
Electrical Engineering
Computer Fundamentals

2020

Answer key and Hint of
Objective & Conventional Questions

MPROVEMENT

© Copyrightwww.madeeasypublications.org

©
C

op
yrig

ht: S
ub

ject m
atter to M

A
D

E
 E

A
S

Y
 P

ub
lications, N

ew
 D

elhi. N
o p

art of this b
ook m

ay b
e rep

rod
uced

 or utilised
 in any form

 w
ithout the w

ritten p
erm

ission.

Basic CPU Architecture1
1. (d)

2. (b)

3. (d)

4. (c)

5. (c)

6. (d)

© Copyright www.madeeasypublications.org

3Rank Improvement Workbook

Solution : 1
D2 < D < D1

Solution : 2

Operation Instruction
size

Required
clock cycle

R0, Memory [5000]
R R
R R R

R

2 1

2 1 3

2

 Memory [()]
 (+)]

Memory [6000]
Machine Halt

←

←

←

2

1

1

2

1

2 × 3 + 2 = 8

1 × 3 + 2 = 5

1 = 1

3 × 2 + 2 = 8

1 + 1 = 2

Total = 24

Solution : 3

0172
0171
0170
016F
016E

A0
5F

PSW content

PC content

0100

0172
0170
016E

M
SP

Stack

Just before CALL instruction execution, SP contains 016E
While CALL execution:While CALL execution:While CALL execution:While CALL execution:While CALL execution:
(i) PC contents are pushed i.e., SP incremented by 2 ⇒ SP = 0170
(ii) PSW contents are pushed i.e., SP incremented by 2 ⇒ SP = 0172

∴ The value of stack pointer is (0172)16.

© Copyrightwww.madeeasypublications.org

©
C

op
yrig

ht: S
ub

ject m
atter to M

A
D

E
 E

A
S

Y
 P

ub
lications, N

ew
 D

elhi. N
o p

art of this b
ook m

ay b
e rep

rod
uced

 or utilised
 in any form

 w
ithout the w

ritten p
erm

ission.

1. (d)

2. (d)

3. (a)

4. (c)

5. (a)

Memory Organization2
6. (c)

7. (c)

8. (a)

© Copyright www.madeeasypublications.org

5Rank Improvement Workbook

Solution : 1
For For For For For I-cache:-cache:-cache:-cache:-cache:

Capacity of tag memory = Tag bits × line size
= 18 bits × 1 K

For D-cache:For D-cache:For D-cache:For D-cache:For D-cache:
Capacity of tag memory = Number of tag bits × Number of set × Number of lines in each set

= 1 K × 19 bits

For L2-cache:For L2-cache:For L2-cache:For L2-cache:For L2-cache:
Capacity of tag memory = Number of tag bits × Number of set × Number of lines in each set

= 4 K × 16 bits

Solution : 2
Tag size = No of cache lines*No of bits in tag field for any mapping.
Hence the total size of memory needed at the cache controller to store metadata tags for the write back
cache is

= Number of cache lines*(tag bits + valid bit + modified bit)
= 256*(19 + 1 + 1) = 256 * 21
= 5376 bits

Solution : 3
Total time = (3.24 + 1.48) = 4.72 ns

© Copyrightwww.madeeasypublications.org

©
C

op
yrig

ht: S
ub

ject m
atter to M

A
D

E
 E

A
S

Y
 P

ub
lications, N

ew
 D

elhi. N
o p

art of this b
ook m

ay b
e rep

rod
uced

 or utilised
 in any form

 w
ithout the w

ritten p
erm

ission.

1. (d)

2. (b)

3. (a)

4. (b)

Input/Output Organization3
5. (12.5, 59.60)

© Copyright www.madeeasypublications.org

7Rank Improvement Workbook

Solution : 1
Average time to transfer = Average seek time + Average rotational delay + Average data transfer time for
transferring 250 bytes

= 249.5 + 50 + 0.5 = 300 ms

Solution : 2

When head is moving then it is reading data from all 16 surface simultaneously.
Currently head is on 9th surface, sector no. 40.
How much data it read from 9th surface = 24 ×512 = 12288 bytes.
How much data it read from surface 10th to 15th = 5 × 512 × 64 = 163840 bytes.
How much data it read from cylinder 1201 to 1283

82 × 16 × 64 × 512 = 42991616 bytes
Total data read from 1200th to 1283th cylinder

12288 + 163840 + 42991616= 13167744 bytes = 42156 KB
But we need to real 42797 KB. So we need to go on 1284th cylinder.

Solution : 3
Average time = Average rotational delay + Average seek time + Controller’s time

+ Transfer time ≅ 6.1 msec

© Copyrightwww.madeeasypublications.org

©
C

op
yrig

ht: S
ub

ject m
atter to M

A
D

E
 E

A
S

Y
 P

ub
lications, N

ew
 D

elhi. N
o p

art of this b
ook m

ay b
e rep

rod
uced

 or utilised
 in any form

 w
ithout the w

ritten p
erm

ission.

Data Representation4
1. (d)

2. (d)

3. (d)

4. (c)

5. (a)

6. (–64 to +63, 0 to 127)

© Copyright www.madeeasypublications.org

9Rank Improvement Workbook

Solution : 1
Difference of last two successive numbers = 222

Solution : 2

0 01111100 1101101000...

S BE M

1 bit 8 bit 23 bit

1. Sign = 0 = +ve

2.

BE – Bias

0 1 1 1 1 1 0 0
0 1 1 1 1 1 1 1
1 1 1 1 1 1 0 1

BE =
Bias =

AE =

AE =
2 2 2 2 2 2 2 2

Here sign of AE is negative so take two complement of AE.
i.e., 00000010

1
00000011

⇒ –3

3. Mantissa
∴ Normal Mantissa = 1.M = 1.1101101
Data + 1.1101101 × 2–3 {± M × B±e}

mantissa align to right upto 3 times
↓

+0.0011101101
↓

0.228

© Copyrightwww.madeeasypublications.org

©
C

op
yrig

ht: S
ub

ject m
atter to M

A
D

E
 E

A
S

Y
 P

ub
lications, N

ew
 D

elhi. N
o p

art of this b
ook m

ay b
e rep

rod
uced

 or utilised
 in any form

 w
ithout the w

ritten p
erm

ission.

Basic of Operating Systems, Networking

and Programming Elements5
1. (a)

2. (b)

3. (c)

4. (c)

5. (b)

6. (c)

7. (a)

8. (a)

9. (c)

10. (b)

11. (b)

12. (b)

13. (b)

14. (c)

15. (d)

© Copyright www.madeeasypublications.org

11Rank Improvement Workbook

Solution : 1
#include <stdio.h>
#include <conio.h>
#define ROW 4
#define COL 4
int M[ROW][COL] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16};
main()
{

int i, j, t;
for (i = 0; i < 4; ++i)
{

for(j = i; j < 4; ++j)
{

t = M[j][i];
M[i][j] = M[j][i];
M[j][i] = t;

}
}
for (i = 0; i < 4; ++i)

for (j = 0; j < 4; ++j)
printf (“%d”, M[i][j]);

}

Solution : 2
#include <stdio.h>
#include <conio.h>
main()
{

int x, y, m, n;
scanf ("%d %d", &x , &y);
/ * Assume x > 0 and y > 0* /
m = x; n = y;
while(m! = n)
{

if (m > n)
m = m – n;

else
n = n – m;

}
printf ("% d", n);

}

© Copyrightwww.madeeasypublications.org

12 Electrical Engineering • Computer Fundamentals

Solution : 3
#include <stdio.h>
#include <conio.h>
void f(int n)
{

if(n ≤ 1)
{

printf(“%d”, n);
}
else
{

f(n/2);
printf(“%d”, n%2);

}
}

Solution : 4
At t = 0 only P1 is present so execute it for 1 unit (remaining CPU time of remaining CPU time of remaining CPU time of remaining CPU time of remaining CPU time of P1 = 0P1 = 0P1 = 0P1 = 0P1 = 0, now it will perform , now it will perform , now it will perform , now it will perform , now it will perform I/OI/OI/OI/OI/O).
At t = 1 no process is available for CPU so CPU will remain idle and P1 will perform I/O (remaining I/O timeremaining I/O timeremaining I/O timeremaining I/O timeremaining I/O time
of P1 = 4of P1 = 4of P1 = 4of P1 = 4of P1 = 4)
At t = 2 P2 arrives and is available for CPU so execute it for 1 unit and simultaneously P1 will do I/O
(remaining CPU time of P2 = 2 & remaining I/O time of P1 = 3remaining CPU time of P2 = 2 & remaining I/O time of P1 = 3remaining CPU time of P2 = 2 & remaining I/O time of P1 = 3remaining CPU time of P2 = 2 & remaining I/O time of P1 = 3remaining CPU time of P2 = 2 & remaining I/O time of P1 = 3).
At t = 3 P3 also arrives and it is having highest priority among all processes available for CPU so we can
execute P3 for its complete CPU burst (i.e 2 unit) as all processes has arrived and simultaneously P1 will
do I/O(remaining CPU time of P3 = 0, now P3 will perform I/O & remaining I/O time of P1 = 1remaining CPU time of P3 = 0, now P3 will perform I/O & remaining I/O time of P1 = 1remaining CPU time of P3 = 0, now P3 will perform I/O & remaining I/O time of P1 = 1remaining CPU time of P3 = 0, now P3 will perform I/O & remaining I/O time of P1 = 1remaining CPU time of P3 = 0, now P3 will perform I/O & remaining I/O time of P1 = 1).
At t = 5 only P2 is available for CPU so it will execute for 1 unit and P1 and P3 will perform I/O(remainingremainingremainingremainingremaining
CPU time of P2CPU time of P2CPU time of P2CPU time of P2CPU time of P2 ===== 1, remaining I/O time of P31, remaining I/O time of P31, remaining I/O time of P31, remaining I/O time of P31, remaining I/O time of P3 ===== 2, remaining I/O time of P1 = 0, now P1 will perform2, remaining I/O time of P1 = 0, now P1 will perform2, remaining I/O time of P1 = 0, now P1 will perform2, remaining I/O time of P1 = 0, now P1 will perform2, remaining I/O time of P1 = 0, now P1 will perform
CPUCPUCPUCPUCPU).
At t = 6 P2 and P1 are available for CPU but P1 will be selected because it is having highest priority then
P2 so execute P1 for 1 unit(remaining CPU time of P1 = 2 & remaining I/O time of P3 is 1remaining CPU time of P1 = 2 & remaining I/O time of P3 is 1remaining CPU time of P1 = 2 & remaining I/O time of P3 is 1remaining CPU time of P1 = 2 & remaining I/O time of P3 is 1remaining CPU time of P1 = 2 & remaining I/O time of P3 is 1)
At t = 7 again P1 will be executed for 1 unit(remaining CPU time of P1 = 1 & remaining I/O time ofremaining CPU time of P1 = 1 & remaining I/O time ofremaining CPU time of P1 = 1 & remaining I/O time ofremaining CPU time of P1 = 1 & remaining I/O time ofremaining CPU time of P1 = 1 & remaining I/O time of
P3 = 0,P3 = 0,P3 = 0,P3 = 0,P3 = 0, now P3 will perform CPU now P3 will perform CPU now P3 will perform CPU now P3 will perform CPU now P3 will perform CPU).
At t = 8 now P1, P2 & P3 are available for CPU so P3 will be selected based on highest priority and will be
executed for 1 unit (remaining CPU time of P3 = 0, so P3 completed at t = 9remaining CPU time of P3 = 0, so P3 completed at t = 9remaining CPU time of P3 = 0, so P3 completed at t = 9remaining CPU time of P3 = 0, so P3 completed at t = 9remaining CPU time of P3 = 0, so P3 completed at t = 9).
At t = 9 P1 will be executed on CPU for 1 unit(remaining CPU time of P1 = 0, so P1 completed at t = 10remaining CPU time of P1 = 0, so P1 completed at t = 10remaining CPU time of P1 = 0, so P1 completed at t = 10remaining CPU time of P1 = 0, so P1 completed at t = 10remaining CPU time of P1 = 0, so P1 completed at t = 10).
At t = 10 only P2 is available for CPU so it will execute its remaining CPU burst (i.e 1 unit) (remaining CPUremaining CPUremaining CPUremaining CPUremaining CPU
time of P2 = 0, now P2 will perform I/O.time of P2 = 0, now P2 will perform I/O.time of P2 = 0, now P2 will perform I/O.time of P2 = 0, now P2 will perform I/O.time of P2 = 0, now P2 will perform I/O.)
At t = 11 P2 will perform I/O for 3 units and CPU will remain IDLE.
At t = 14 P2 will perform CPU again and P2 is completed at t = 15P2 is completed at t = 15P2 is completed at t = 15P2 is completed at t = 15P2 is completed at t = 15

P1 IDLE P2 P3 P2 P1 P1 P3 P1 P2 IDLE P2

0 1 2 3 5 6 7 8 9 10 11 1415

© Copyright www.madeeasypublications.org

13Rank Improvement Workbook

Solution: 5
A computer network is a group of computer systems and other computing hardware devices that are
linked together through communication channels to facilitate communication and resource sharing among
a wide range of users.
LAN:LAN:LAN:LAN:LAN: Local area network is a computer network which is limited to a small office, single building, multiple
buildings inside a campus. LAN is a private network owned and maintained by a single organization.

WWWWWAN:AN:AN:AN:AN: A wide area network spans over multiple geographic locations which is composed of multiple LAN’s.
It is impossible for a small to medium organisation to pull network cables between their two offices in two
different countries located thousands of kilometres away. Network service provider provide the connectivity
solutions for wide area networks.

LAN:LAN:LAN:LAN:LAN:
1. It is a private computer network that connects computer in a small physical areas.
2. LAN has higher bandwidth rates. Current LAN’s runs on bandwidth of 100 Mbps, 1 Gbps or 10 Gbps.
3. LAN bandwidth rates are almost constant.
4. LAN use ethernet as the LAN standard fast ethernet 100 Mbps or Gigabit ethernet 1/10 Gbps.

WANWANWANWANWAN
1. WAN is a type of computer network to connect offices which are located in different geographical

locations.
2. WAN has lower bandwidth rates compared with LAN. Current WAN runs on bandwidths of 4 Mbps, 8

Mbps, 20 Mbps, 50 Mbps, etc.
3. WAN connectivity solutions are dependent on internet service providers (ISP’s)
4. WAN uses technologies like VPN (Vertical Private Network) over internet, frame relay, leased lines as

WAN connectivity solutions.

Solution: 6
Computer networks can be broken down historically into topologies,

C C

C C

Cable

which is a technique of connecting computers.

Bus TBus TBus TBus TBus Topology:opology:opology:opology:opology:
• In this design, single cable connects all computers and the

information intended for the last node on the network must run through
each connected computer.

• If a cable broken, all computers connected down the line cannot reach the network.
• The benefit of a bus topology is a minimal use of cabling.

Star TStar TStar TStar TStar Topology:opology:opology:opology:opology:
• In this design of a network, a central node extends a cable to each computer on the network.
• On a star network computers are connected independently to the center of the network.
• If a cable is broken the other computer can operate without problems.
• Star topology requires alot of cabling.

C

Center
element

C

C

C

© Copyrightwww.madeeasypublications.org

14 Electrical Engineering • Computer Fundamentals

Ring TRing TRing TRing TRing Topology:opology:opology:opology:opology:
• In this design, computers are connected via a single cable, but the end nodes also are connected to

each other.
• In this design, the signal circulates through the network until it finds the intended recipient.
• If a network node is not configured properly or it is down temporarily for another reason, the signal will

make a number of attempts to find its destination.

C

C

C C

Mesh TMesh TMesh TMesh TMesh Topology:opology:opology:opology:opology:
• In this design there exists direct and dedicated link between each pair of hosts.

• It is used when high performance and high redundancy is required for a small number of hosts.

• If a network contain ‘n’ hosts, each host must have (n – 1) physical interfaces.

C C

C C

