

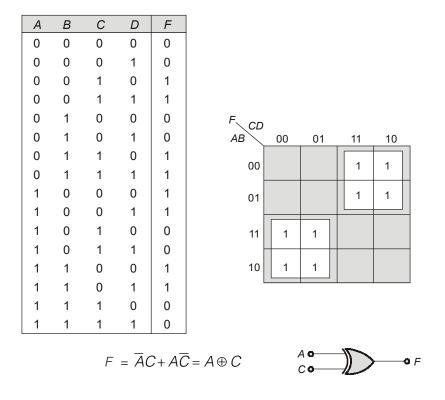
1	Number Systems and Binary Codes				
	Detailed Explanation of Try Yourself Questions				
T2 : Solution (C)	$(44)_7 = (32)_{10}; (44)_5 = (24)_{10}$ $(44)_7 - (44)_5 = (32)_{10} - (24)_{10} = (8)_{10}$ = 00001000 \leftarrow It is in 2's complement form				
3 : Solution (d) 4 : Solution	$(34)_8 = (28)_{10} = (11100)_2$ = 10010 \leftarrow Gray code				
(424) ∴	A = 10, B = 11 r = 12 $(2B4)_{12} = 2 \times (12)^2 + 11 \times (12) + 4$ $= 288 + 132 + 4 = (424)_{10}$				
Output afte Output afte	N is given to the system. er 1's complement = $15 - N$ er 2's complement = $16 - 15 + N = N + 1$ erms are connected in cascade. Final output = Input + (3) ₁₀ = $1010 + 0011 = 1101$				

2

Boolean Algebra, Logic Gates and K-Maps

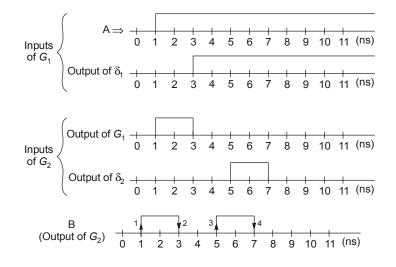
T1 : Solution

- Let the 3 locks are A, B, C
- 0 key not inserted
- 1 key inserted


Α	В	С	Y	
0	0	0	0	
0	0	1	0	BC
0	1	0	0	A 00 01 11 10
0	1	1	1	
1	0	0	0	
1	0	1	1	Y = AB + BC + AC
1	1	0	1	
1	1	1	X	

The expression for Y is similar to carry in full adder circuit. So, Number of NAND Gates required are = 6.

T2 : Solution

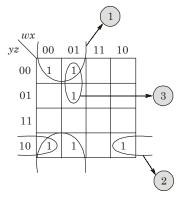


T3: Solution

(d)

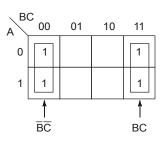
Consider left side EX-OR gate as G_1 and right side EX-OR gate as G_2 .

- 1. To find number of transitions at B i.e. the output of gate G_2 , it is required to identify the inputs of gate G_2 .
- 2. To identify gate G_2 inputs it is required to find gate G_1 output waveform.
- 3. To find gate G_1 output waveform, it is required to identify δ_1 output waveform.


www.madeeasypublications.org

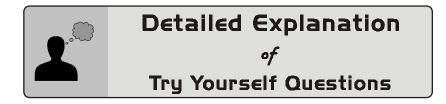
Total numbers of transitions at B during interval from 0 to 10 ns are '4'. Hence option (d).

T6 : Solution


 $f(w, x, y, z) = \sum (0, 2, 4, 5, 6, 10)$

:. 3 prime implicants.

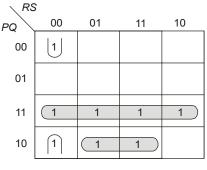
(c)



 $= \overline{B}\overline{C} + BC = B \odot C = \overline{B \oplus C}$

3

Combinational Logic Circuits

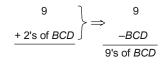


T2 : Solution

(a)

$$Z = PRS + PQR\overline{S} + P\overline{R}S + (P + \overline{Q}) \overline{R}\overline{S}$$

Mapping above terms in Karnaugh map



 $Z = PQ + P\overline{Q}S + \overline{Q}\overline{R}\overline{S}$

T5 : Solution

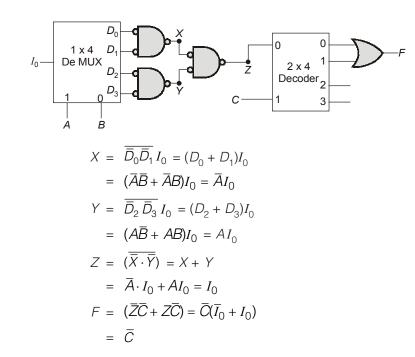
(b, c)

(b)
$$X = 1001$$
 and $C_{in} = 1$
then

MADE EASY

- Publications

7


(c) X = 1010 and $C_{in} = 0$ then

$$\frac{10}{1 \text{ s of } BCD} \right\} \Rightarrow \frac{9}{1 \text{ s of } BCD} \right\} \Rightarrow \frac{9}{-BCD} \frac{9}{9 \text{ s of } BCD}$$

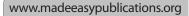
: Answer is option (b) and (c).

(a)

4

Sequential Circuits

Detailed Explanation of Try Yourself Questions


T1 : Solution

(a)	
When	A = 1 and $B = 1$
	$X = \overline{Y}$
	$Y = \overline{X}$
Now	A = 1 and $B = 0$
	Y = 1
	X = 0
Now	A = 1 and $B = 1$
	$X = \overline{Y} = 0$
	$Y = \overline{X} = 1$

So, the outputs x and y will be fixed at 0 and 1 respectively.

T2 : Solution

(c)					
	Α	В	C_i	S	C_o
After 1 st CP	1	1	0	0	1
After 2 nd CP	1	1	1	1	1

