

RPSC AEn-2024 Main Test Series

CIVIL
ENGINEERING

Test 3

Test Mode : • Offline • Online

Subject : Structural Analysis

DETAILED EXPLANATIONS

1. Solution:

An influence line represents the variation of either the reaction, shear, moment, or deflection at a specific section in a member as a unit load over that member.

2. Solution:

The equation of vertical rise in a parabolic arch is given by,

$$y = \frac{4h}{L^2} x(L - x)$$

where,

L = Span of arch

h = crown height

3. Solution:

Castigliano's first theorem: "The partial derivative of the total strain energy in a structure with respect to the displacement at any one of the load points gives the value of corresponding load acting on the body in the direction of displacement".

$$\text{Mathematically, } P_i = \frac{\partial U}{\partial \Delta_i}$$

4. Solution:

Sway in portal frames may occur due to the following reasons:

- (i) Unsymmetry in geometry of the frame.
- (ii) Unsymmetry in loading.
- (iii) Settlement of one end of a frame.

5. Solution:

Stiffness method (Displacement method) is suitable, when static indeterminacy is more than kinematic indeterminacy.

6. Solution:

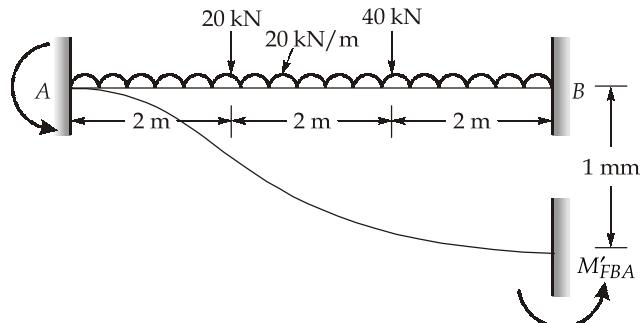
Slope deflection equation for moment at A in the member AB is given by,

$$M_{AB} = (M_F)_{AB} + \frac{2EI}{L} \left(2\theta_A + \theta_B - \frac{3\Delta}{L} \right)$$

where,

θ_A = slope at A, θ_B = slope at B.

Δ = Deflection of B w.r.t. tangent at A.

7. Solution:

$$M'_{FBA} = \frac{6EI\Delta}{L^2}$$

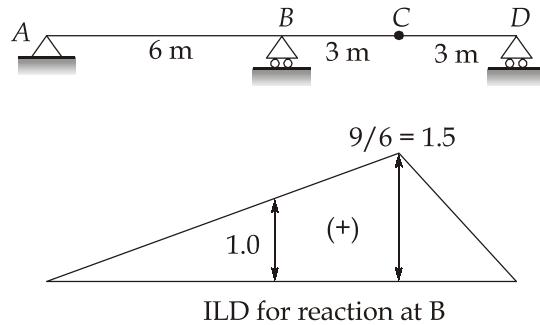
$$M_{FBA} = \underbrace{\frac{20 \times 2^2 \times 4}{6^2}}_{\text{due to point load } 20 \text{ kN}} + \underbrace{\frac{40 \times 4^2 \times 2}{6^2}}_{\text{due to point load } 40 \text{ kN}} + \underbrace{\frac{20 \times 6^2}{12}}_{\text{due to udl}} - \underbrace{\frac{6 \times 90 \times 10^3 \times 1 \times 10^{-3}}{6^2}}_{\text{due to support settlement}}$$

$$\Rightarrow M_{FBA} = 8.89 + 35.56 + 60 - 15$$

$$\Rightarrow M_{FBA} \simeq 89.45 \text{ kNm}$$

8. Solution:

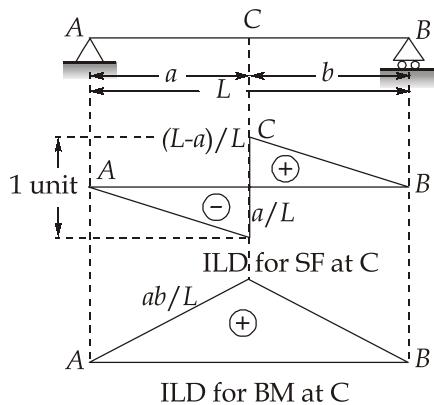
Applying Muller Breslau's principle to draw ILD for reaction at *B*. Give unit displacement at *B* in upward direction.



From above diagram,

Ordinate of ILD at *C* = 1.5

9. Solution:



10. Solution:

A structure is externally unstable if all of its reactions are concurrent or parallel. As shown in figure (a), reactions V_1 , H_1 and H_2 are concurrent and thus unstable. Hence, structure is externally unstable.

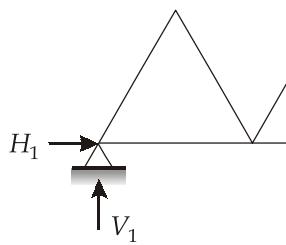


Fig. (a)

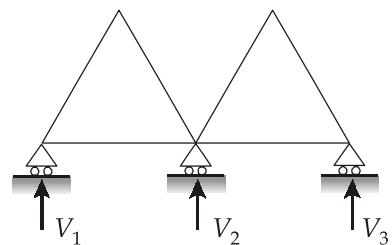


Fig. (b)

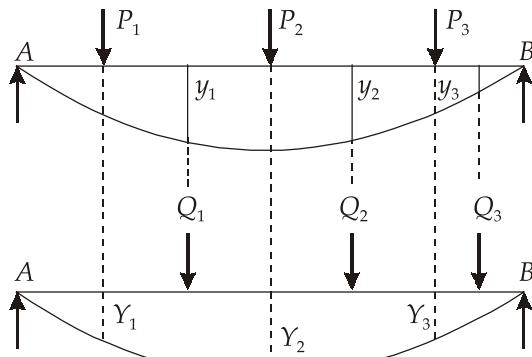
In figure (b), reactions V_1 , V_2 and V_3 are parallel and unstable. Hence, this structure is also externally unstable.

11. Solution:

S. No.	Statically determinate structure	Statically indeterminate structure
1	Conditions of equilibrium are sufficient to analyze the structure completely.	Conditions of equilibrium are insufficient to analyze the structure completely.
2	The bending moment at a section or the force in any member is independent of the material of the components of the structure.	The bending moment at a section or the force in member is dependent upon the material of the components of the structure.
3	The bending moment at a section or the force in any member is independent of the cross-sectional areas of the components.	The bending moment at a section or the force in a member is dependent upon the cross-sectional areas of the components.
4	No stresses are caused due to temperature changes.	Stresses are generally caused due to temperature variations.
5	No stresses are caused due to lack of fit of members.	Stresses are caused due to lack of fit of members.

12. Solution:

Statement: For a structure whose material is elastic and follows Hooke's law and in which the supports are unyielding and the temperature is constant the work done by forces of system 1 acting through the displacements produced by forces of system 2 is equal to work done by forces of system 2 acting through the displacements produced by forces of system 1.



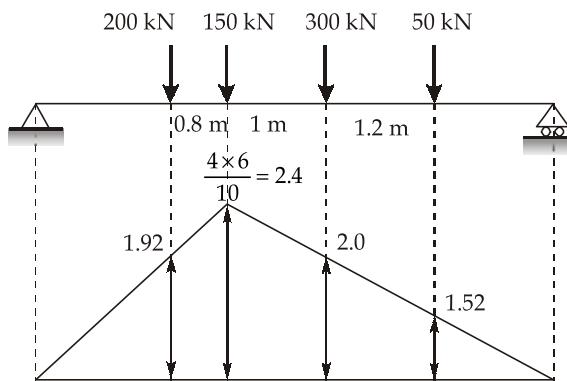
$$P_1 Y_1 + P_2 Y_2 + P_3 Y_3 = Q_1 y_1 + Q_2 y_2 + Q_3 y_3$$

13. Solution:

Allow the loads to cross the given section one after another and calculate average loads on AC and BC

Load crossing section C	Avg. load on AC	Avg. load on BC	Load remarks
50kN	$\frac{650}{4}$	$\frac{50}{6}$	AC > BC
300 kN	$\frac{350}{4}$	$\frac{350}{6}$	AC > BC
150 kN	$\frac{200}{4}$	$\frac{500}{6}$	BC > AC

As 150 kN passes the section, average load on BC becomes higher than AC.



$$\begin{aligned} \text{Maximum BM at } D &= 200 \times 1.92 + 150 \times 2.4 + 300 \times 2 + 50 \times 1.52 \\ &= 1420 \text{ kNm} \end{aligned}$$

14. Solution:

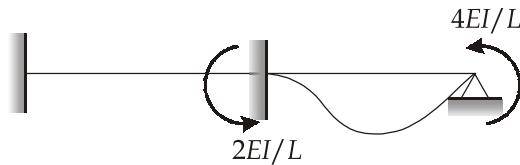
Joint	Member	Relative stiffness	Total stiffness	DF
B	BA	$I/4$	$\frac{5I}{6}$	$\frac{3}{10}$
	BC	$I/4$		$\frac{3}{10}$
	BD	$I/3$		$\frac{2}{5}$

$$M_{BD} = \frac{2}{5} \times 60 \text{ kNm}$$

$$\therefore M_{DB} = \frac{2}{5} \times \frac{60}{2} = 12 \text{ kNm}$$

15. Solution:

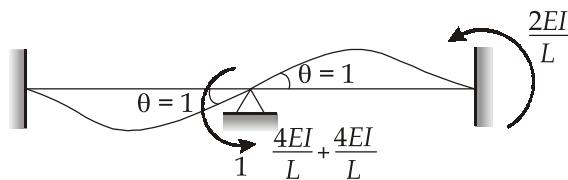
Give unit displacement in the direction (1)



$$k_{11} = \frac{4EI}{L}$$

$$k_{21} = \frac{2EI}{L}$$

Give unit displacement in the direction (2)



$$k_{12} = \frac{2EI}{L}; \quad k_{22} = \frac{8EI}{L}$$

$$\therefore \text{Stiffness matrix } [S] = \begin{bmatrix} \frac{4EI}{L} & \frac{2EI}{L} \\ \frac{2EI}{L} & \frac{8EI}{L} \end{bmatrix} = \frac{2EI}{L} \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix}$$

16. Solution:

Given: Supports are at same level (i.e., $\theta = 0^\circ$)

Span of cable, $L = 130$ m, Sag of cable, $h = 15$ m

Intensity of UDL, $w = 1.5$ kN/m, $\alpha = 5 \times 10^{-6}/^\circ\text{C}$, $t = 30^\circ$

$$\text{Horizontal reaction, } H = \frac{wL^2}{8H} = \frac{1.5 \times 130^2}{8 \times 15} = 211.25 \text{ kN}$$

$$\begin{aligned} \text{Change in horizontal reaction, } \frac{\delta H}{H} &= -\frac{3}{16} \times \frac{L^2}{h^2} \times \alpha \times t \\ &= -\frac{3}{16} \times \frac{130^2}{15^2} \times 5 \times 10^{-6} \times 30 = -2.1125 \times 10^{-3} \end{aligned}$$

$$\therefore \delta H = -2.1125 \times 10^{-3} \times 211.25 \text{ kN} = -0.446 \text{ kN}$$

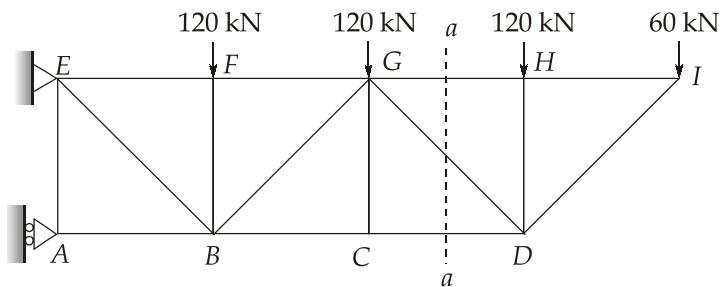
There is a decrease in horizontal reaction.

17. Solution:

Following are the assumptions made in truss analysis:

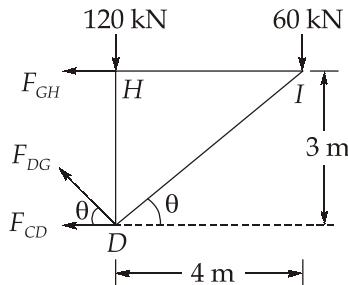
- The centroidal axis of each member coincides with the line connecting the centers of the adjacent members and the members carry axial force only.
- All members are connected only at their ends by frictionless hinges in plane trusses.
- All loads and support reactions are applied only at the joints.

18. Solution:



Cut a section a-a, passing through the members CD, DG and GH.

Considering right part of the truss.



$$\sin \theta = \frac{3}{5}$$

$$\cos \theta = \frac{4}{5}$$

Applying equilibrium equation,

$$\sum M_D = 0$$

$$-F_{GH} \times 3 + 60 \times 4 = 0$$

\Rightarrow

$$F_{GH} = 80 \text{ kN (T)}$$

$$\sum F_V = 0$$

$$F_{DG} \sin \theta - 120 - 60 = 0$$

\Rightarrow

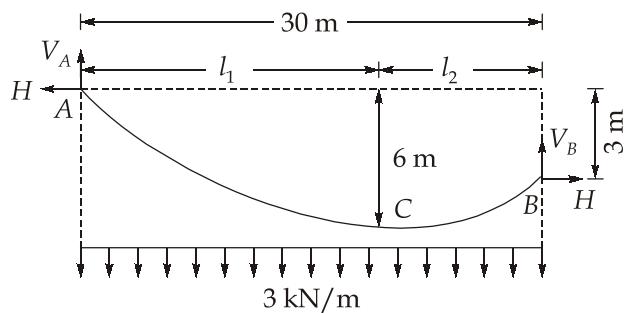
$$F_{DG} = \frac{180}{\sin \theta} = \frac{180}{(3/5)} = 300 \text{ kN}$$

$$\begin{aligned}
 \therefore \quad F_{DG} &= 300 \text{ kN(T)} \\
 \Sigma F_H &= 0 \\
 -F_{GH} - F_{CD} - F_{DG} \times \cos\theta &= 0 \\
 \Rightarrow \quad -80 - F_{CD} - 300 \times \frac{4}{5} &= 0 \\
 \Rightarrow \quad F_{CD} &= -320 \text{ kN} \\
 \therefore \quad F_{CD} &= 320 \text{ kN(C)}
 \end{aligned}$$

Hence, force in members CD, DG and GH are respectively, 320 kN (C), 300 kN(T) and 80 kN(T).

19. Solution:

Considering equilibrium of part AC of the cable,



$$l_1 = l \left(\frac{\sqrt{h_1}}{\sqrt{h_1} + \sqrt{h_2}} \right) = 30 \left(\frac{\sqrt{6}}{\sqrt{6} + \sqrt{3}} \right) = 17.57 \text{ m}$$

$$l_2 = l \left(\frac{\sqrt{h_1}}{\sqrt{h_1} + \sqrt{h_2}} \right) = 30 \left(\frac{\sqrt{3}}{\sqrt{6} + \sqrt{3}} \right) = 12.43 \text{ m}$$

$$\begin{aligned}
 \Sigma F_y &= 0 \\
 \Rightarrow \quad V_A + V_B &= 3 \times 30 = 90 \text{ kN} \quad \dots(i)
 \end{aligned}$$

Taking moments about C, (considering left portion)

$$V_A \times 17.57 - H \times 6 - 3 \times \frac{17.57^2}{2} = 0$$

$$\Rightarrow \quad V_A = \left(\frac{6H}{17.57} + \frac{3 \times 17.57}{2} \right) \quad \dots(ii)$$

Taking moment about C, (Considering right portion)

$$V_B \times 12.43 - H \times 3 - 3 \times \frac{12.43^2}{2} = 0$$

$$\Rightarrow \quad V_B = \left(\frac{3H}{12.43} + \frac{3 \times 12.43}{2} \right) \quad \dots(iii)$$

On putting the values of V_A and V_B in equation (i), we get

$$\left(\frac{6H}{17.57} + \frac{3 \times 17.57}{2} \right) + \left(\frac{3H}{12.43} + \frac{3 \times 12.43}{2} \right) = 90$$

$$\Rightarrow 0.5828H = 45$$

$$\Rightarrow H = 77.21 \text{ kN}$$

From equation (ii)

$$V_A = \frac{6 \times 77.21}{17.57} + \frac{3 \times 17.57}{2} = 52.72 \text{ kN}$$

From equation (iii)

$$V_B = \frac{3 \times 77.21}{12.43} + \frac{3 \times 12.43}{2} = 37.28 \text{ kN}$$

Maximum tension will occur at highest point i.e. A.

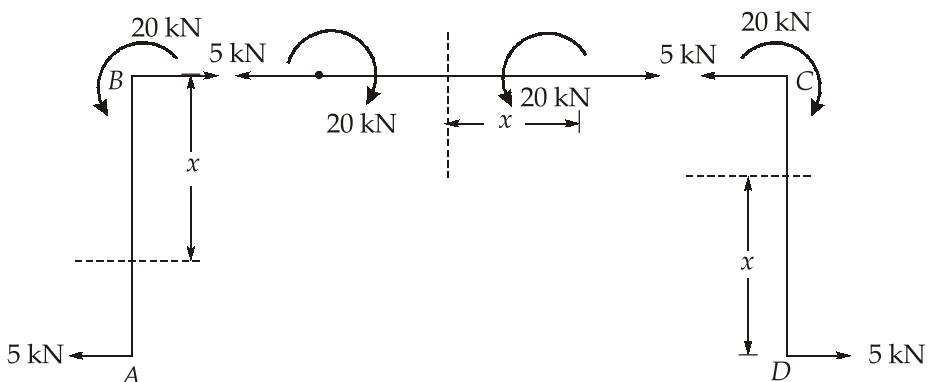
$$T_{\max} = \sqrt{V_A^2 + H^2} = \sqrt{(52.72)^2 + (77.21)^2} = 93.50 \text{ kN}$$

Minimum tension will occur at lowest point i.e. C.

$$T_{\min} = H = 77.21 \text{ kN}$$

20. Solution:

The bending moment expression for various portions are given in table.



Portion	CD	BC	AB
Origin	D	C	B
Limit	0 - 4	0 - 3	0 - 4
M_x (kNm)	$-5x$	-20	$-20 + 5x$

$$\text{Total strain energy, } U = \int_0^4 \frac{(-5x)^2}{2EI} dx + \int_0^3 \frac{(20)^2}{2EI} dx + \int_0^4 \frac{(-20 + 5x)^2}{2EI} dx$$

$$\Rightarrow U = \frac{25}{2EI} \left[\frac{x^3}{3} \right]_0^4 + \frac{400}{2EI} [x]_0^3 + \frac{1}{2EI} \left[400x - 200 \frac{x^2}{2} + \frac{25x^3}{3} \right]_0^4$$

$$\Rightarrow U = \frac{266.67}{EI} + \frac{600}{EI} + \frac{1}{2EI} \left[1600 - 1600 + \frac{25 \times 64}{3} \right]$$

$$\Rightarrow U = \frac{1133.33}{EI} \quad \dots(i)$$

$$\text{Now,} \quad \text{Work done} = \frac{1}{2} \times P \times \Delta = \frac{1}{2} \times 5\Delta = 2.5\Delta \quad \dots(ii)$$

From equation (i) and (ii)

$$2.5\Delta = \frac{1133.33}{EI}$$

$$\Rightarrow 2.5\Delta = \frac{1133.33}{8000} = 0.14167$$

$$\Rightarrow \Delta = 0.05667 \text{ m} = 56.67 \text{ mm}$$

