ESE GATE PSUs State Engg. Exams

WORKDOOK 2025

Detailed Explanations of Try Yourself Questions

Electronics Engineering

Digital Circuits

Number Systems and Binary Codes

Of Try Yourself Questions

T1. Sol.

$$(1101)_2 = (13)_{10}$$

Therefore, the decimal equivalent value = -13.

T2. (d)

Given that,

$$(10)_x \times (10)_x = (100)_x$$

 $x \times x = x^2$
 $(100)_x \times (100)_x = (10000)_x$
 $x^2 \times x^2 = x^4$

and

so, above conditions are valid for all values of x.

T3. (c)

Converting both sides into decimal

$$(2^{4} \times 1 + 0 + 2^{2} \times w + 2^{1} \times 1 + 2^{0} \times z) \times 15 = 2^{8}y + 2^{6} \times 1 + 2^{4} \times 1 + 2^{3} \times 1 + 2^{0} \times 1$$

$$(18 + 4w + z) \times 15 = 256y + 64 + 16 + 8 + 1$$

$$270 + 60w + 15z = 256y + 89$$

Only w = 1, z = 1 and y = 1 satisfies.

T4. (a)

Logic Gates

Detailed Explanation of

Try Yourself Questions

T1. (c)

Bulb is On when both switch S1 and S2 are in same state, either off or on.

S1	S2	Bulb
0	0	ON
0	1	OFF
1	0	OFF
1	1	ON

Above truth table derives EX-NOR operation.

T2. (a)

EXNOR gate on logic in called coincidence logic.

$$f = AB + A'B'$$

T3. (b)

D will be '1' majority of input is 1, so

$$D = A \oplus B \oplus C$$

Combinational Logic Circuits

Detailed Explanation of

Try Yourself Questions

T1. (c)

Since the delay is of 1 μ sec the output will a square wave with time period of 2 μ sec. So, frequency = 0.5 MHz

T2. (a)

For

A_2	A_1	A_0	<i>S</i> ₀ (<i>A</i> ₁)	S ₁ (A ₂)
0	0	0	0	0

MUX is enabled and output is I_0

For

A_2	A_1	A_0	S_0	S_1
0	0	1	0	0

MUX is disable and output is '1' Similarly, for

A_2	A_1	A_0	S_0	S_1	$\overline{E}_{(A_0)}$	O/P
0	0	0	0	0	0	I _O
0	0	1	0	0	1	1
0	1	1	0	1	1	1
0	1	0	0	1	0	I ₁
1	1	0	1	1	0	I_3
1	1	1	1	1	1	1
1	0	1	1	0	1	1
1	0	0	1	0	0	I_2

T3. (6)

When, $T = \log c \, 0$, the path followed by the circuit would be,

NOR gate \rightarrow MUX 1 \rightarrow MUX 2

$$\Rightarrow$$
 2 ns \rightarrow 1.5 ns \rightarrow 1.5 ns

5 ns

When, T = logic 1, the path followed by the circuit would be,

NOR gate \rightarrow MUX 1 \rightarrow NOR gate \rightarrow MUX 2

$$\Rightarrow$$
 1 ns \rightarrow 1.5 ns \rightarrow 2 ns \rightarrow 1.5 ns

6 ns

Maximum propagation delay is 6 ns

(c)

(b)

The number of AND gates in carry generator circuit in 'n' bit adder =

If
$$n = 4 \implies \frac{4(5)}{2} = 10$$
.

The number of OR gates in carry generator circuit in 'n' bit adder = n.

If
$$n = 4 \implies 4$$

T6. (b)

So, the input to adder is y and 1's complement x since carry input in 1.

So, output is complement of x + 1, so output is y - x.

T7. (b)

P_1	P_2	а	b	С	d	е	f	g
0	0	1	1	1	1	1	1	0
0	1	1	0	1	1	0	1	1
1	0	1	1	0	1	1	0	1
1	1	1	0	0	1	1	1	1

$$b = \overline{P}_2$$

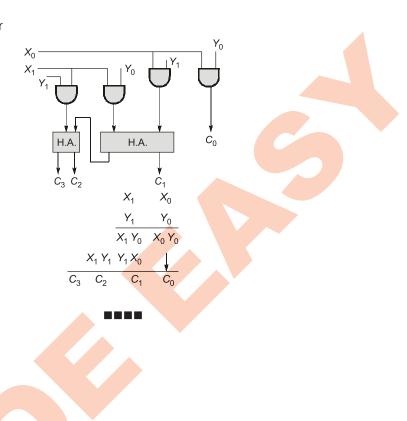
$$c = \bar{P}_1$$

$$d=1=c+e$$

$$e=P_1+\bar{P}_2$$

$$f = \overline{P}_1 + P_2$$

$$g = P_1 + P_2$$


$$\Rightarrow \qquad g = P_1 + P_2$$

$$d = 1 = c + e$$

- T8. (d)
 - 2 NOT gates
 - 3 OR gates
- T9. (b)

Two bit binary multiplier

Sequential Circuits

Detailed Explanation of Try Yourself Questions

T1. (76.92)

Total propagation delay

$$= (t_{pd} + t_{set-up})_{max} = 8ns + 5 ns = 13 ns$$

.. Frequency of operations

$$=\frac{1000}{13}$$
 MHz = 76.92 MHz

T2. (c)

T3. (6)

JK Flip-flop 1 and 2 form a synchronous sequential circuits and they are synchronized with the output of 0th JK Flip-flop.

	J_1	K ₁	J_2	K ₂	Q_2	Q_1	Q_0	
	1	1	0	1	0	0	0	\setminus_{T}
	1	1	1	1	0	1	1 -	Κ΄'
	0	1	0	1	1	0	0	$\langle '^{\scriptscriptstyle 2}$
\	1	1	0	1	0	0	0	\mathcal{F}_3

Number of cycles = 3 i.e. equal to 6 clock cycles.

T4. (d)

$$D = \overline{X}Z + Y\overline{Z}$$
, $D = \overline{K}Q + J\overline{Q}$

$$Y = J$$
, $X = K$, $D = Q$ (for D flip-flop)

T5. (d)

Trick up/down = $CP \oplus Q$, 1 for up and 0 for down.

CP = (clock pulse)

Q = (O/P)

0 = -ve edge; Q = 1

 $1 = +ve edge; \overline{Q} = 1$

 $= 1 \oplus 1 = 0$ (down counter)

Counting sequence

1 1 1 0

0 1 1 0

1 (preset state) so Mod 5

T6. (b)

1

T7. Sol.

Clock	Q_A	Q_B	Q_C	Q'_A	Q_B'	Q' _C	$Q_A \oplus Q_A'$	$Q_B \oplus Q_B'$	$Q_C \oplus Q_C'$	Z
0	1	0	0	1	0	0	0	0	0	0
1	0	1	0	1	1	0	1	0	0	1
2	0	0	1	1	1	1	1	1	0	1
3	1	0	0	0	1	1	1	1	1	1
4	0	1	0	0	0	1	0	1	1	1
5	0	0	1	0	0	0	0	0	1	1
6	1	0	0	1	0	0	0	0	0	0

The output Z will again become zero after 6 clock cycles.

T8. (c)

The counter represents a Johnson counter. Thus, total number of states = 2n. Where n = 3. Therefore the MOD of the counter = $2 \times 3 = 6$

T9. (d)

In a 28 Counter the range would be from 0-255.

Hence to go from 10101100 (172) to 00100111 (39), the counter has to go initially from 172 to 255 and then from 0 to 39.

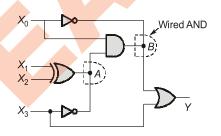
Hence to go from 172 to 255, 255 - 172 = 83 Clock pulses would be required.

From 255 to 0, again 1 clock pulse would be required.

Then from 0 to 39, 39 clock pulses would be required.

Hence in total 83 + 1 + 39 = 123 Clock pulses would be required.

Integrated-Circuit Logic Families


Of Try Yourself Questions

T1. (8)

$$A = (X_1 \oplus X_2) \overline{X}_3$$

$$B = \left[(X_1 \oplus X_2) \overline{X}_3 \ X_0 \right] \cdot \overline{X}_0 = 0$$

$$Y = B + X_3 = 0 + X_3 = X_3$$

Out of 16 possible combinations of $X_3 X_2 X_1 X_0$, X_3 will be high for 8 combinations. So, Y will be high for 8 combinations.

T2. (b)

$$V_{\text{OH}} > V_{\text{IH}} > V_{\text{IL}} > V_{\text{OL}}.$$

T3. (b)

It is CMOS gate where 2 PMOS are parallel and in series with 2 NMOS (series combination of NMOS). It is equivalent to NAND gate.

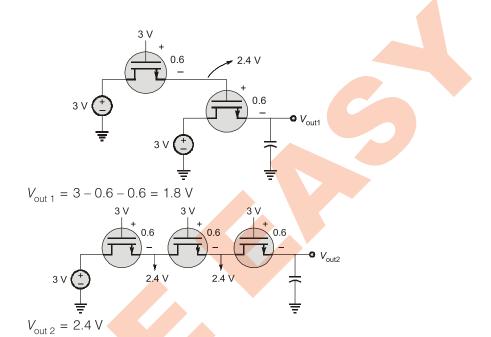
Series combination of NMOS equivalent to parallel combination of PMOS.

T4. (c)

Truth table:

X	Y	V_0
0	0	1
0	1	0
1	0	0
1	1	0

$$V_{0} = \overline{X + Y}$$


T5. (a)

Series combination of n-mos is equivalent to AND and parallel combination is equivalent to OR.

So,
$$Y = \overline{C \cdot (A + B)} = \overline{C} + \overline{(A + B)} = \overline{C} + \overline{A} \cdot \overline{B}$$

T6. (c)

T7. (a)

T8. (c)

HTL → High noise immunity

CMOS → Highest fanout

 $I^2L \rightarrow \text{Lowest of product power and delay}$

ECL → Highest speed of operation

T9. (a)

For TTL logic floating input = 1

$$\therefore Y = (AB + 1)' = \overline{AB}.0 = 0$$

T10. (a)

ECL is the fastest logic family.

ADC and DAC

Of Try Yourself Questions

T1. (a)

Sequence of Johnson counter is

Q_{2}	$Q_{_{1}}$	$Q_{_{\! 0}}$	D_{2}	D_1	D_{0}	$V_{\rm o}$
0	0	0	0	0	0	0
1	0	0	1	0	0	4
1	1	0	1	1	0	6
1	1	1	1	1	1	7
0	1	1	0	1	1	3
0	0	1	0	0	1	1
0	0	0	0	0	0	0

T2. (a)

- (i) Conversion time is the time taken for a new digital output to appear in response to a change in the input voltage.
- (ii) Flash converter is the fastest converter. It uses no clock signal.

(iii) Type of N-bit ADC Max. conversion time

• Successive N clock cycles approximation

• Counter ramp $2^N - 1$ clock cycles

T3. (c)

Initial stage of the counter = $(111)_2 = (7)_{10}$

So output will be equal to 7 V.

Next state of counter = $(110)_2$ = $(6)_{10}$

So output should be = 6 V

But output is 3 V that means LSB of counter is connected to MSB of DAC and MSB of counter is connected to LSB of DAC.

Similarly next state of counter = $(101)_2 = (5)_{10}$

Input to DAC = $(101)_2 = (5)_{10}$

So output = 5 V

When counter goes to $(100)_2$ then input to DAC = $(001)_2$ = $(1)_{10}$

So output = 1 V

So connections are not proper.

T4. (c)

No. of comparators in a flash ADC is equal to $2^n - 1$ where n = no. of bits.

$$2^4 - 1 = 15$$

T5. (a)

The reference voltage is 5 V.

The number of bits in ADC are 8.

So, the resolution will be $=\frac{5}{2^8-1}=\frac{5}{255}$

The applied input is 3.5 V.

The successive approximation ADC start working from the MSB so.

After one clock:

SAR will toggle it's MSB from $0 \rightarrow 1$ so output of SAR will be 1000 0000.

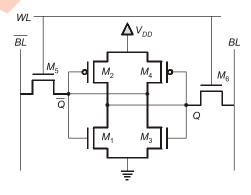
After second clock:

SAR will toggle its 7th bit from $0 \rightarrow 1$ but 1100 0000 will result in value greater than 3.5 so output of SAR after 2nd clock will be 1000 0000.

After third clock:

SAR will toggle it's 6^{th} bit from $0 \rightarrow 1$ and output will be 10100000.

Semiconductor Memories


Of Try Yourself Questions

T1. (b)

2 x_2 x_0 y_0 $\rightarrow 0$ $\rightarrow 1$ 0 0 0 0 0 0 0 0 0 \rightarrow 3 $\rightarrow 5$ 0 0 0

∴ It is 8421BCD to 2421BCD.

T2. (b)

