38.88 \text{ N}$ $T_B = 21.47 \text{ N}$

Solution: 49

$$\partial_0 = \frac{g}{1 + \frac{m_1}{4} \left(\frac{1}{m_2} + \frac{1}{m_3} \right)}$$


Solution: 50

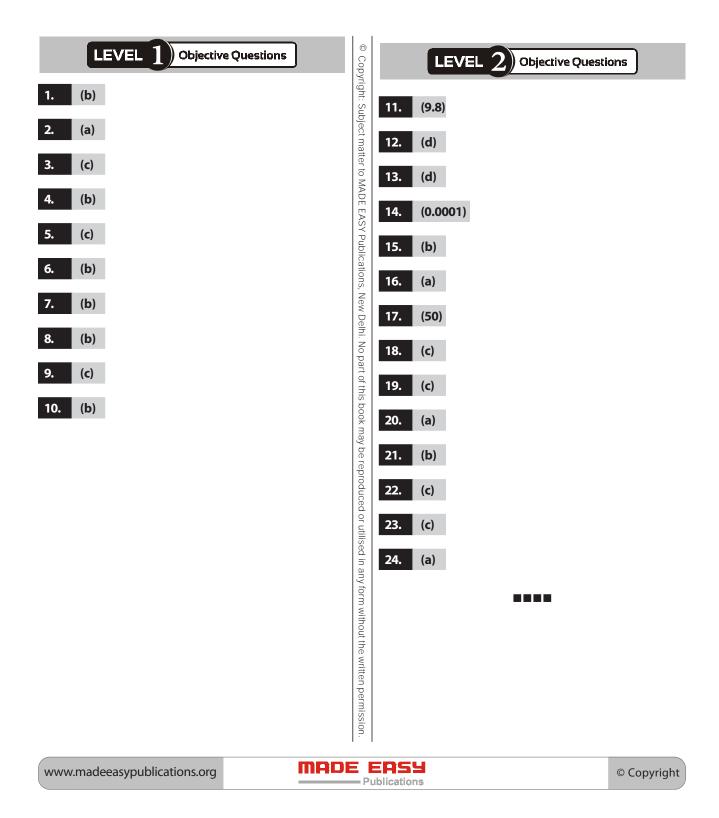
$$t = \left[\frac{2L}{(g+a_0)\sin\theta\cos\theta}\right]^{1/2}$$

Dynamics of Rigid Bodies, Momentum, Collision

	LEVEL 3 Conventional Questions
Solution : 32	
	$\overline{a} > 0.35 g$
	$\overline{a} > 0.3 \mathrm{g}$
Solution : 33	Cable Tension T EE22 OF N
	Cable Tension, $T = 5533.95$ N P = 572.65 N
Solution : 34	$P = 572.05 \mathrm{N}$
	<i>t</i> = 3.76 second.
Solution : 35	$T = 29.62 \mathrm{N}$
	F = 29.62 N F = 71.74 Newton
	F = 71.74 Newton
Solution : 36	
Line	ear acceleration of mass centre of cylinder,
	$\overline{a} = \frac{2}{3}g\sin\theta$
	2μ <i>g</i> cosθ
	$\alpha = \frac{2\mu g\cos\theta}{R}$
Solution : 37	
	Angular acceleration, $\alpha = 7.842 \text{ rad/s}^2$
	Tension in string, $T = 27.17$ N
Solution : 38	
Gap bet	ween the two after 1 second
	$S_1 - S_2 = 0.2785 \mathrm{m}.$
Solution : 39	
	Vertical reaction, $N = 0.95 mg$
	$F = 0.1875 \mathrm{mg}$
	Coefficient of friction, $\mu = 0.1974$
Solution : 40	
	Angular acceleration, $\alpha = 5.2083 \text{ rad/s}^2$
	$O_{\chi} = \overrightarrow{156.25}$ N.
Solution : 41	
	Loss of KE = 1.05 Nm.
Solution : 42	
	_ mg
	$T = \frac{mg}{6}$

$$V = \sqrt{\frac{4gh}{3}}$$

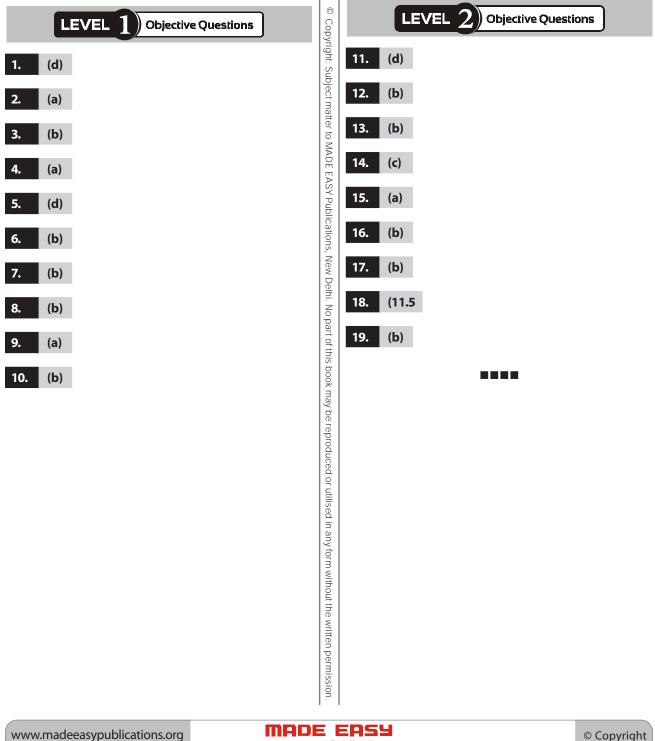
Solution:43


The sphere rolls with translational velocity $\frac{6v_0}{7}$ in the forward direction.

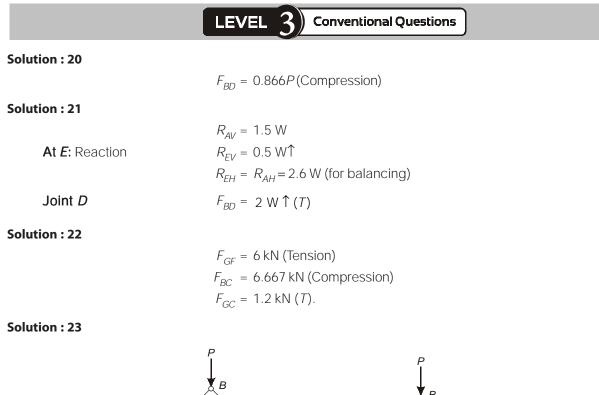
Solution:44

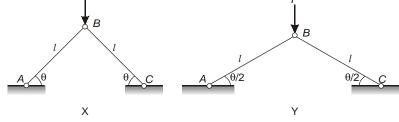
$$v = \frac{mv_0}{M+m}$$
$$\omega = \frac{mv_0(h-R)}{\left(\frac{2}{5}M+m\right)R^2}$$
$$h = \left(\frac{\frac{7}{5}M+2m}{M+m}\right)R \approx \frac{7}{5}R$$

Work and Energy



	LEVEL 3	Conventional Questions
Solution : 25		
Reaction at D,	$R_D = 466.66$ N.	
	<i>F_B</i> = 350 N ↑	
Solution : 26		
	$P_1 = 1.5 P$	
Solution : 27		
	Force, <i>P</i> = 381.4 N.	
Solution : 28		
	neel after punching = 21	5.44 rpm
Solution : 29		
	e value of $k = 62.5$ Nm	
Solution : 30		
Work done in rolling th	he wheel up the plane by	y 3 m
	$U_{1-2} = 79.29 \mathrm{Nm}$	
Angula	r velocity, $\omega = 26.54 \text{ rad}_{0}$	/s
Solution : 31		
	$T = 150 \mathrm{N}$	
Solution : 32		
	P = 707 N	
Solution : 33		
	P = 1 kN	




Plane Trusses

P

As both are symmetric frames having only difference in degree of inclination thereby forces in each will be

For frame X:
$$F_{AB} = F_{BC} = -\frac{P}{2\sin\theta}$$

For frame Y: $F_{AB} = F_{BC} = -\frac{P}{2\sin\frac{\theta}{2}}$

Similarly deflection of point B will be

$F_{AB} = F_{BC}; \Delta_B = -\frac{P}{2\sin^2\theta} \frac{l}{AE}$ For frame X:

For frame Y:

$$F_{AB} = F_{BC}; \Delta_B = -\frac{P}{2\sin^2\frac{\theta}{2}}\frac{l}{AE}$$

As sine is an increasing function thereby $\sin \theta/2 < \sin \theta$.

- :. Force in X < Force in Y
- $\Rightarrow \Delta_B \text{ in } X < \Delta_B \text{ in } Y$

Solution:24

$$F_{BD} = -\frac{40}{\sqrt{3}}$$
 kN = -23.09 kN = 23.09 kN (compressive)

Solution: 25

 \Rightarrow 5

Solution: 26

 $F_{BF} = 2.6 \text{ kN}$

Solution: 27

 $P_{AB} = 13.16$ tf (Compression) $P_{AG} = 11.4$ tf (Tension) $P_{DE} = 8.84$ tf (Compression) $P_{FF} = 7.66 \, \text{tf} \, (\text{Tension})$ $P_{BC} = 11.66$ tf (Compression) $P_{BG} = 2.6$ tf (Compression) $P_{GC} = 8.37$ tf (Tension) $P_{GF} = 5.91$ tf (Tension) $P_{FC} = 3.46$ tf (Tension)

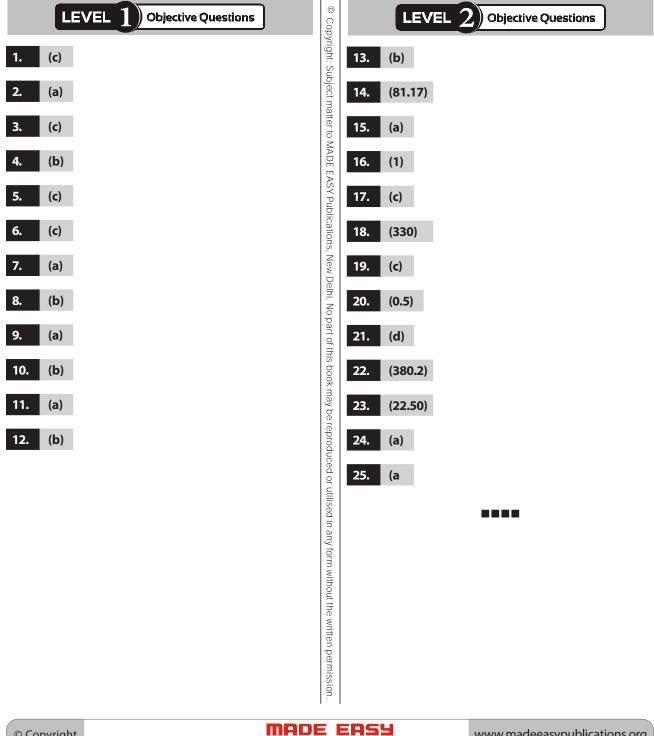
S.No.	Member	Magnitude of force in tf	Nature of force
1	AB	13.16	Compression
2	AG	11.4	Tension
3	DE	8.84	Compression
4	FE	7.66	Tension
5	BC	11.66	Compression
6	BG	2.6	Compression
7	DF	0	-
8	CD	8.84	Compression
9	GC	8.37	Tension
10	FG	5.91	Tension
11	FC	3.46	Tension

Solution:28

Now tabulate these results as given below:

S.No.	Member	Magnitude of force in kN	Nature of force
1	AD, DB	7.08	Tension
2	AC, CB	11.19	Compression
3	CD	10.0	Tension

Solution: 29


The value of W, which would produce the force of 15 tones is the member AB

W = 5 tf

Solution: 30

 $P_{CD} = 2 \text{ kN}$ (Tension) $P_{CG} = 1.7 \text{ kN}$ (Tension)

Friction

7

- Publications

Conventional Questions

Solution : 26

 $\theta = 14^{\circ}20'$

LEVEL

Solution: 27

Number of turns, n = 2.32 turns

Solution: 28

resolving the forces vertically, P = 232.3 N

Solution: 29

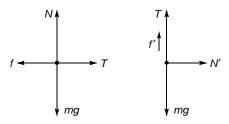
P = 18.35 kgf $\alpha = 68^{\circ} 57'$

Solution: 30

resolving the forces horizontally,

 $P = 180.4 \, \text{kgf}$

 $W_{A} = 262.3 \text{ N}$


Solution: 31

Solution: 32

If no force is applied, the block A will slip on C towards right and the block B will move downward. Suppose the minimum force needed to prevent slipping is F. Taking A + B + C as the system, the only external horizontal force on the system is F. Hence the acceleration of the system is

$$a = \frac{F}{M+2m} \qquad \dots (i)$$

Now take the block A as the system. The forces on A are

(i) tension T by the string towards right,

- (ii) friction f by the block C towards left,
- (iii) weight mg downward and
- (iv) normal force *N* upward

For vertical equilibrium N = mg

As the block moves towards right with an acceleration a,

$$I - I = Ma$$

or, $T - \mu mg = ma$ Now take the block *B* as the system. The forces are

(i) tension *T* upward,

www.madeeasypublications.org

...(ii)

...(iii)

- (ii) weight mg downward,
- (iii) normal force N' towards right, and
- (iv) friction f' upward

As the friction is limiting,

- Publications

MADE EASY

As the block moves towards right with an acceleration a,

$$N' = ma$$

 $f' = \mu N' = \mu ma$

For vertical equilibrium, T + f' = mg

Eliminating T from (ii) and (iii),

$$a_{\min} = \frac{1-\mu}{1+\mu}g$$

When a large force is applied the block *A* slips on *C* towards left and the block *B* slips on *C* in the upward direction. The friction on *A* is towards right and that on *B* is downwards. Solving as above, the acceleration in this case is

$$a_{\max} = \frac{1+\mu}{1-\mu}g$$

