
Electrical Engineering
Microprocessors

2020

Answer key and Hint of
Objective & Conventional Questions

MPROVEMENT

© Copyrightwww.madeeasypublications.org

©
C

op
yrig

ht: S
ub

ject m
atter to M

A
D

E
 E

A
S

Y
 P

ub
lications, N

ew
 D

elhi. N
o p

art of this b
ook m

ay b
e rep

rod
uced

 or utilised
 in any form

 w
ithout the w

ritten p
erm

ission.

Objective Solutions

1. (c)

2. (c)

3. (b)

4. (c)

5. (a)

6. (a)

7. (255)

1 Intel 8085 and Intel 8086

Objective Solutions

8. (a)

9. (a)

10. (a)

11. (d)

12. (b)

13. (c)

14. (c)

15. (d)

16. (400)

© Copyright www.madeeasypublications.org

3Rank Improvement Workbook

Conventional Solutions

Solution: 1

Subroutine call Interrupt request

1. It occurs only at the place where the
programmer has written it.

2. The location of the subroutine is
specified by the programmer.

3. It does not require any enabling
command.

4. It is internally initiated.

1. It can occur at any place during the
execution of a program.

2. The location of a service routine is
fixed for a particular kind of interrupt.

3. It requires the interrupt flip flop to be
enabled by the command EI and SIM.

4. It is externally initiated.

Yes, it is possible to use a common memory stack for both. But precaution has to be exercised to use POP
and PUSH instructions in correct sequence.

Solution: 2
Instruction cycle:Instruction cycle:Instruction cycle:Instruction cycle:Instruction cycle: It is defined as the time required to complete the execution of an instruction. The 8085
instruction cycle consists of one of six machine cycles or one to six operations.
Machine cycle:Machine cycle:Machine cycle:Machine cycle:Machine cycle: It is defined as the time required to complete one operation of accessing memory, I/O, or
acknowledging an external request.
Basic machine cycles of 8085:Basic machine cycles of 8085:Basic machine cycles of 8085:Basic machine cycles of 8085:Basic machine cycles of 8085:

1.1.1.1.1. MemorMemorMemorMemorMemory ry ry ry ry read machine cycle:ead machine cycle:ead machine cycle:ead machine cycle:ead machine cycle: If refers to the process of reading one byte from memory. It requires
3 T states.

2.2.2.2.2. MemorMemorMemorMemorMemory write machine cycle: y write machine cycle: y write machine cycle: y write machine cycle: y write machine cycle: If refers to the process of writing one byte into the memory. It requires
3 T states.

3.3.3.3.3. Opcode fetch machine cycle:Opcode fetch machine cycle:Opcode fetch machine cycle:Opcode fetch machine cycle:Opcode fetch machine cycle: It is the first operation in any instruction. It involves reading the
opcode from memory. It requires 4 T states.

4.4.4.4.4. I/O read/write machine cycle:I/O read/write machine cycle:I/O read/write machine cycle:I/O read/write machine cycle:I/O read/write machine cycle: These involve reading from and writing to an input and output port
respectively. Each requires 3-T states.

5.5.5.5.5. Interrupt acknowledge:Interrupt acknowledge:Interrupt acknowledge:Interrupt acknowledge:Interrupt acknowledge: This is the machine cycle to get the address of the interrupt service routine
in order to service the interrupt device. It requires 10 T states.

Solution: 3
• Mode of specifying address of operand involved in the operation is known as Addressing mode.
• 8085 microprocessor I.S.A supports 5 addressing mode which are implicit addressing mode, immediate

addressing mode, direct addressing mode and indirect addressing mode.
1.1.1.1.1. Register addressing modeRegister addressing modeRegister addressing modeRegister addressing modeRegister addressing mode

In register addressing mode, operands involved in operation is/are register.
This addressing mode is also known as register direct addressing mode.
Ex: MOV A, B

ADD H
XRA A

© Copyrightwww.madeeasypublications.org

4 Electrical Engineering • Microprocessors

2.2.2.2.2. Implicit Addressing modeImplicit Addressing modeImplicit Addressing modeImplicit Addressing modeImplicit Addressing mode
In implicit addressing mode, operand involved in operation is not specified explicitly in instruction. As
such, microprocessor implicitly assumes accumulator is the operand i.e., it is implied that accumulator
is the operand.
Ex: DAA

CMA
RAL
RLC
RAR
RRC

3.3.3.3.3. Immediate addressing modeImmediate addressing modeImmediate addressing modeImmediate addressing modeImmediate addressing mode
In immediate addressing mode, the operand involved in operation is given in the instruction itself which
is either 8-bit number or 16-bit number. i.e., value given in the instruction is operand involved in operation.
Ex: MVI A, 77 H

LXI SP, 2600 H
JMP 2000 H

4.4.4.4.4. Direct Addressing mode:Direct Addressing mode:Direct Addressing mode:Direct Addressing mode:Direct Addressing mode:
In direct addressing mode, one of the operands involved in operation is memory location and 16-bit
address of memory location is given in instruction.

• Value at address is the operand involved in operation
Ex: STA 2050 H

LHLD 2345 H
OUT F7 H
IN F9 H

5.5.5.5.5. Indirect addressing modeIndirect addressing modeIndirect addressing modeIndirect addressing modeIndirect addressing mode
In indirect addressing mode, one of the operands involved in operation is memory location and 16-bit
address of memory location is made available in register pointer (like HL pair, BC pair, DE pair, Stack
pointer).
Also known as register indirect addressing mode
Ex: MOV A, M

PUSH PSW
STAX B
RET

Solution: 4
The 8086 is a 16 bit microprocessor. It has 16 bit data bus and 20 bit address bus. Words will be stored
in two consecutive memory locations. If the first byte of a word is at an even address, the 8086 can read
the entire word in one operations. If the first byte of the word is at an odd address, the 8086 will read the
first byte in one operation and the second byte in another operation.

© Copyright www.madeeasypublications.org

5Rank Improvement Workbook

ES
CS
SS
DS
IP

AH
BH
CH
DH

AL
BL
CL
DL

SP
BP
SI
DI

ALU

Memory interface

OPERANDS
FGLAGS

A - BUS

EU

1
2
3
4
5
6

Control system

C - BUS

Functional block diagram of 8086

BIU

C - BUS
Instruction system
byte queue

The 8086 CPU is divided into two independent functional parts, the bus interface unit or BIU and the
execution unit or EU.
Bus interface unit:Bus interface unit:Bus interface unit:Bus interface unit:Bus interface unit: It handles all data and addresses on the buses for the execution unit such as it
sends out addresses, fetches instructions from memory, reads data from parts and memory as well as
writes data to ports and memory.
InstrInstrInstrInstrInstruction queue:uction queue:uction queue:uction queue:uction queue: To increase the execution speed, BIU fetches as many as six instruction bytes
ahead of time from memory. These are held for EU in the instruction queue group of registers.
Segment rSegment rSegment rSegment rSegment registers:egisters:egisters:egisters:egisters: These are four 16-bit segment registers. They are the extra segment (ES) register,
the code segment (CS) registers, the data segment (DS) registers and the stack segment (SS) registers.
These are used to hold the upped 16 bits of the starting address for each of the segments. The part of a
segment starting address stored in a segment register is often called the segment base.
Instruction pointer:Instruction pointer:Instruction pointer:Instruction pointer:Instruction pointer: It holds the 16 bit address of the next code byte within this code segment.
Execution unit:Execution unit:Execution unit:Execution unit:Execution unit: The EU tells the BIU where to fetch instructions or data from, decode instructions and
executes instructions. The functional parts of the EU are control circuitry or system, instruction decoder
and ALU.
Flag register:Flag register:Flag register:Flag register:Flag register: A 16-bit flag register is a flip flop which indicates for some conditions produced by the
execution of an instructions. It has a flags-carry, auxiliary, parity, zero, sign, overflow, trap, interrupt and
direction flags.
General purpose registers:General purpose registers:General purpose registers:General purpose registers:General purpose registers: The EU has 8 general purpose registers labelled AH, AL, BH, BL, CH, CL,
DH and DL. These registers can be used individually for temporary storage of 8 bit data. The AL registers
is also called the accumulator. Contain pairs of these general purpose registers can be used together to
store 16-bit data. The valid register pairs are Ah and AL, BH and BL, CH and CL and DH and DL. The
pairs are referred to as AX, BX, CX and DX.

© Copyrightwww.madeeasypublications.org

6 Electrical Engineering • Microprocessors

1.1.1.1.1. AX register:AX register:AX register:AX register:AX register: For 16 bit operations, AX is called the accumulator register that stores operands for
arithmetic operations.

2.2.2.2.2. BX rBX rBX rBX rBX register:egister:egister:egister:egister: This register is mainly used as a base register. It holds the starting base location of a
memory region within a data segment.

3.3.3.3.3. CX rCX rCX rCX rCX register: egister: egister: egister: egister: It is defined as a counter. It is primarily used in loop instructions to store loop counter.
4.4.4.4.4. DX register:DX register:DX register:DX register:DX register: DX register is used to contain I/O port addresses for I/O instruction.
5.5.5.5.5. Stack pointer register:Stack pointer register:Stack pointer register:Stack pointer register:Stack pointer register: It contains 16 bit offset from the start of the segment to the memory

location where a word was most recently stored on the stack, called as the top of the stack.
Other registers like SI, BP and DI are mainly used for temporary storage of 16 bit data just like a
general purpose register.

MemorMemorMemorMemorMemory ory ory ory ory organisation:ganisation:ganisation:ganisation:ganisation: The size of address bus is 20 and is able to address 1 MB of physical memory,
but all this memory is not active at one time. It is divided into 16 segments and only is of these segments
are active at a time. These are code segment, stack segment, data segment and extra segment.

Solution : 5
The 8085 instructions can be classified into the following five functional categories: data transfer (copy)
operations, arithmetic operations, logical operations, branching operations and machine-control operations.

Data Transfer (Copy) Operation:
This group of instructions copies data from a location called a source to another location, called a destination,
without modifying the contents of the source. In technical manuals, the term data transfer is used for this
copying function. However, the term transfer is misleading; it creates the impression that the contents of a
source are destroyed when, in fact, the contents are retained without any modification. The various types of
data transfer (copy) are listed below together with examples of each type:

TTTTTypesypesypesypesypes ExamplesExamplesExamplesExamplesExamples

1. Between registers Copy the contents of register B into register D.

2. Specific data byte to a register Load register B with the data byte 32H.
or a memory location

3. Between a memory location From the memory location 2000H to register B.
and a register

4. Between an I/O device From an input keyboard to the accumulator.
and the accumulator

Arithmetic Operations:
These instructions perform arithmetic operations such as addition, subtraction, increment,
and decrement.

• Addition-Any 8-bit number, or the contents of a register, or the contents of a memory location can be
added to the contents of the accumulator and the sum is stored in the accumulator. No two other 8-bit
registers can be added directly (e.g., the contents of register B cannot be added directly to the
contents of register C). The instruction DAD is an exception; it adds 16-bit data directly in register
pairs.

• Subtraction-Any 8-bit number, or the contents of a register, or the contents of a memory location can
be subtracted from the contents of the accumulator and the results stored in the accumulator. The
subtraction is performed in 2's complement, and the results, if negative, are expressed in 2's
complement. No two other registers can be sub-tracted directly.

© Copyright www.madeeasypublications.org

7Rank Improvement Workbook

• Increment/Decrement-The 8-bit contents of a register or a memory location can be incremented or
decremented by 1. Similarly, the 16-bit contents of a register pair (such as BC) can be incremented or
decremented by 1. These increment and decrement operations differ from addition and subtraction in
an important way; i.e., they can be performed in any one of the registers or in a memory location.

Logical Operations:
These instructions perform various logical operations with the contents of the accumulator.

• AND, OR, Exclusive-OR-Any 8-bit number, or the contents of a register, or of a memory location can
be logically ANDed, ORed, or Exclusive-ORed with the contents of the accumulator. The results are
stored in the accumulator.

• Rotate-Each bit in the accumulator can be shifted either left or right to the next position.

• Compare-Any 8-bit number, or the contents of a register, or a memory location can be compared for
equality, greater than, or less than, with the contents of the accumulator.

• Complement-The contents of the accumulator can be complemented; all Os are replaced by Is and all
Is are replaced by Os.

Branching Operations:
This group of instructions alters the sequence of program execution either conditionally or unconditionally.

• Jump-Conditional jumps are an important aspect of the decision-making process in programming.
These instructions test for a certain condition (e.g., Zero or Carry flag) and alter the program sequence
when the condition is met. In addition, the instruction set includes an instruction called unconditional
jump.

• Call, Return, and Restart-These instructions change the sequence of a program either by calling a
subroutine or returning from a subroutine. The conditional Call and Return instructions also can test
condition flags.

Solution : 6
The microprocessor is a sequential machine. As soon as a microprocessor-based system is turned on, it
begins the execution of the code in memory. The execution continues in a sequence, one code after
another (one memory location after another) at the speed of its clock until the system is turned off (or the
clock stops). If an unconditional loop is set up in a program, the execution will continue until the system is
either reset or turned off. Now a puzzling question is: How does the microprocessor differentiate between
a code and data when both are binary numbers? The answer lies in the fact that the microprocessor
interprets the first byte it fetches as an opcode. When the 8085 is reset, its program counter is cleared to
0000H and it fetches the first code from the location 00O0H. In the example of the previous section, we tell
the processor that our program begins at location 2000H. The first code it fetches is 3EH. When it decodes
that code, it knows that it is a two-byte instruction. Therefore, it assumes that the second code, 32H, is a
data byte. If we forget to enter 32H and enter the next code, 06H, instead, the 8085 will load 06H in the
accumulator, interpret the next code, 48H, as an opcode, and continue the execution in sequence. As a
consequence, we may encounter a totally unexpected result.

Solution: 7
(i)(i)(i)(i)(i) Data TData TData TData TData Transfer Instrransfer Instrransfer Instrransfer Instrransfer Instructions :uctions :uctions :uctions :uctions :

These type of instructions are used to transfer data from source operand to destination operand. All
the store, move, load, exchange, input and output instructions belong to this category. E.g. MOV,
EXCHG, etc.

© Copyrightwww.madeeasypublications.org

8 Electrical Engineering • Microprocessors

(ii)(ii)(ii)(ii)(ii) Arithmetic and Logical Instructions :Arithmetic and Logical Instructions :Arithmetic and Logical Instructions :Arithmetic and Logical Instructions :Arithmetic and Logical Instructions :
All the instructions performing arithmetic, logical, increment, decrement, compare and scan instructions
belong to this category. E.g. ADD, SUB, MUL, etc.

(iii)(iii)(iii)(iii)(iii) Branch Instructions :Branch Instructions :Branch Instructions :Branch Instructions :Branch Instructions :
These instructions transfer control of execution to the specified address. All the call, jump, interrupt
and return instructions belong to this category. E.g. JMP, CALL, INTO etc.

(iv)(iv)(iv)(iv)(iv) Loop Instructions :Loop Instructions :Loop Instructions :Loop Instructions :Loop Instructions :
If these instructions have REP prefix with CX used as count register, they can be used to implement
unconditional and conditional loops. These are useful to implemented different loop structures. E.g.
LOOP, LOOPNZ, LOOPZ, etc.

(v)(v)(v)(v)(v) Machine Control Instructions :Machine Control Instructions :Machine Control Instructions :Machine Control Instructions :Machine Control Instructions :
These instructions control the machine status. E.g. NOT, HLT, WAIT, etc.

(vi)(vi)(vi)(vi)(vi) Flag Manipulation Instructions :Flag Manipulation Instructions :Flag Manipulation Instructions :Flag Manipulation Instructions :Flag Manipulation Instructions :
All the instructions which directly affect the flag register, come under this group of instructions. E.g.
CLD, STD, etc.

(vii)(vii)(vii)(vii)(vii) Shift and Rotate Instructions :Shift and Rotate Instructions :Shift and Rotate Instructions :Shift and Rotate Instructions :Shift and Rotate Instructions :
These instructions involve the bitwise shifting or rotation in either direction with or without a count in
CX.
e.g. SCL, ROR, etc.

(viii)(viii)(viii)(viii)(viii) String Instructions :String Instructions :String Instructions :String Instructions :String Instructions :
These instructions involve various string manipulation operations like load, store, scan, compare, etc.
E.g. SCAS, STOS, LODS, etc.

© Copyright www.madeeasypublications.org

©
C

op
yrig

ht: S
ub

ject m
atter to M

A
D

E
 E

A
S

Y
 P

ub
lications, N

ew
 D

elhi. N
o p

art of this b
ook m

ay b
e rep

rod
uced

 or utilised
 in any form

 w
ithout the w

ritten p
erm

ission.

2
Objective Solutions

1. (b)

2. (b)

3. (c)

4. (c)

5. (14)

6. (b)

7. (a)

8. (b)

9. (a)

10. (a)

Programming of
Microprocessor

Objective Solutions

11. (c)

12. (c)

13. (48)

14. (c)

15. (b)

16. (d)

17. (a)

18. (70)

19. (22)

20. (1)

© Copyrightwww.madeeasypublications.org

10 Electrical Engineering • Microprocessors

Conventional Solutions

Solution: 1
START: IN 01 H;

XRI FFH; // to test if input is FFH
JZ FIRST; // jump if input is FFH as result of XR7 will be all zeros
MVI A, 00 H;
OUT 05 H; // new coin instruction at port 5
JMP START;

FIRST: IN 02 H; // to check if requirement is for tea or coffee
MOV B, A;
XRI 04 H;
JZ TEA;
MOV A, B;
XRI 40 H;
JZ COFFEE;

TEA: MVI A, 04 H;
OUT 03 H;
JMP CLOSE;

COFFEE: MVI A, 04H;
OUT 03 H;
JMP CLOSE;

CLOSE: IN 04 H; // to check for the command to close the value
XRI 00 H;
JNZ CLOSE;
MVI A, FFH;
OUT 03 H;
JMP START;
HLT

Solution: 2
LXI H, 7000H;
LXI D, A00FH;
MVI B, 10H;

START;
MOV A, M;
STAX D;
INX H;
DCX D;
DCR B;
JNZ START;
HLT

© Copyright www.madeeasypublications.org

11Rank Improvement Workbook

Solution: 3
Main Program:Main Program:Main Program:Main Program:Main Program:

LXI D, 2050H ; Point index to readings
LXI H, 2090H ; Point index to maximum limits
MVI C, 05H ; Set up C as a counter with a count value of 5

NEXT: CALL SBTRAC ; Call the subroutine to perform 16-bit subtraction to determine the
difference between a reading and its maximum limit

INX D ; Increment the contents of DE pair to point the location of next reading
INX H ; Increment the contents of HL pair to point the location of maximum limit

corresponding to the next reading
DCR C ; Decrement the count value after completion of the process corresponding

to each reading
JNZ NEXT ; Jump to the location labeled as "NEXT" till the count value of the counter

becomes zero, to start the process corresponding to the next reading
HLT ; Halt the execution

Subroutine:Subroutine:Subroutine:Subroutine:Subroutine:
SBTRAC: MOV A, M ; Load the accumulator with lower byte of the maximum limit corresponding

to the reading
XCHG ; Exchange the contents of HL and DE pairs

SUB M ; Subtract lower byte of the reading from the lower byte of the
corresponding maximum limit

MOV M, A ; Store the lower byte of the difference in the location corresponding to
the lower byte of the reading

XCHG ; Exchange the contents of HL and DE pairs

MOV A, M ; Load the accumulator with higher byte of the maximum limit
corresponding to the reading

XCHG ; Exchange the contents of HL and DE pairs
SBB M ; Subtract (with borrow) higher byte of the reading from the higher byte of

the corresponding maximum limit
CC INDCTR ; Call the indicator subroutine if the value of reading is higher than the

corresponding maximum limit
MOV M, A ; Store the higher byte of the difference in the location corresponding to

the higher byte of the reading
XCHG ; Exchange the contents of HL and DE pairs

RET ; Return to the Main Program

Solution: 4

• The total delay produced by the given subroutine program can be calculated by determining the total
number of T-states required to execute the program.

• The total number of T-states required to execute the program can be determined by analyzing the
given program as shown in the following table:

© Copyrightwww.madeeasypublications.org

12 Electrical Engineering • Microprocessors

Instruction Number of times executed Number of T-states
for one time execution

7

7

4

4

MVI B, 02H

MVI C, FFH

DCR C

JNZ LOOP1

DCR B

JNZ LOOP2

1

(1 × 2) = 2

(255 × 2) = 510

(254 × 2) = 508 true⇒
(1 × 2) = 2 false⇒

1 true⇒
1 false⇒

10RET 1

2

Delay :

LOOP2 :

LOOP1 :

10 true⇒
7 false⇒

10 true⇒
7 false⇒

• The total delay produced by the program in terms of T-states can be given by,
Delay = (1 × 7T) + (2 × 7T) + (510 × 4T) + (508 × 10T) + (2 × 7T) + (2 × 4T) + (10T + 7T) + (10T)

= 7T + 14T + 2040T + 5080T + 14T + 8T + 17T + 10T
= 7190T

• The time delay corresponds to one T-state is,

T =
clk

1 1
s = 0.5 s

2f
= μ μ

∵ given that, fclk = 2 MHz

• So, the total delay produced by the program is,

Delay =
7190

s = 3595 s 3.6 ms
2

μ μ �

Solution: 5
ORG 0000 H
JMP MAIN
ORG 0100 H

MAIN : LDA 4000 H
MVI C, 08 H

LOOP : RLC
JNC SKIP
INR B

SKIP : DCR C
JNZ LOOP
MOV A, B
RAR
JC EVEN
MVI A, DD H
STA 4000 H
HLT

EVEN : MVI A, EE H
STA 4000 H
HLT

© Copyright www.madeeasypublications.org

©
C

op
yrig

ht: S
ub

ject m
atter to M

A
D

E
 E

A
S

Y
 P

ub
lications, N

ew
 D

elhi. N
o p

art of this b
ook m

ay b
e rep

rod
uced

 or utilised
 in any form

 w
ithout the w

ritten p
erm

ission.

3
Objective Solutions

1. (c)

2. (b)

3. (65792)

4. (d)

5. (b)

6. (a)

7. (d)

8. (b)

Memory Interfacing and
Peripheral Devices

Objective Solutions

9. (c)

10. (c)

11. (d)

12. (c)

13. (d)

14. (c)

15. (d)

16. (d)

17. (c)

© Copyrightwww.madeeasypublications.org

14 Electrical Engineering • Microprocessors

Conventional Solutions

Solution: 1
The address is given by

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0A A A A A A A A A A A A A A A A���������� ��������� �������� ��������

To enable the clip select
A15 = 0
A14 = 0
A13 = 1
A12 = 0
A11 = 0

So, the address is given by

10 9 8 7 6 5 4 3 2 1 00010 0A A A A A A A A A A A���� �������� �������� ��������

So, it varies in the range

0010 0000 0000 0000���� ���� ���� ����

= 2000 H
to

0010 0000 11111111���� ���� ��� ���

= 20 FFH
Hence proved.

Solution: 2
The function of direct memory access is to allow in I/O device to send or receive data directly to or from the
main memory, bypassing the CPU to speed up memory operations. The process is managed by a chip
known as DMA controller.

During DMA operations, the DMA controller sends logic high on HOLD input of the microprocessor. After
receiving this signal, the MPU relinquishes the buses in the following machine cycle. All buses are tri-
stated and the HLDA signal is sent out. The MPU regains the control of the buses after HOLD goes low.
Data transfer modes of DMA controller are as follows:

1.1.1.1.1. Burst on block transfer DMA:Burst on block transfer DMA:Burst on block transfer DMA:Burst on block transfer DMA:Burst on block transfer DMA: An entire block of data is transferred in one contiguous sequence. It
transfers all bytes of data in the data block before releasing control of the system buses back to the
CPU, but renders the CPU inactive for relatively longer periods of time.

2.2.2.2.2. Cycle stealing mode: Cycle stealing mode: Cycle stealing mode: Cycle stealing mode: Cycle stealing mode: The DMA controller gives back the control of buses back to the MPU after
transferring 1 byte and then requests the control of buses again. It follows this process until the entire
data is transferred. The DMA controller essentially interleaves instruction and data transfers.

3.3.3.3.3. TTTTTransparransparransparransparransparent mode: ent mode: ent mode: ent mode: ent mode: The DMA transfers the data only when the CPU is performing operations that do
not use the system buses.

© Copyright www.madeeasypublications.org

15Rank Improvement Workbook

Solution: 3

Group A
Port AGroup A

Control

Group B
Port C
Lower

Group A
Port C
Upper

Group B
Port B

Group B
Control

(8)

(4)

(4)

(8)

8-bit
Internal
data bus

Data
Bus

Buffer

Bidirectional
data bus

Read

Write

Control

Logic

RD
WR

A1
A0

Reset

CS

D1 – D0

I /O
PA7 – PA0

I /O
PC7 – PC4

I /O
PC3 – PC0

I /O
PB7 – PB0

Block schematic of 8255

BBR mode
(Bit set/reset)

For part C
No effect on I/O mode

Mode 0
Simple I/O for

ports A, B and C

Mode 1
Hand shake I/O

for ports A and/or B

Mode 2
Bidirectional data

bus for port A

Port C bits are used
for hand shake

Port B: either in mode
0 or 1 port C bits are used

for hand shake

0/1

Control word:

I/O mode

D7 D6 D4 D1D5 D2D3 D0

© Copyrightwww.madeeasypublications.org

16 Electrical Engineering • Microprocessors

Port A

Port C

Port B

Control
register

EN

EN

EN

EN

10

00

01

WR

WR

WR

RD

RD

RD

Internal
decoding

11

10

01

00

CA1

A0 B

A

ECS

WR

Expanded version of the control logic and I/O ports
Port addresses: Port addresses: Port addresses: Port addresses: Port addresses: This is a memory mapped I/O. When the address line A15 is high, the chip select line
is enabled. Assuming all demit care lines are at logic 0, the port addresses are as follows:

Port A = 8000 H (A1 = 0; A0 = 0)
Port B = 8001 H (A1 = 0; A0 = 0)
Port C = 8002 H (A1 = 0; A0 = 0)

Control register = 8003 H (A1 = 1; A0 = 1)
Control word:Control word:Control word:Control word:Control word: 10000011

D7 D6 D5 D4 D3 D2 D1 D0 Group B

Group A

Port C (lower)
1 = input
0 = output

Port C (upper)
1 = input
0 = output

Port B
1 = input
0 = output

Port A
1 = input
0 = output

Mode selection
0 = mode 0
1 = mode 1

Mode selection
00 = mode 0
01 = mode 1
1X = mode 2

1 = I/O mode
0 = BSR mode

Control word

© Copyright www.madeeasypublications.org

17Rank Improvement Workbook

Solution : 4
Input/output devices are the means through which the MPU communicates with “the outside world.” The
MPU accepts binary data as input from devices such as keyboards and A/D converters and sends data to
output devices such as LEDs or printers. There are two different methods by which I/O devices can be
identified one uses an 8-bit address and the other uses a 16-bit address.

I/Os with 8-Bit Addresses (Peripheral-Mapped I/O):

In this type of I/O, the MPU uses eight address lines to identify an input or an output device; this is known
as peripheral-mapped I/O. This is an 8-bit numbering system for I/Os used in conjunction with Input and
Output instructions. This is also known as I/O space, separate from memory space, which is a 16-bit
numbering system. The eight address lines can have 256 (28 combinations) addresses; thus, the MPU can
identify 256 input devices and 256 output devices with addresses ranging from 00H to FFH. The input and
output devices are differentiated by the control signals; the MPU uses the I/O Read control signal for input
devices and the I/O Write control signal for output devices. The entire range of I/O addresses from 00 to FF
is known as an I/O map, and individual addresses are referred to as I/O device addresses or I/O port
numbers.

The steps in communicating with an I/O device are:

1.1.1.1.1. The MPU places an 8-bit address on the address bus, which is decoded by external decode logic.

2.2.2.2.2. The MPU sends a control signal (I/O Read or I/O Write) and enables the I/O device.

3.3.3.3.3. Data are transferred using the data bus.

I/Os with 16-Bit Addresses (Memory-Mapped I/O):
In this type of I/O, the MPU uses 16 address lines to identify an I/O device; an I/O is connected as if it is
a memory register. This is known as memory-mapped I/O. The MPU uses the same control signal (Memory
Read or Memory Write) and instructions as those of memory. In some microprocessors, such as the
Motorola 6800, all I/Os have 16-bit addresses; I/Os and memory share the same memory map (64K). In
memory-mapped I/O, the MPU follows the same steps as if it is accessing a memory register.

Solution: 5
Size of RAM chips available = 1024 × 1 = 210 × 1
Size of RAM chips required = 16 k bytes = 16 k × 8 = 24 × 210 × 23

Number of chips required =
4 10 3

10

2 2 2

2 1

× ×
×

 = 24 × 23 = 128 chips

We have a memory chip with size 210 × 1 and we require to design 16 k bytes.
To design 1 k byte we have to arrange eight 210 × 1 chips as given below in figure (a).

Chip 1

Chip 2

Chip 8

D0

D1

D7

A9

A0

A9

A0

A9

A0

Figure (a)Figure (a)Figure (a)Figure (a)Figure (a)

© Copyrightwww.madeeasypublications.org

18 Electrical Engineering • Microprocessors

Now, we can form a memory of size 16 k bytes by connecting 16 modules each of size 1 k bytes using a
4 × 16 decoder as given below in figure (b).

4 × 16
Decoder

A13

A12

A11

A10

A0

A9 D0CS
1 k byte
Module

A0

A9 CS

X3

X2

X1

X0

Y0

Y15 1 k byte
Module

D7

D0

D7

Figure (b)Figure (b)Figure (b)Figure (b)Figure (b)

Solution: 6
The 8237 is in the idle cycle if there is no pending request or the 8237 is waiting for a request from one of
the DMA channels. Once a channel requests a DMA service, the 8237 sends the HOLD request to the CPU
using the HRQ pin. If the CPU acknowledges the hold request on HLDA, the 8237 enters an active cycle.
In the active cycle, the actual data transfer takes place in one of the following transfer modes, as is
programmed.

Single TSingle TSingle TSingle TSingle Transfer Mode :ransfer Mode :ransfer Mode :ransfer Mode :ransfer Mode : In this mode, the device transfers only one byte per request. The word count is
decremented and the address is decremented or incremented (depending on programming) after each
such transfer. The Terminal Count (TC) state is reached, when the count becomes zero. For each transfer,
the DREQ must be active until the DACK is activated, in order to get recognized. After TC, the bus will be
relinquished for the CPU. For a new DREQ to 8237, it will again activate the HRQ signal to the CPU and the
HLDA signal from the CPU will push the 8237 again into the single transfer mode. This mode is also called
as “cycle stealing”.

Block TBlock TBlock TBlock TBlock Transfer Mode :ransfer Mode :ransfer Mode :ransfer Mode :ransfer Mode : In this mode, the 8237 is activated by DREQ to continue the transfer until a TC is

reached, i.e. a block of data is transferred. The transfer cycle may be terminated due to EOP (either

internal or external) which forces Terminal Count (TC). The DREQ needs to be activated only till the DACK
signal is activated by the DMA controller. Auto-initialization may be programmed in this mode.

Demand TDemand TDemand TDemand TDemand Transfer Mode :ransfer Mode :ransfer Mode :ransfer Mode :ransfer Mode : In this mode, the device continues transfers until a TC is reached or an external

EOP is detected or the DREQ signal goes inactive. Thus a transfer may exhaust the capacity of data

transfer of an I/O device. After the I/O device is able to catch up, the service may be re-established

activating the DREQ signal again. Only the EOP generated by TC or external EOP can cause the auto-

initialization, and only if it is programmed for.

Cascade Mode :Cascade Mode :Cascade Mode :Cascade Mode :Cascade Mode : In this mode, more than one 8237 can be connected together to provide more than four
DMA channels. The HRQ and HLDA signals from additional 8237s are connected with DREQ and DACK
pins of a channel of the host 8237 respectively. The priorities of the DMA requests may be preserved at
each level. The first device is only used for prioritizing the additional devices (slave 8237s), and it does not
generate any address or control signal of its own. The host 8237 responds to DREQ generated by slaves
and generates the DACK and the HRQ signals to co-ordinate all the slaves. All other outputs of the host
8237 are disabled.

© Copyright www.madeeasypublications.org

19Rank Improvement Workbook

MemorMemorMemorMemorMemory to Memory to Memory to Memory to Memory to Memory Ty Ty Ty Ty Transfer Mode :ransfer Mode :ransfer Mode :ransfer Mode :ransfer Mode : To perform the transfer of a block of data from one set of memory
address to another one, this transfer mode is used. Programming the corresponding mode bit in the
command word, sets the channel 0 and 1 to operate as source and destination channels, respectively. The
transfer is initialized by setting the DREQ0 using software commands. The 8237 sends HRQ (Hold Request)
signal to the CPU as usual and when the HLDA signal is activated by the CPU, the device starts operating
in block transfer mode to read the data from memory. The channel 0 current address register acts as a
source pointer. The byte read from the memory is stored in an internal temporary register of 8237. The
channel 1 current address register acts as a destination pointer to write the data from the temporary
register to the destination memory location. The pointers are automatically incremented or decremented,
depending upon the programming. The channel 1 word count register is used as a counter and is decremented

after each transfer. When it reaches zero, a TC is generated, causing EOP to terminate the service.

The 8237 also responds to external EOP signals to terminate the service. This feature may be used to

scan a block of data for a byte. When a match is found the process may be terminated using the external

EOP .

Under all these transfer modes, the 8237 carries out three basic transfers namely, write transfer, read
transfer and verify transfer. In write transfer, the 8237 reads from an I/O device and writes to memory under

the control of IOR and MEMW signals. In read transfer, the 8237 reads from memory and writes to an I/O

device by activating the MEMR and IOW signals. In verify transfer, the 8237 works in the same way as the
read or write transfer but does not generate any control signal.

