ESE GATE PSUs State Engg. Exams

WORKDOOK 2025

Detailed Explanations of Try Yourself *Questions*

Civil Engineering

Fluid Mechanics including Hydraulic Machines

Fluid Properties

Detailed Explanationof Try Yourself Questions

T1: Solution

Balancing forces along the inclined plane.

$$F_{\text{viscous}} = W \sin \theta$$

$$\Rightarrow$$

$$\frac{\mu AV}{y} = W \sin\theta$$

$$\Rightarrow$$

$$V = \frac{Wy\sin\theta}{\mu A}$$
$$= \frac{90 \times 3 \times 10^{-3} \times \sin 30}{8 \times 10^{-1} \times 0.3}$$
$$= 0.5625 \text{ m/s}$$

T2: Solution

Power =
$$T\omega$$

Calculating torque,

Torque =
$$F \times$$
 radius

$$F = \frac{\mu A v}{y}$$

$$\mu = 2 \times 10^{-1} \text{ Ns/m}^2$$

$$A = \pi D l = \pi \times \frac{90}{1000} \times \frac{50}{100} = 0.1414 \text{ m}^2$$

$$V = \frac{90}{2000} \times \frac{2\pi N}{60}$$

$$= \frac{90}{2000} \times \frac{2 \times \pi \times 240}{60} = 1.131 \text{ m/s}$$

$$Y = 2.5 \text{ mm} = 2.5 \times 10^{-3} \text{ m}$$

$$F = \frac{2 \times 10^{-1} \times 0.1414 \times 1.131}{2.5 \times 10^{-3}}$$

$$= 12.79 \text{ N}$$
Torque = $F \times$ radius
$$= 12.79 \times \frac{90}{2000} = 0.576 \text{ Nm}$$

$$\omega = \frac{2 \times \pi \times 240}{60} = 25.12 \text{ rad/s}$$

$$P = 0.576 \times 25.12 = 14.47 \text{ Watt} \simeq 14.5 \text{ Watt}$$

Fluid Statics

Detailed Explanation of Try Yourself Questions

T1: Solution

Pressure intensity produced by force,

$$F = \frac{F}{a}$$

Pressure intensity on RAM = $\frac{W}{A}$

According to Pascal law,

$$\frac{W}{A} = \frac{F}{a}$$
 $A = \text{Area of Ram}, \ a = \text{Area of plunger}$

$$\frac{W}{\frac{\pi}{4} \times (0.3)^2} = \frac{50}{\frac{\pi}{4} \times (0.045)^2}$$

$$W = 2222.22 \text{ N} \simeq 2223 \text{ N}$$

T2: Solution

Horizontal force (F_H) :

$$F_{H} = F_{H_{1}} + F_{H_{2}} (\rightarrow)$$

$$= \rho g \overline{h}_{1} A_{v_{1}} + \rho g \overline{h}_{2} A_{v_{2}}$$

$$A_{v_{1}} = A_{v_{2}} = 5 \sin 30^{\circ} \times 1 = 2.5 \text{ m}^{2}$$

$$\overline{h}_{1} = \frac{5 \sin 30^{\circ}}{2} = 1.25 \text{ m}$$

$$\overline{h}_{2} = 5 \sin 30^{\circ} + \frac{5 \sin 30^{\circ}}{2} = 3.75 \text{ m}$$

$$F_{H} = \rho g (2.5) (\overline{h}_{1} + \overline{h}_{2})$$

$$= (10^{3}) (10) (2.5) (1.25 + 3.75)$$

$$= 125 \text{ kN } (\rightarrow)$$

Vertical force (F_{ν}) :

Part-1

$$F_{v} = F_{v_{2}} - F_{v_{1}} (\uparrow)$$

$$= \rho g \forall_{2} - \rho g \forall_{1}$$

$$= \rho g (\forall_{2} - \forall_{1})$$

$$= \rho g \times \text{volume of } ABCA$$

$$F_{v} = (10^{3})(10) \left[\frac{\pi(5)^{2}}{6} - \left(\frac{1}{2} \times 5\cos 30^{\circ} \times 5\sin 30^{\circ} \times 2 \right) \right] \times 1$$

$$= 22.6 \, \text{kN} \, (\uparrow)$$

$$F_R = \sqrt{F_H^2 + F_V^2}$$
$$= \sqrt{(125)^2 + (22.6)^2}$$
$$= 127 \text{ kN}$$

T3: Solution

Horizontal force (F_H) :

$$F_{H} = \rho g \overline{h} A_{V} (\rightarrow)$$

$$= (10^{3})(9.81) (\frac{10}{2})(10 \times 1)$$

$$= 490.5 \text{ kN } (\rightarrow)$$

$$F_{V} = \rho g \forall$$

$$= (10^{3})(9.81) \times (\text{Area of ABC}) \times \text{Width of dam}$$

$$= (10^{3})(9.81) [\int_{0}^{10} x \, dy] \times 1$$

 $= (10^3)(9.81) \left[\int_0^{10} \sqrt{9y} \, dy \right] \times 1$

Vertical force (F_v):

 $(x = \sqrt{9y})$

=
$$(100)(9.81)(63.246) \times 1$$

= $620.439 \text{ kN } (\downarrow)$

Resultant force (F_R):

$$F_R = \sqrt{F_H^2 + F_V^2}$$

$$F_R = \sqrt{(490.5)^2 + (620.439)^2}$$
$$= 790.906 \,\text{kN}$$

T4: Solution

$$\begin{split} &\rho_{\text{ice berg}} = 915 \text{ kg/m}^3 \\ &\rho_{\text{sea water}} = 1025 \text{ kg/m}^3 \end{split}$$

Let the total volume of iceberg be "V".

Buoyancy force = Weight of iceberg

$$\Rightarrow$$
 $\rho_{\text{sea water}} \times (V - 600) \times 9.81 = \rho_{\text{iceberg}} \times V \times 9.81$

$$\Rightarrow$$
 1025 (V -600) = 915 V

$$\Rightarrow$$
 1025 $V - 915 V = 1025 \times 600$

$$V = \frac{2025 \times 600}{1025 - 915} = 5590.9 \,\mathrm{m}^3$$

Weight of the iceberg

=
$$\rho_{\text{iceberg}} \times V_{\text{iceberg}} \times 9.81$$

= $915 \times 5590.9 \times 9.81$
= 50184757.04 N
= 50.185 MN

T5: Solution

 $F_{\text{buoyancy}} = \text{Tension} + \text{Weight}$

$$\begin{split} \rho_{\text{w}} \times \text{Volume 5 } g &= \text{Tension} + \text{Weight,} \\ \text{Weight} &= F_{\text{buoyancy}} - \text{Tension} \\ &= \left[\rho_{\text{w}} \times \frac{4}{3} \times \pi \times r^3 \times g \right] - \left[5.5 \times 10^3 \right] \\ &= \left[1000 \times \frac{4}{3} \times \pi \times \left(\frac{1.5}{2} \right)^3 \times 9.81 \right] - \left[5.5 \times 10^3 \right] \\ &= 17335.7 - 5500 = 11835.7 \text{ N} &\simeq 12 \text{ kN} \end{split}$$

Fluid Kinematics

x = 0

v = 1.5 m/s

x = 0.375 m

v = 15 m/s

Detailed Explanation of

Try Yourself Questions

T1: Solution

Let the velocity by given by

$$u = a + bx$$

∴ At
$$x = 0, u = 1.5$$

∴ $a = 1.5$

At
$$x = 0.375, u = 15$$

$$b = \frac{15 - 1.5}{0.375} = 36$$

Hence
$$u = 1.5 + 36x$$

$$a_x = \frac{u\partial u}{\partial x} + \frac{v\partial u}{\partial y} + \frac{w\partial u}{\partial z}$$

$$\therefore \frac{v\partial u}{\partial y} = \frac{w\partial u}{\partial z} = 0$$

$$a_x = (1.5 + 36x) \frac{\partial}{\partial x} (1.5 + 36x)$$

$$= (1.5 + 36x)(36)$$

$$a_x |_{x=0.375} = 36 \times \{1.5 + 36 \times 0.375\} = 540 \text{ m/s}^2$$

T2: Solution

$$\psi = y^2 - x^2$$

Flow to be irrotational it must satisfy the Laplace equation

$$\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} = 0$$

checking
$$\psi = y^2 - x^2$$

$$\therefore \frac{\partial \psi}{\partial x} = -2$$

$$\psi = y^2 - x^2$$

$$\therefore \frac{\partial \Psi}{\partial y} = 2y$$

$$\frac{\partial^2 \Psi}{\partial y^2} = +2$$

Hence

$$\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} = +2 - 2 = 0$$

Hence flow is irrotational.

$$\psi = Ax^2y^2$$

For flow to be irrotational stream function should satisfy the Laplace equation.

$$\therefore \frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} = 0$$

Checking

$$\Psi = Ax^2y^2$$

$$\frac{\partial \Psi}{\partial x} = 2Ay^2x$$

$$\frac{\partial^2 \Psi}{\partial x^2} = 2Ay^2$$

Checking

$$\psi = Ax^2y^2$$

$$\frac{\partial \Psi}{\partial V} = Ax^2 2y$$

$$\frac{\partial^2 \Psi}{\partial v^2} = 2Ax^2$$

 $\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial v^2} = 2A(x^2 + y^2)$

$$\therefore$$

Flow is not irrotational.

(iii)
$$\psi = Ax - By^2$$

For flow to be irrotational stream function should satisfy the Laplace equation.

:. Checking

$$\Psi = Ax - By^2$$

$$\frac{\partial \Psi}{\partial x} = A$$

$$\frac{\partial^2 \Psi}{\partial x^2} = 0$$

Checking

$$\Psi = Ax - By^2$$

$$\frac{\partial \Psi}{\partial V} = -2By$$

$$\frac{\partial^2 \Psi}{\partial y^2} = -2B$$

Hence

$$\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} = 0 - 2B \neq 0$$

Hence flow is not irrotational,

T3: Solution

Apply continuity

$$\dot{m}_{inlet} = \dot{m}_{exit}$$

$$\rho(\pi r^2)V = \rho(2\pi r h)V_r$$

$$rV = 2hV_r$$

$$V_r = \frac{Vr}{2h}$$

Fluid Dynamics & Flow Measurement

Detailed Explanation

Try Yourself Questions

T1: Solution

Applying Bernoullis between points 1 and 2

:.

$$V_2 = \sqrt{2gh_3 \left\{ \frac{\rho_1 h_1}{\rho_3 h_3} + \frac{\rho_2 h_2}{\rho_3 h_3} + 1 \right\}}$$

T2: Solution

$$\Delta h_1 = \left[\frac{s_m}{s_p} - 1 \right] x = \left[\frac{13.6}{0.8} - 1 \right] 20 = 320 \text{ cm}$$

$$\Delta h_2 = \left[1 - \frac{s_m}{s_P}\right] x = \left[1 - \frac{\rho_{\text{air}}}{1000}\right] x$$

$$\rho_{\text{air}} = \frac{1.013 \times 10^5}{287 \times 298} = 1.184 \text{ kg/m}^3$$

$$\Delta h_2 = \left[1 - \frac{1.184 \times 10^{-3}}{0.8}\right] x = 0.9952 x \text{ m}$$

$$Q_{ac.} = C_d \frac{A_1 A_2}{\sqrt{A_1^2 - A_2^2}} \sqrt{2g\Delta h}$$

$$\frac{Q_1}{Q_2} = \sqrt{\frac{\Delta h_1}{\Delta h_2}}$$

$$\frac{0.16}{0.08} = \sqrt{\frac{320}{0.99852 x}}$$

$$2 = \sqrt{\frac{320}{0.99852 x}}$$

$$4 = \frac{320}{0.99852 x}$$

$$x = \frac{320}{4 \times 0.99852} = 80.12 \text{ cm}$$

Dimensional Analysis

Detailed Explanation

Try Yourself Questions

T1: Solution

As per Reynold's model law

$$\frac{\rho_r V_r l_r}{\mu_r} = 1$$

 \Rightarrow

$$\frac{V_r l_r}{v_r} = 1$$

Viscosity scale ratio,

$$V_r = \frac{v_r}{l}$$

Discharge scale ratio,

$$V_r = \frac{\mathbf{v}_r}{I_r}$$

$$Q_r = \mathbf{V}_r \times \mathbf{A}_r = \mathbf{V}_r \times I_r^2$$

$$\mathbf{v}_r \times I^2 = \mathbf{v}_r \times I_r$$

$$= \frac{\mathbf{v}_r}{l_r} \times l_r^2 = \mathbf{v}_r \times l_r$$

T2: Solution

$$\left[\frac{\rho VL}{\mu}\right]_{\text{model}} = \left[\frac{\rho VL}{\mu}\right]_{P}$$

Given

$$\frac{L_m}{L_P} = \frac{1}{6}$$
$$[VL]_m = [VL]_P$$

$$[VL]_{m}^{r} = [VL]_{F}$$

$$V_m \times L_m = 60 \times \frac{L_P}{L_m} = 60 \times 6 = 360 \text{ km/hr}$$

$$F_D = C_D \frac{1}{2} \rho A V^2$$

$$F_{\rm p} \propto (|V|^2)$$

$$F_D \propto (LV)^2$$

 $(F_D)_P = k[L_P v_P]^2$

$$(F_D)_m = k[L_m V_m]^2$$

$$\frac{(F_D)_P}{(F_D)_m} = \frac{L_P^2 V_P^2}{L_m^2 V_m^2}$$

$$= 6^2 \times \left(\frac{60}{360}\right)^2$$

$$\frac{(F_D)_P}{250} = 1$$

$$(F_D)_P = 250 \text{ N}$$

Power required to overcome the drag in prototype

$$= (F_D)_P \times V_P$$
$$= 250 \times \frac{60 \times 1000}{3600}$$

= 4167.67 W = 4.167 kW

Flow Through Pipes

Detailed Explanation

of

Try Yourself Questions

T1: Solution

All the losses are negligible except friction.

$$H = \frac{4fL}{d} \cdot \frac{V^2}{2g}$$

$$15 = \frac{0.02 \times 1000 \times V^2}{0.3 \times 2 \times 9.81}$$

 \therefore f = 0.02 which is very high.

So it will be friction factor and 4f = 0.02

$$V^2 = \frac{15 \times 0.3 \times 2 \times 9.81}{0.02 \times 1000}$$

$$V = 2.101 \,\text{m/sec}$$

Flow rate,
$$\dot{Q} = AV = \frac{\pi}{4}(0.3)^2 \times 2.101$$

$$\dot{Q} = 0.1485 \,\text{m}^3/\text{sec}$$

Now addition same pipe of length is added in later half of pipe as

$$Q_1 = Q_2 + Q_3$$

$$AV = AV' + AV'$$

$$V'' = \frac{V}{2}$$

$$h_f = 15 = \frac{4fL'}{d} \cdot \frac{V^2}{2g} + \frac{4fL'}{d} \cdot \frac{V'^2}{2g}$$

$$15 = \frac{0.02 \times 500}{0.3} \frac{V^2}{2g} + \frac{0.02 \times 500}{0.3} \times \frac{1}{4} \cdot \frac{V^2}{2g}$$

60 cm

$$15 = 2.124 V^2$$
 $V = 2.657 \text{ m/sec}$
 $V' = \frac{V}{2} = 1.329 \text{ m/sec}$

Discharge rate

$$Q' = A.V = \frac{\pi}{4}.(0.3)^2 \times 2.657 = 0.18781 \text{ m}^3/\text{sec}$$

Increase in discharge = $\frac{Q' - Q}{Q}$ = 26.47%.

T2: Solution

Using the Bernaulli's equation, at points 1 and 2

 \therefore Let p_1 , V_1 , Z_1 be the pressure, velocity and head at point 1, and p_2 V_2 , Z_2 , be the corresponding values

$$\frac{p_{1}}{\rho g} + \frac{V_{1}^{2}}{2g} + Z_{1} = \frac{p_{2}}{\rho g} + \frac{V_{2}^{2}}{2g} + Z_{2} + h_{L}$$

$$h_{L} = \left(1 - \frac{1}{C_{c}}\right)^{2} \frac{V_{2}^{2}}{2g}$$

$$\therefore \qquad h_{L} = \left(1 - \frac{1}{0.65}\right)^{2} \frac{V_{2}^{2}}{2g}$$

$$\therefore \qquad h_{L} = 0.2899 \frac{V_{2}^{2}}{2g}$$

$$V_1 = \frac{V_2}{4}$$

Using the Bernaulli's equation

$$\therefore \frac{100 \times 10^{3}}{1000 \times 9.81} + \frac{1}{2g} \left(\frac{V_{2}}{4}\right)^{2} + Z_{1} = \frac{80 \times 10^{3}}{1000 \times 9.81} + \frac{V_{2}^{2}}{2g} + Z_{2} + 0.2899 \frac{V_{2}^{2}}{2g}$$

$$\therefore 10.1936 + \frac{V_2^2}{32g} = 8.1549 + 1.2899 \frac{V_2^2}{2g}$$
 [:: $Z_1 = Z_2$]

$$10.1936 - 8.1549 = 1.2899 \frac{V_2^2}{2g} - \frac{V_2^2}{32g}$$

$$2.0387 = 0.06255 V_2^2$$
⇒ $V_2^2 = 32.5886$
∴ $V_2 = 5.7086 \text{ m/s}$

∴ Flow rate,
$$Q = A_2 V_2 = \frac{\pi}{4} \times (0.3)^2 \times 5.7086$$

$$Q = 0.4035 \,\text{m}^3/\text{s}$$

Also,
$$h_{L} = \left(1 - \frac{1}{C_{c}}\right)^{2} \frac{V_{2}^{2}}{2g}$$

$$h_{L} = \left(1 - \frac{1}{0.65}\right)^{2} \times \frac{\left(5.7086\right)^{2}}{2 \times 9.81}$$

$$h_{L} = 0.482 \,\text{m}$$

T3: Solution

(ii)

$$L_1 = 1800 \text{ m}$$

$$L_2 = 1200 \text{ m}$$

$$L_3 = 600 \text{ m}$$

$$D_1 = 50 \text{ cm} = 0.5 \text{ m}$$

$$D_2 = 40 \text{ cm} = 0.4 \text{ m}$$

$$D_1 = 50 \text{ cm} = 0.5 \text{ m}$$
 $D_2 = 40 \text{ cm} = 0.4 \text{ m}$ $D_3 = 30 \text{ cm} = 0.3 \text{ m}$

(i) We know for the pipe connected in series

$$\frac{L_{eq}}{D_{eq}^{5}} = \frac{L_{1}}{D_{1}^{5}} + \frac{L_{2}}{D_{2}^{5}} + \frac{L_{3}}{D_{3}^{5}}$$

$$\frac{L_{eq}}{(0.4)^5} = \frac{1800}{(0.5)^5} + \frac{1200}{(0.4)^5} + \frac{600}{(0.3)^5}$$

$$L_{eq} = 4318.22 \,\mathrm{m}$$

$$\frac{L_{eq}}{D_{eq}^{5}} = \frac{L_{1}}{D_{1}^{5}} + \frac{L_{2}}{D_{2}^{5}} + \frac{L_{3}}{D_{3}^{5}}$$

$$\therefore \qquad \left(\frac{3600}{D_{eq}^{5}}\right) = \frac{1800}{(0.5)^{5}} + \frac{1200}{(0.4)^{5}} + \frac{600}{(0.3)^{5}}$$

On solving,

 $D_{eq} = 0.38570 \,\mathrm{m}$ $D_{eq} = 38.57 \,\mathrm{cm}$

$$\therefore$$

(iii)

$$Q = Q_1 + Q_2 + Q_3$$

Since,

$$h_f \propto \frac{LQ^2}{D^5}$$

So,

$$Q \propto \left(\frac{D^5}{L}\right)^{1/2}$$

 $[h_f]$ is same for parallel connections

Thus,
$$\left(\frac{D_{eq}^{5}}{L_{eq}}\right)^{1/2} = \left(\frac{D_{1}^{5}}{L_{1}}\right)^{1/2} + \left(\frac{D_{2}^{5}}{L_{2}}\right)^{1/2} + \left(\frac{D_{3}^{5}}{L_{3}}\right)^{1/2}$$

$$\Rightarrow \qquad \left(\frac{0.5^5}{L_{eq}}\right)^{1/2} = \left(\frac{0.5^5}{1800}\right)^{1/2} + \left(\frac{0.4^5}{1200}\right)^{1/2} + \left(\frac{0.3^5}{600}\right)^{1/2}$$

On solving,

$$L_{eq} = 377.345 \,\mathrm{m}$$

Laminar and Turbulent Flow

Detailed Explanation

of

Try Yourself Questions

T1: Solution

Reynolds number,

Re =
$$\frac{\rho VD}{\mu} = \frac{1260 \times 5.0 \times 0.10}{1.50} = 420$$

(a) As this value is less than 2000, the flow is laminar. In laminar flow in a conduit

$$\tau_0 = \frac{8\mu V}{D} = \frac{8 \times 1.50 \times 5.0}{0.10} = 600 \text{ Pa}$$

(b) In laminar flow the head loss

$$h_f = \frac{32 \,\mu VL}{\gamma D^2} = \frac{32 \times 1.50 \times 5.0 \times 12}{\left(1260 \times 9.81\right) \left(0.1\right)^2} = 23.3 \text{ m}$$

(c) Power expended

$$P = \gamma Q h_f$$

Discharge

$$Q = AV = \frac{\pi \times (0.1)^2}{4} \times 5.0 = 0.03927 \text{ m}^3/\text{s}$$

Power,

$$P = (1260 \times 9.81) \times 0.03927 \times 23.3$$

= 11309.8 W = 11.31 kW

T2: Solution

(a) For two-dimensional laminar flow between parallel plates

$$u_m = \text{Maximum velocity} = \frac{3}{2}V$$

$$=\frac{3}{2}\times 1.40 = 2.10 \text{ m/s}$$

$$V = \left(-\frac{dp}{dx}\right) \frac{B^2}{12\mu}$$

$$\left(-\frac{dp}{dx}\right) = \frac{12\mu V}{B^2} = \frac{12 \times 0.105 \times 1.40}{\left(0.012\right)^2} = 12250$$

Boundary shear stress

$$\tau_0 = \left(-\frac{dp}{dx}\right)\frac{B}{2} = 12250 \times \frac{0.012}{2} = 73.5 \text{ Pa}$$

(c) Shear stress τ at any y from the boundary

$$\tau = \left(-\frac{dp}{dx}\right)\left(\frac{B}{2} - y\right)$$

At y = 0.002 m

1.
$$\tau = (12250) \left(\frac{0.012}{2} - 0.002 \right) = 49 \text{ Pa}$$

Velocity

$$v = \frac{1}{2\mu} \left(-\frac{dp}{dx} \right) (By - y^2)$$
$$= \frac{1}{2 \times 0.105} \times 12250 \left[0.012 \times 0.002 - (0.002)^2 \right]$$

$$v = 1.167 \,\text{m/s}$$

T3: Solution

Given:

At R:

 $\overline{u} = 1.5 \text{ m/s}$

At $\frac{R}{2}$

 $\bar{u} = 1.35 \,\text{m/s}$

Flow is turbulent

We know

$$\frac{u - \overline{u}}{U^*} = 5.75 \log_{10} \left(\frac{y}{R}\right) + 3.75$$

Given, at

$$y = R, u = 1.5 \text{ m/s}$$

:.

$$\frac{1.5 - \overline{u}}{U^*} = 3.75$$
 ...(i)

Also at,

$$y = \frac{R}{2} = \frac{0.1}{2} \Rightarrow 0.05 \text{ m}, u = 1.35$$

 $\frac{1.35 - \overline{u}}{U^*} = 5.75 \log_{10} \left(\frac{1}{2}\right) + 3.75$

 $\frac{1.35 - \overline{u}}{1.1^*} = 2.0190$

...(ii)

Dividing eq. (i) by eq. (ii)

$$\frac{1.5 - \overline{u}}{1.35 - \overline{u}} = 1.857$$

$$1.5 - \overline{u} = 1.857(1.35 - \overline{u})$$

$$1.5 - \overline{u} = 2.507 - 1.857\overline{u}$$

1.857
$$\overline{u} - \overline{u} = 1.007$$

0.857 $\overline{u} = 1.007$
 $\overline{u} = 1.175 \text{ m/s}$
∴ $Q = \overline{u} \times \pi R^2$
 $Q = 1.175 \times \pi \times (0.1)^2$
 $Q = 0.0369 \text{ m}^3/\text{s}$
 $\frac{\overline{u}}{U^*} = 5.75 \log_{10} \left(\frac{R}{k}\right) + 4.75$

Also, from eq. (i)

$$\frac{15 - \overline{u}}{U^*} = 3.75$$

$$\therefore \frac{1.5 - 1.175}{U^*} = 3.75$$

$$\Rightarrow$$
 $U^* = 0.0866 \,\mathrm{m/s}$

$$\therefore \frac{1.175}{0.0866} = 5.75 \log_{10} \left(\frac{0.1}{k} \right) + 4.75$$

∴
$$k = 2.9 \times 10^{-3} \,\text{m}$$

$$\therefore \qquad \qquad k = 2.9 \, \text{mm}$$

Also,
$$\frac{1}{\sqrt{f}} = 2\log_{10}\left(\frac{R}{k}\right) + 1.74$$

$$\frac{1}{\sqrt{f}} = 2\log_{10}\left(\frac{0.1}{2.9 \times 10^{-3}}\right) + 1.74$$

$$f = 0.043$$

Boundary Layer Theory, Drag and Lift

Detailed Explanation

of

Try Yourself Questions

T1: Solution

$$F_{D1} = C_{fx} \rho \frac{1}{2} A V_{\infty}^{2}$$
 [For first half]
$$C_{fx} = \frac{k}{\sqrt{\text{Re}_{x}}}$$

$$= \frac{k}{\sqrt{\text{Re}_{x}}} \times \rho \times \frac{1}{2} \times b \times \frac{L}{2} \times U_{\infty}^{2}$$

$$= \frac{k\sqrt{2\mu}}{\sqrt{\rho V l}} \times \frac{\rho \times b U_{\infty}^{2} \times L}{4}$$
(1)

$$F_{D2} = C_{fx} \rho \frac{1}{2} A V_{\infty}^2$$
 [for full plate]

$$C_{fx} = \frac{k}{\sqrt{\text{Re}_{L}}}$$

$$= \frac{k \times \rho \times b \times L \times U_{\infty}^{2} \sqrt{\mu}}{\sqrt{\rho VL} \times 2}$$

$$\frac{F_{D_1}}{F_{D_2}} = \frac{\sqrt{2}/4}{1/2}$$
$$= \frac{\sqrt{2}}{4} \times 2 = \frac{\sqrt{2}}{2} = \frac{1}{\sqrt{2}}$$

T2: Solution

Given:

Ist velocity profile

$$\frac{u}{U} = \frac{3}{2} \left(\frac{y}{\delta} \right) - \frac{1}{2} \left(\frac{y}{\delta} \right)^3$$

or

$$u = \frac{3U}{2} \left(\frac{y}{\delta} \right) - \frac{U}{2} \left(\frac{y}{\delta} \right)^3$$

Differentiating w.r.t y, the above equation becomes

$$\frac{\partial u}{\partial y} = \frac{3U}{2} \times \frac{1}{\delta} - \frac{U}{2} \times 3 \left(\frac{y}{\delta}\right)^2 \times \frac{1}{\delta}$$

At
$$y = 0$$
,
$$\left(\frac{\partial u}{\partial y}\right)_{y=0} = \frac{3U}{2\delta} - \frac{3U}{2} \left(\frac{0}{\delta}\right)^2 \times \frac{1}{\delta} = \frac{3U}{2\delta}$$

As $\left(\frac{\partial u}{\partial y}\right)_{y=0}$ is positive. Hence flow will not separate or flow will remain attached with the surface.

2nd Velocity profile

$$\frac{u}{U} = 2\left(\frac{y}{\delta}\right)^2 - \left(\frac{y}{\delta}\right)^3$$

$$u = 2U\left(\frac{y}{\delta}\right)^2 - U\left(\frac{y}{\delta}\right)^3$$

$$\therefore \frac{\partial u}{\partial y} = 2U \times 2\left(\frac{y}{\delta}\right) \times \frac{1}{\delta} - U \times 3\left(\frac{y}{\delta}\right)^2 \times \frac{1}{\delta}$$

at
$$y = 0$$
,
$$\left(\frac{\partial u}{\partial y}\right)_{y=0} = 2U \times 2\left(\frac{0}{\delta}\right) \times \frac{1}{\delta} - U \times 3\left(\frac{0}{\delta}\right)^2 \times \frac{1}{\delta} = 0$$

As $\left(\frac{\partial u}{\partial y}\right)_{y=0} = 0$, the flow is on the verge of separage.

3rd velocity profile

$$\frac{u}{U} = -2\left(\frac{y}{\delta}\right) + \left(\frac{y}{\delta}\right)^2$$

$$u = -2U\left(\frac{y}{\delta}\right) + U\left(\frac{y}{\delta}\right)^2$$

$$\therefore \frac{\partial u}{\partial y} = -2U\left(\frac{1}{\delta}\right) + 2U\left(\frac{y}{\delta}\right) \times \frac{1}{\delta}$$

At
$$y = 0$$
,
$$\left(\frac{\partial u}{\partial y}\right)_{y=0} = -\frac{2U}{\delta} + 2U\left(\frac{0}{\delta}\right) \times \frac{1}{\delta} = -\frac{2U}{\delta}$$

As $\left(\frac{\partial u}{\partial y}\right)_{y=0}$ is negative the flow has separated.

Hydraulic Machines

Detailed Explanation

of

Try Yourself Questions

T1: Solution

Given: (a) Velocity of jet, V = 50 m/s

Angle at outlet = 25°

For the stationary vane, the force in the direction of jet is given as

$$F_x = \text{Mass per sec} \times [V_{1x} - V_{2x}]$$

where,

 $V_{1x} = 50 \text{ m/s}$

$$V_{2x} = -50 \cos 25^{\circ} = -45.315$$

.. Force in direction of jet per unit weight of water

$$= \frac{\text{Mass/sec}[50 - (-45.315)]}{\text{Weight of water/sec}}$$

or

$$F_{x} = \frac{(Mass/sec)[50 + 45.315]}{(Mass/sec) \times g}$$

$$= \frac{1}{g}[50 + 45.315] \text{ N} = \frac{95.315}{9.81} = 9.716 \text{ N}$$

Force exerted by jet in the direction perpendicular to the direction of the jet per unit weight of the flow,

$$F_{y} = \frac{(\text{Mass per sec})[V_{1y} - V_{2y}]}{g \times \text{Mas per sec}}$$

$$= \frac{1}{g}[V_{1y} - V_{2y}] = \frac{1}{g}[O - 50\sin 25^{\circ}] \qquad (\because V_{1y} = 0, V_{2y} = 50\sin 25^{\circ})$$

$$= \frac{-50\sin 25^{\circ}}{9.81} = -2.154 \text{ N}$$

–ve sign means the force F_{v} is acting in the downward direction.

 \therefore Resultant force per unit weight of water = $\sqrt{F_x^2 + F_y^2}$

or
$$F_R = \sqrt{(9.716)^2 + (2.154)^2} = 9.952 \text{ N}$$

The angle made by the resultant with the x-axis.

$$\tan \theta = \frac{F_y}{F_x} = \frac{2.154}{9.716} = 0.2217$$

$$\theta = \tan^{-1} 0.2217 = 12.50^{\circ}$$

(b) Velocity of the vane = 20 m/s

When the vane is moving in the direction of the jet, the force exerted by the jet on the plate in the direction of jet,

$$F_x' = [\text{Mass of water striking/sec}] \times [V_{1x} - V_{2x}]$$

 $V_{1x} = \text{Initial velocity of the striking water}$

$$= (V - u) = 50 - 20 = 30 \text{ m/s}$$

$$V_{2x}$$
 = Final velocity in the direction of x

$$= -(V - u) \cos 25^{\circ} = 30 \times \cos 25^{\circ} = -27.189 \text{ m/s}$$

$$F_{y} = \text{Mass per sec } [30 + 27.189]$$

Force in the direction of jet per unit weight,

$$F'_{x} = \frac{\text{Mass per sec } [30 + 27.189]}{\text{Mass per sec } \times g}$$

$$= \frac{(30+27.189)}{9.81} = 5.829 \text{ N}$$

$$F'_{y} = \frac{1}{g} \left[V_{1y} - V_{2y} \right]$$

$$V_{1y} = 0$$
; $V_{2y} = (V - u) \sin 25^{\circ} = (50 - 20) \sin 25^{\circ} = 30 \sin 25^{\circ}$

$$F'_y = \frac{1}{9.81}[0 - 30\sin 25^\circ] = -1.292 \text{ N}$$

$$\therefore$$
 Resultant force = $\sqrt{(5.829)^2 + (1.292)^2} = 5.917 \text{ N}$

The angle made by the resultant with x-axis,

$$\tan \theta = \frac{1.292}{5.829} = 0.2217$$

$$\theta = \tan^{-1} 0.2217 = 12.30^{\circ}$$

 \therefore Work done per second per unit weight of flow

$$= F_{\star} \times u = 5.829 \times 20 = 116.58 \text{ N m/s}$$

$$\therefore \qquad \text{Power developed } = \frac{\text{Work done per second}}{1000} = \frac{116.58}{1000} = 0.116 \text{ kW}$$

T2: Solution

Given:

 $\begin{array}{lll} \mbox{Velocity of jet,} & V_1 &= 35 \mbox{ m/s} \\ \mbox{Velocity of vane,} & U_1 &= U_2 = 20 \mbox{ m/s} \\ \end{array}$

Angle of jet at inlet, $\alpha = 30^{\circ}$

Angle made by the jet at outlet with the direction of motion of vanes = 120°

 \therefore Angle $\beta = 180^{\circ} - 120^{\circ} = 60^{\circ}$

(a) Angle of vanes tips.

From inlet velocity triangle,

$$V_{\text{w1}} = V_{\text{1}} \cos \alpha = 35 \cos 30^{\circ} = 30.31 \text{ m/s}$$

 $V_{\text{f1}} = V_{\text{1}} \sin \alpha = 35 \sin 30^{\circ} = 17.50 \text{ m/s}$

$$\tan \theta = \frac{V_{f1}}{V_{w1} - u_1} = \frac{17.50}{30.31 - 20} = 1.697$$

$$\theta = \tan^{-1} 1.697 = 59.49^{\circ}$$

By sine rule,
$$\frac{V_{r1}}{\sin 90^{\circ}} = \frac{V_{f1}}{\sin \theta}$$

or
$$\frac{V_{f1}}{1} = \frac{17.50}{\sin 59.49^{\circ}}$$

$$V_{c1} = \frac{17.50}{0.866} = 20.31 \,\text{m/s}$$

Now,
$$V_{r2} = V_{r1} = 20.31 \text{ m/s}$$

From outlet velocity triangle, by sine rule

$$\frac{V_{r2}}{\sin 120^{\circ}} = \frac{u_2}{\sin (60^{\circ} - \phi)}$$

or
$$\frac{20.25}{0.866} = \frac{20}{\sin(60^{\circ} - \phi)}$$

$$\sin (60^{\circ} - \phi) = \frac{20 \times 0.866}{20.31} = 0.852 = \sin(58.50^{\circ})$$

$$\phi = 60^{\circ} - 58.50^{\circ} = 1.5^{\circ}$$

(b) Work done per unit weight of water entering =
$$\frac{1}{g}(V_{w1} + V_{w2}) \times u_1$$
 ...(i)

$$V_{w1} = 30.31 \text{ m/s} \text{ and } u_1 = 20 \text{ m/s}$$

The value of $V_{\omega 2}$ is obtained from outlet velocity triangle

$$V_{w2} = V_{r2} \cos \phi - u_2 = 20.31 \cos 1.5^{\circ} - 20.0 = 0.30 \text{ m/s}$$

:. Work done/unit weight =
$$\frac{1}{9.81}[30.31+0.30] \times 20 = 62.41 \text{ Nm/N}$$

(c) Efficiency =
$$\frac{\text{Work done per kg}}{\text{Energy supplied per kg}}$$

= $\frac{62.41}{\frac{V_1^2}{2g}} = \frac{62.41 \times 2 \times 9.81}{35 \times 35} = 99.96\%$

T3: Solution

Gross head, H_g = 220 m, Net head, H = 200 m, C_V = 0.98, N = 200 rpm, power = 3.7 MW, u_1 = u_2 = u_3

$$\frac{u}{V_1} = 0.46, D = ?$$

Speed of jet at vena contracta i.e. max. speed of jet

$$V_1 = C_V \sqrt{2gH}$$

= 0.98 $\sqrt{2 \times 9.81 \times 200}$
= 61.4 m/sec

Speed of wheel

$$u = 0.46 \times V_1$$

= 0.46 × 61.4 = 28.24 m/sec

$$u = \frac{\pi DN}{60} = 28.24 [u = u_1 = u_2]$$

$$D = \frac{28.24 \times 60}{\pi \times 200}$$

$$D = 2.697 \,\mathrm{m}$$

$$V_{12} = V_{11} = V_1 - u$$

= 61.4 - 28.24
= 33.16 m/sec

$$V_{w2} = V_{r2} \cos 16 - u$$

= 33.16 × cos 16 - 28.24

$$V_{w2} = 3.635 \,\text{m/sec}$$

Blade efficiency,

:.

$$\eta_b = \frac{2u(V_{w1} + V_{w2})}{V_t^2} = \frac{2 \times 28.24 (61.4 + 3.635)}{61.4^2}$$

$$\eta_b = 97.5\%$$

Hydraulic efficiency

$$= \frac{u(V_{w1} + V_{w2})}{aH} = \frac{28.24(61.4 + 3.635)}{9.81 \times 200} = 0.936 = 93.6\%$$

T4: Solution

 $H_{a} = 500 \,\mathrm{m}$ Given: Gross head,

 $h_f = \frac{H_g}{3} = \frac{500}{3} = 166.7 \text{ m}$ Head lost in friction,

 $H = H_g - h_f = 500 - 166.7 = 333.3 \text{ m}$.. Net head,

Discharge, $Q = 2.0 \,\mathrm{m}^3/\mathrm{s}$ $= 165^{\circ}$ Angle of deflection

 $\phi = 180^{\circ} - 165^{\circ} = 15^{\circ}$:. Angle,

= 0.45Speed ratio, $C_{v} = 1.0$ Co-efficient of velocity,

 $V_1 = C_V \sqrt{2gH} = 1.0 \times \sqrt{2 \times 9.81 \times 333.3} = 80.86 \text{ m/s}$ Velocity of jet,

 $u = \text{Speed ratio} \times \sqrt{2gH}$ Velocity of wheel,

 $u = u_1 = u_2 = 0.45 \times \sqrt{2 \times 9.81 \times 333.3} = 36.387 \text{ m/s}$ or

 $V_{r_1} = V_1 - U_1 = 80.86 - 36.387$ ٠. $= 44.473 \, \text{m/s}$

 $V_{w_1} = V_1 = 80.86 \text{ m/s}$ Also

From outlet velocity tringle, we have

$$\rho a V_1 \Big[V_{w_1} + V_{w_2} \Big] \times u = \rho Q \Big[V_{w_1} + V_{w_2} \Big] \times u$$
 (:: aV₁ = Q)
= 1000 × 2.0 × [80.86 + 6.57] × 36.387 = 6362630 Nm/s

.. Power given by the water to the runner in kW

$$= \frac{\text{Work done per second}}{1000} = \frac{6362630}{1000} = 6362.63 \text{ kW} = 6.36 \text{ MW}$$

Hydraulic efficiency of the turbine is given by equation as

$$\eta_{h} = \frac{2[V_{w_{1}} + V_{w_{2}}] \times u}{V_{1}^{2}} = \frac{2[80.86 + 6.57] \times 36.387}{80.86 \times 80.86}$$
$$= 0.9731 \text{ or } 97.31\%$$

T5: Solution

Given: Head, $H = 60 \, \text{m}$ $N = 200 \, \text{rpm}$ Speed, $SP = 95.6475 \, kW$ Shaft power,

Velocity of bucket, $u = 0.45 \times \text{Velocity of jet}$

Overall efficiency, $\eta_0 = 0.85$ Co-efficient of velocity, $C_{v} = 0.98$

Design of Pelton wheel means to find diameter of jet (d), diameter of wheel (D), Width and depth of buckets and number of buckets on the wheel

(i) Velocity of jet,

$$V_1 = C_V \times \sqrt{2gH} = 0.98 \times \sqrt{2 \times 9.81 \times 60} = 33.62 \text{ m/s}$$

 $u = u_1 = u_2 = 0.45 \times V_1 = 0.45 \times 33.62 = 15.13 \text{ m/s}$.. Bucket velocity,

 $u = \frac{\pi DN}{60}$ But where D = Diameter of wheel

$$\therefore 15.13 = \frac{\pi \times D \times 200}{60}$$

 $D = \frac{60 \times 15.13}{\pi \times 200} = 1.44 \text{ m}$ or

(ii) Diameter of the jet (d)

Overall efficiency $\eta_0 = 0.85$

But
$$\eta_0 = \frac{SP}{WP} = \frac{95.6475}{\left(\frac{WP}{1000}\right)} = \frac{95.6475 \times 1000}{\rho \times g \times Q \times H}$$
 $(\because WP = \rho gQH)$

$$= \frac{95.6475 \times 1000}{1000 \times 9.81 \times Q \times 60}$$

$$\therefore \qquad Q = \frac{95.6475 \times 1000}{\eta_0 \times 1000 \times 9.81 \times 60} = \frac{95.6475 \times 1000}{0.85 \times 1000 \times 9.81 \times 60} = 0.1912 \text{ m}^3/\text{s}$$

But the discharge, $Q = Area of jet \times Velocity of jet$

$$\therefore \qquad 0.1912 = \frac{\pi}{4}d^2 \times V_1 = \frac{\pi}{4}d^2 \times 33.62$$

$$d = \sqrt{\frac{4 \times 0.1912}{\pi \times 33.62}} = 0.085 \text{ m} = 85 \text{ mm}$$

(iii) Size of buckets

 $= 5 \times d = 5 \times 85 = 425 \text{ mm}$ Width of bucket $= 1.2 \times d = 1.2 \times 85 = 102 \text{ mm}$ Depth of bucket

(iv) Number of buckets on the wheel is given by eq. as

$$Z = 15 + \frac{D}{2d} = 15 + \frac{1.44}{2 \times 0.085}$$
$$= 15 + 8.5 = 23.5 \text{ Say } 24$$

T6: Solution

Inlet diameter, $D_1 = 1.0 \, \mathrm{m}$ Rotational speed, $N = 400 \, \mathrm{rpm}$ Area of flow, $A = 0.25 \, \mathrm{m}^2$ Net available head, $H = 65 \, \mathrm{m}$ Velocity of flow at inlet, $V_{\mathrm{fl}} = 8.0 \, \mathrm{m/s}$ Velocity of whirl at inlet, $V_{\mathrm{wl}} = 25.0 \, \mathrm{m/s}$

Flow is radial at outlet i.e. velocity of whirl at outlet, $V_{wp} = 0$

Let the peripheral velocity at inlet and outlet be u_1 and u_2 respectively

$$u_1 = \frac{\pi D_1 N}{60} = \frac{\pi \times 1 \times 400}{60} = 20.94 \text{ m/s}$$

Discharge, $Q = A \times V_{f1} = 0.25 \times 8 = 2 \text{ m}^3/\text{s}$

Power developed by the wheel is expressed as

$$P = \rho Q(u_1 V_{w1} - u_2 V_{w2})$$

= 1000 \times 2 \times (20.94 \times 25 - u_2 \times 0) \times 10⁻³ = 1047 kW

Hydraulic efficiency,
$$\eta_h = \left[\frac{u_1 V_{w1} - u_2 V_{w2}}{gH}\right] \times 100$$
$$= \left[\frac{20.94 \times 25 - u_2 \times 0}{9.81 \times 65}\right] \times 100 = 82.1\%$$

T7: Solution

Given:

Head, $H = 12 \,\mathrm{m}$ Hub diameter, $D_b = 0.35 \times D_0$ Speed $N = 100 \,\mathrm{rpm}$

Speed, N = 100 rpmVane angle at outlet, $\phi = 15^{\circ}$

Flow ratio $= \frac{V_{f_1}}{\sqrt{2aH}} = 0.6$

 $V_{f_1} = 0.6 \times \sqrt{2gH} = 0.6 \times \sqrt{2 \times 9.81 \times 12} = 9.2 \text{ m/s}$

From the outlet velocity triangle, $V_{w_2} = 0$

$$\tan \phi = \frac{V_{f_2}}{u_2} = \frac{V_{f_1}}{u_2} \left(\because V_{f_2} = V_{f_1} = 9.2 \right)$$
$$= \frac{9.2}{u_2}$$

 $u_2 = \frac{9.2}{\tan 15^{\circ}} = 34.33 \text{ m/s}$

But for Kaplan turbine, $u_1 = u_2 = 34.33$

Where $D_0 = Dia.$ of runner

tan 15°

Now, using the relation,

$$u_1 = \frac{\pi D_0 \times N}{60}$$
 or 34.33 = $\frac{\pi \times D_0 \times 100}{60}$

$$D_0 = \frac{60 \times 34.33}{\pi \times 100} = 6.56 \text{ m}$$

:.

$$D_b = 0.35 \times D_0 = 0.35 \times 6.35 = 2.23 \text{ m}$$

Discharge through turbine is given by eq. as

$$Q = \frac{\pi}{4} \left[D_0^2 - D_b^2 \right] \times V_{f_1} = \frac{\pi}{4} \left[6.55^2 - 2.3^2 \right] \times 9.2$$
$$= \frac{\pi}{4} \left(42.9026 - 5.29 \right) \times 9.2 = 271.77 \text{ m}^3/\text{s}$$

T8: Solution

Given:

Head, $H = 25 \,\mathrm{m}$ Speed, $N = 200 \,\mathrm{rpm}$

Discharge, $Q = 9 \text{ cumec} = 9 \text{ m}^3/\text{s}$

Efficiency, $\eta_0 = 90\% = 0.90$ (Take the efficiency as overall η)

Now using relation, $\eta_0 = \frac{\text{Work developed}}{\text{Water power}} = \frac{P}{\underbrace{\rho \times g \times Q \times H}}$

 $P = \eta_0 \times \frac{\rho \times g \times Q \times H}{1000} = \frac{0.90 \times 9.81 \times 1000 \times 9 \times 25}{1000} = 1986.5 \text{ kW}$

(i) Specific speed of the machine (N_s)

Using equation $N_s = \frac{N\sqrt{P}}{H^{5/4}} = \frac{200 \times \sqrt{1986.5}}{25^{5/4}} = 159.46 \text{ rpm}$

(ii) Power generated P = 1986.5 kW

(iii) As the specific speed lies between 51 and 255, the turbine is a Francis turbine.

T9: Solution

Given:

$$Q = 0.04 \text{ m}^3/\text{s}$$

$$H_g = 20 \text{ m}$$

$$\eta_0 = \frac{\rho g Q H}{P}$$

$$f = 0.015$$

$$I = 100 \text{ m}$$

$$D = 0.15 \text{ m}$$

$$\eta_0 = 70\%, \, \eta_0 = 0.7$$

$$h_f = \frac{4f I Q^2}{12D^5} = \frac{4 \times 0.015 \times 100 \times (0.04)^2}{12 \times (0.15)^5} = 10.534 \text{ m}$$

$$H_{net} = H_g + h_f = 20 \text{ m} + 10.534$$

:.

⇒
$$H_{net} = 30.534 \,\mathrm{m}$$

$$\eta_0 = \frac{\frac{\rho gQH_{net}}{1000}}{P}$$

$$0.70 = \frac{\frac{1000 \times 9.81 \times 0.04 \times 30.534 \,\mathrm{kW}}{1000}}{P}$$
∴ $P = \frac{9.81 \times 0.04 \times 30.534}{0.7} \,\mathrm{kW}$

$$P = 17.116 \,\mathrm{kW}$$

Hence power required to derive the pump is 17.116 kW.

Open Channel Flow

Detailed Explanation of

Try Yourself Questions

3. Energy Depth Relationship

T1: Solution

Froude number, of section (1)-(1)

$$F_{r_1} = \frac{V}{\sqrt{gy_1}} = \frac{2.4}{\sqrt{9.81 \times 1.2}}$$

= 0.69 < 1.0 (flow is subcritical)

Discharge per unit width, $q = y \times V = 1.2 \times 2.4 = 2.88 \text{ m}^2/\text{s}$

Specific energy at section-1
$$E_1 = y_1 + \frac{V_1^2}{2g} = 1.2 + \frac{2.4^2}{2 \times 9.81} = 1.494 \text{ m}$$

Maximum height of hump that can be provided

$$\Delta z_{\text{max}} = E_1 - E_c = 1.494 - 1.418 = 0.076 \text{ m}$$

Height of hump provided $\Delta_z = 0.6 \text{ m} > \Delta z_{\text{max}}$

As upstream flow is subcritical, therefore to pass same discharge at same specific energy, upstream depth of flow will increase.

T2: Solution

Given data:

$$Q = 60 \text{ m}^3/\text{sec}$$
; $B = 6 \text{ m}$; $z = 2$; $y_1 = 2.5 \text{ m}$

Area of flow,
$$A = (B + zy_1)y_1 = (6 + 2 \times 2.5) 2.5 = 27.5 \text{ m}^2$$

Velocity,
$$V_1 = \frac{Q}{A} = \frac{60}{27.5} = 2.182 \text{ m/sec}$$

Specific energy at section 1 - 1

$$E_1 = y_1 + \frac{V_1^2}{2g}$$

$$\Rightarrow E_1 = 2.5 + \frac{(2.182)^2}{2 \times 9.81}$$

$$\Rightarrow \qquad \qquad E_1 = 2.5 + 0.243$$

$$E_1 = 2.743 \,\mathrm{m}$$

 $\Delta Z = 0.6 \text{ m}$

Froude number at section 1 - 1,

$$F_1 = \frac{V_1}{\sqrt{gA/T}} = \frac{2.182}{\sqrt{\frac{9.81 \times 27.5}{6 + 2 \times 2 \times 2.5}}} = 0.531 < 1$$

Hence the flow at section 1 - 1 is subcritical.

Specific energy at section 2 - 2 will be more than E_1 due to lowering of the channel bed.

$$E_2 = E_1 + \Delta Z$$

$$\Rightarrow \qquad \qquad E_2 = 2.743 + 0.6$$

$$\Rightarrow \qquad \qquad E_2 = 3.343 \,\mathrm{m}$$

The discharge per unit width at section 2 - 2 may be given by

$$q = \frac{Q}{B} = \frac{60}{6} = 10 \text{ m}^3/\text{m/s}$$

.. Critical depth,
$$y_c = \left(\frac{q^2}{g}\right)^{1/3} = \left[\frac{(10)^2}{9.81}\right]^{1/3} = 2.168 \text{ m}$$

Critical specific Energy,
$$E_c = \frac{3}{2}y_c = \frac{3}{2} \times 2.168 = 3.252 \text{ m}$$

Since
$$E_2 > E_c$$
, the flow is possible.

Minimum amount by which bed must be lowered for the upstream flow to be possible

$$= E_c - E_1 = 3.252 - 2.743 = 0.509 \text{ m}$$

Specific energy at section 2 - 2

$$E_2 = y_2 + \frac{Q^2}{2gA^2}$$

$$\Rightarrow 3.343 = y_2 + \frac{(60)^2}{2 \times 9.81 \times (6)^2 \times y_2^2}$$

$$\Rightarrow 3.343 = y_2 + \frac{5.1}{y_2^2}$$

$$\Rightarrow y_2^3 - 3.343 y_2^2 + 5.1 = 0$$

$$\Rightarrow y_2 = 2.572 \text{ m and } y_2 = 1.845 \text{ m}$$

$$(\text{Fr}_2 < 1) \quad (\text{Fr}_2 > 1)$$
So
$$y_2 = 2.572 \text{ m}$$
Change in water surface level
$$\Rightarrow y_2 - y_1 = (2.5 + 0.6) - 2.572 = 0.528 \text{ m}$$

5. Rapidly Varied Flow

T1: Solution

Alternate depth, $y_1 = 0.5 \text{ m}$, $y_2 = 2 \text{ m}$

(a) Discharge in m³/sec per metre width 'q' is given by

or
$$\frac{2q^2}{g} = y_1 y_2 (y_1 + y_2)$$

$$q^2 = \frac{y_1 y_2 (y_1 + y_2)}{2} g$$

$$q^2 = \frac{0.5 \times 2 \times (0.5 + 2)}{2} \times 9.81$$

$$\Rightarrow \qquad q = 3.5 \,\text{m}^3/\text{sec per metre width}$$

(b) Critical depth 'y_c' for this discharge is given by

$$y_c = \left(\frac{q^2}{g}\right)^{1/3} = \left(\frac{3.5^2}{9.81}\right)^{1/3} = 1.077 \text{ m}$$

(c) Energy loss in the jump (in metre head) is given by

$$\Delta E = \frac{(y_2 - y_1)^3}{4y_1y_2} = \frac{(2 - 0.5)^3}{4 \times 2 \times 0.5} = 0.84 \text{ m}$$

T2: Solution

146.5 m 2.5 m 144 m E 80 105 m

Average fall of water

Actual velocity

$$h_{av} = 39 + \frac{2.5}{2} = 40.25$$
 Theoretical velocity
$$= \sqrt{2 \times g \times h_{av}} = \sqrt{2 \times 9.81 \times 40.25} = 28.10 \text{ m/sec}$$
 Actual velocity
$$= 0.9 \times 28.10 = 25.30 \text{ m/sec}$$

Depth of flow at foot of spillway

$$Y_{1} = \frac{Q}{V} = \frac{8.52}{25.30} = 0.3370 \text{ m}$$

$$F_{1} = \frac{V_{1}}{\sqrt{gY_{1}}} = \frac{25.30}{\sqrt{9.81 \times 0.3370}} = 13.91$$

$$Y_{2} = \frac{Y_{1}}{2} \left[\sqrt{1 + 8F_{1}^{2}} - 1 \right]$$

$$= \frac{0.3370}{2} \left[\sqrt{1 + 8 \times 13.9^{2}} - 1 \right] = 6.46 \text{ m}$$

