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Objective Solutions
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5. (c)
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8. (c)

9. (b)
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11. (b)

12. (d)

13. (c)

1 Static Electric Fields

Objective Solutions

14. (d)

15. (b)
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17. (–3)

18. (d)

19. (a)

20. (a)

21. (c)

22. (c)
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Conventional Solutions

Solution: 1
Now, the charge density can be given as

ρs =
6

2500 10 20 C/m
25

Q
A

−π ×= = μ
π

y

z

a

(0, 0 , 5)

R

x dQ  rdrd = ρ φs

In cylindrical coordinate system

R = 5r zˆ ˆra a− +

Then each differential charge contributes to differential force

dF =
( ) ( )

( )

6

9 2 22

50 10 5

10 525
9

s r z
rdr d ˆ ˆra a

rr

−

−

× ρ φ ⎡ ⎤− +
⎢ ⎥
⎢ ⎥+⎣ ⎦+

From the symmetry, radial components will cancel and only z-components will contribute to net force.

∴ F =
( )( )6 62 5

9
2 3 / 20 0

50 10 20 10 5
ˆ

10
( 25)

9

z

rdr d
a

r

− −π

−

× × φ
⋅

+
∫ ∫

=
( ) ( )

55

3 2 1 22 2
0

0

1
90 90 16 56

25 25
z z z/ /

rdr ˆ ˆ ˆ· a · a . a N
r r

−⎡ ⎤π = π =⎢ ⎥
+ +⎢ ⎥⎣ ⎦

∫

Solution: 2
Laplace’s and Poisson’s equation

We know, D∇ ⋅
��

= ρv

⇒ D
��

= E∈
�

If the homogeneous medium is assumed

∴ E∈ ∇
�

= ρv

⇒ ∈∇(–∇V) = ρv

⇒ ∇2V = vρ−
∈

...(i)

The above equation (i) is called Poisson’s equation.
If in a charge free region ρv = 0, then

∇2V = 0 ...(ii)
The above equation (ii) is called Laplace equation.
⇒ Poisson’s equation and Laplace’s equation are used to develop potential function. They are also used

to analyze the junction characteristics of P-N junction.
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Solution: 3

E1t

E1n

E1

z

1

2

∈r1

∈r2
E2 E2n

E2 t

α2

θ2

(a)(a)(a)(a)(a) Since ˆza  is normal to the boundary plane, we obtain the normal components as

E1n = ˆ ˆ 3a z a zE a E a⋅ = ⋅ =

E1n = ˆ3 za

E1t = 1 1 ˆ ˆ5 2n yE E a a− = −x
E2t = E1t = ˆ ˆ5 2 ya a−x

Also, D2n = D1n ⇒ ∈r2 E2n = ∈r1 E1n

E2n = 1
1

2

4 ˆ ˆ(3 ) 4
3

r
n z z

r
E a a

∈ = × =
∈

E2 = ˆ ˆ ˆ5 2 4y za a a− +x

(b)(b)(b)(b)(b) Let α2 and α2 be the angles E1 and E2 make with the interface while θ1 and θ2 are the angle they make
with the normal to the interface as shown in above figure.

α1 = 90 – θ1

α2 = 90 – θ2

Since E1n = 3, and E1t = 25 4 29+ =

tanθ1 =
1

1

29
1.795

3
t

n

E

E
= = ⇒ θ1 = 60.9°

Hence, α1 = 29.1°

Similarly, E2n = 4, E2t = 1 29tE =

tanθ2 = 2

2

29 1.346
4

t

n

E
E

= = ⇒ θ2 = 53.4°

Hence, α2 = 36.6°

(c)(c)(c)(c)(c) The energy densities are given by

1EW =
9

2 6
1 1

1 1 104 (25 4 9) 10
2 2 36

E
−

∈ = × × × + + ×
π

= 672 µJm/3

2EW =
9

2 6
2 2

1 1 103 (25 4 16) 10
2 2 36

E
−

∈ = × × × + + ×
π

= 597 µJ/m3
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(d)(d)(d)(d)(d) At the centre (3, 4, –5) of the cube of side 2 m, z = –5 < 0 ; that is, the cube is in region 2 with 2 ≤ x ≤ 4,
3 ≤ y ≤ 5, –6 ≤ z ≤ –4. Hence,

WE =
2 2

4 5 4

2 3 6
E E

y z

W dv W d dy dz
−

= = = −

=∫ ∫ ∫ ∫
x

x

=
2
(2) (2) (2)EW × ×

WE = 597 × 8 µJ = 4.776 mJ

Solution: 4
(a)(a)(a)(a)(a) Since D and E are normal to the dielectric interface, the capacitor in Figure (a) can be treated as

consisting of two capacitors C1 and C2 in series.

C1 = 1 1 2
2

2 2
,

2

o r o r o rs s s
C

d d d
∈ ∈ ∈ ∈ ∈ ∈= =

Total capacitor C is given by

C =
9 4

1 2 1 2
3

1 2 1 2

2 2 10 30 10 4 6
36 105 10

o r r

r r

sC C
C C d

− −

−
∈ ∈ ∈ × × ×= = × ×

+ ∈ + ∈ π ×
C = 25.46 pF

(b)(b)(b)(b)(b) In this case, D and E are parallel to the dielectric interface we may treat the capacitor as consisting of
two capacitor C1 and C2 in parallel.

C1 =
1

1 2
2

2 ,
2 3

o r
o r

s
r s sC

d d d

∈ ∈ ∈ ∈ ∈∈= =

The total capacitance is C =
9 4

1 2 1 2 3
10 30 10( ) 10

2 36 2 (2 10 )
o

r r
sC C

d

− −

−
∈ ×+ = ∈ + ∈ = ⋅ ×

π × ×
C = 26.53 pF

Solution: 5
Since V depends only on φ, Laplace’s equation in cylindrical co-ordinate becomes

∇2V =
2

2 2
1 0d V

d
=

ρ φ
Since ρ = 0 is excluded owing to the insulating gap, we can multiply by ρ2 to obtain

2

2
d V
dφ

= 0

Which is integrated twice to give
V = Aφ + B

We apply the boundary condition to determine constant A and B when φ = 0, V = 0.
0 = 0 + B ⇒ B = 0

When φ = φ0, V = V0

V0 = Aφ0 ⇒ A = 0

0

V
φ

Hence, V = 0

0

V φ
φ
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Also, E = –∇V = 0

0

1 ˆ ˆVdV
a a

d φ φ− = −
ρ φ ρφ

E = 0

0

ˆV
aφ−

ρφ
Substituting V0 = 100 and φ0 = ∇0 gives

V =
600 600 ˆand E aφφ = −

π πρ

Solution: 6
(a)(a)(a)(a)(a) Throughout the problem, assume 2L as the length of all the cylinder i.e.

L

L

dz
−
∫ = 2L

Consider a cylinder of radius ρ such that ρ < 2 as shown in Figure (a)
6
2
4

ρ

Figure (a)

This cylinder does not enclose any charge.
Hence, flux leaving through this cylinder is zero.

∴ D
�

= 0 when ρ < 2 m
Consider a cylinder of radius ρ such that 2 < ρ < 4 as shown in Figure (b)

6
4

2ρ

Figure (b)

This cylinder encloses the surface charge density present on ρ = 2 m.
Hence, Q = Charge enclosed by the cylinder = charge present on ρ = 2 m

Q = (ρs on ρ = 2) (area of ρ = 2 cylinder)
= (20 × 2π × 2 × 2L)nC

Area of the cylinder = (2π ρ) (2L)

∴ D
�

= 2(20) (4 ) (2 ) 40ˆ ˆ ˆ nC/m
Area (2 ) (2 )
Q La a a

Lρ ρ ρ
π= =

π ρ ρ
Consider a cylinder of radius ρ such that 4 < ρ < 6 m as shown in Figure (c).
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6

4
2 ρ

Figure (c)

This cylinder encloses the surface densities of 20 nC/m2 and –4 nC/m2 which are present on ρ = 2 m
and ρ = 4 m respectively. Hence,

Q = Charge present on ρ = 2 + charge present on ρ = 4
= 20 × (2π × 2 × 2L) – 4 × (4π × 4 × 2L)

Area of cylinder = (2π ρ) (2L) = 4π ρL

∴ D
��

= 296 2ˆ ˆ ˆ nC/m
Area 4
Q L aa a a

Lρ ρ ρ
π= =

π ρ ρ

Consider a cylinder of radius ρ such that ρ > 6 m as shown in Figure (d).

6
4
2

ρ

Figure (d)

This cylinder enclose all the three surface charge densities.
Hence, Q = Charge present on ρ = 2 + charge present on ρ = 4 + charge present on ρ = 6

Q = 96πL + ρS0
 (2π × 6) × 2L = (96πL + 24ρS0

 πL)nC
Area of cylinder = (2πρ) (2L) = 4π ρL

∴ D
��

= 0 0 296 24 24 6
ˆ ˆ nC/m

4
S SL L

a a
L ρ ρ

π + ρ π + ρ⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟πρ ρ⎝ ⎠ ⎝ ⎠

D
��

=

0

0 2 ...(i)

40 ˆ 2 4 ...(ii)

24 ˆ 4 6 ...(iii)

24 6
ˆ 0 ...(iv)S

a

a

a

ρ

ρ

ρ

ρ <⎧
⎪ ⎛ ⎞⎪ < ρ <⎜ ⎟⎪ ρ⎝ ⎠⎪⎪ ⎛ ⎞⎨ < ρ <⎜ ⎟⎪ ρ⎝ ⎠⎪
⎪ + ρ⎛ ⎞

ρ >⎪⎜ ⎟ρ⎪⎝ ⎠⎩

Where ρ is in meter and D
��

 is in nC/m2

From equation (i), for ρ = 1 m D
��

= 0
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From equation (ii), for ρ = 3 m D
��

= 240 ˆ ˆ13.333 nC/m
3

a aρ ρ=

From equation (iii), for ρ = 5 m D
��

= 224 ˆ ˆ4.8 nC/m
5

a aρ ρ=

(b)(b)(b)(b)(b) From equation (iv) for ρ = 7 m

D
��

= 0 224 6
ˆ nC/m

7
S aρ

+ ρ⎛ ⎞
⎜ ⎟
⎝ ⎠

0
24 6

7
S+ ρ

= 0

0Sρ = –4 nC/m2

Solution: 7
The two charge configuration are parallel to the x-axis. Hence the figure is given below, looking the yz plane
from positive x.

Due to the charge sheet, Es = ˆ
2

z
n

o
a

ρ
∈

At P, ˆna = ˆza−  and Es = ˆ6 V/mza−

Due to the line charge, El = ˆ
2

L
r

o
a

r
ρ

π∈

z

y

Es
Es

Es

El

P( , –1, 0)x

–3 ρl

5

3

and at P, El = ˆ ˆ8 6 V/my za a−

Total electric field is the sum, E = ˆ ˆ8 12 V/ms y zE E a a+ = −l

Solution: 8
The flux is uniformly distributed around the line charge. Thus the amount crossing the strip is obtained from
the angle subtained by 2π.

α

z

x

ρl

α =
22arctan 1.176radian
3

⎛ ⎞ =⎜ ⎟⎝ ⎠
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Then,
L
Ψ

=
1.17650

2
⎛ ⎞
⎜ ⎟π⎝ ⎠

L
Ψ

= 9.36 µC/m

Solution: 9

E = ˆr
K

a
r

Since the field has only a radial component

dW = r r
KQ

QE d QE d dr
r

− ⋅ = − = −l

For the limit of integration use r1 and 2r1.

W =
1

1

2

2
r

r

r

d
KQ KQ n

r
− = −∫ l

W = –KQ ln2, independent of r1

Solution: 10
To find energy, WE, stored in a limited region of space, one must integrate the energy density through the
region.

Between the half plane, E =
1 60 ˆ V/mV a
r φ

∂ φ⎛ ⎞−∇ = − −⎜ ⎟∂φ π⎝ ⎠

E =
60 ˆ (V/m)a

r φπ

dW = 21
2 o E∈

Energy stored, W =
21 /6 0.6

0 0 0.1

60
2
o rdrd dz

r

π −

−

∈ ⎛ ⎞ φ⎜ ⎟π⎝ ⎠∫ ∫ ∫

W =
300

6 1.51nJo n
∈ =

π
l

Solution: 11
For aluminium,

The conductivity σ = 3.82 × 107 S/m
Mobility µ = 0.0014 m2/Vs

J =
7

43.83 10
5.3 10

µ 0.0014
v v −σ ×ρ = = × ×

J = 1.45 × 107 A/m2

E = 13.79 10 V/m
µ

J v −= = ×
σ
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2 Static Magnetic Fields

Objective Solutions

1. (c)

2. (d)

3. (c)

4. (a)

5. (b)

6. (a)

7. (314.15)

8. (d)

9. (c)

Solution: 1
The force on the conductor is

F
�

= ˆ ˆz o rL B La B a× = ×I I
� �

F
�

= ˆoB L aφI
So that applied force is

aF
�

= ˆ( )oB L aφ−I

The conductor is to be turned in the âφ  direction.

The work required for one full revolution is

ω = oB L a rd a
2

0

ˆ ˆ( )
π

φ φ− ⋅ φ∫ I

= –2πrB0IL

Since N revolution per minute is 
60
N

 per second.

The power,

P =
2

60
orB LNπ− I

[Negative indicates power supplied]

Solution: 2
Choosing the unit normal

ˆna =
ˆ ˆ

2
y za a+⎛ ⎞

⎜ ⎟
⎝ ⎠

1nB =
ˆ ˆ ˆ ˆ(2 ) ( ) 1

2 2
y y za a a a+ ⋅ +

=x

1nB =
1 ˆ ˆ ˆ0.5 0.5
2 n ya a a⋅ = + x

∵
1nB =

2nB

2nB = ˆ ˆ0.5 0.5y za a+

1tB = ˆ ˆ ˆ2 0.5 0.5y za a a+ −x

1tH =

2

1 ˆ ˆ ˆ(0.5 0.125 0.125 )
µ y z t

o
a a a H+ − =x

2tB =
2 2

µ µo r tH

= ˆ ˆ ˆ(3 0.75 0.75 ) Ty za a a+ −x

B2 =
1 2

ˆ ˆ ˆ3 1.25 0.25 Tt t y zB B a a a+ = + −x

 H2 =
2

2
1

µ µo r
B

= 1 ˆ ˆ ˆ0.50 0.21 0.04 A/m
µ y z

o
a a a⎡ ⎤+ −⎣ ⎦x


