

UPPSC-AE Main Exam 2024

Uttar Pradesh **Public Service Commission**

Assistant Engineer

CIVIL ENGINEERING Paper-I

Questions & Answer Key

Detailed Solutions

Exam held on:

Q.1	निम्नलिखित में से 'छछूँदर के सिर पर च (a) अयोग्य व्यक्ति को अच्छी चीज़ मिलन (b) कुरूप काया को सुगंध के द्वारा सुंदर (c) छछूँदर को मारने के बजाय उसे बच (d) अयोग्य व्यक्ति को अपमानित करना	ा बनाने का प्रयास करना	बेहं:
Ans.	(a)		End of Solution
Q.2	''सिव द्रोही मम दास कहावा। सो नर स संकर बिमुख भगति चह मोरी। सो नारकी उपर्युक्त काव्यांष में कौन—सा छंद है? (a) दोहा	•	ena or solution
	(c) सोरठा	(d) बरवै	
Ans.	(b)		
Q.3	निम्नलिखित विकल्पों में से सुमेलित नहीं (a) आधा तीतर आधा बटेर—एक जैसी च (b) ईद का चाँद—बहुत दिनों बाद दिखाई (c) उल्टे बाँसा बरेली को—विपरीत कार्य (d) एक आने के बर्तन—सब एक जैसे	ाज़ों का सम्मिश्रण होना देने वाला	End of Solution
Ans.	(a)		
Q.4	''हँसने लगे तब हरि अहा! पूर्णेन्दु—सा मुर उपर्युक्त काव्य—पंक्तियों में कौन—सा अलंक (a) रूपक (c) स्मरण		End of Solution
Ans.	(b)		
			End of Solution
Q.5	निम्नलिखिते में से 'घर सिर पर उठाना'	•	
	(a) बहुत मेहनत करना (c) कठिन काम करना	(b) बहुत शोर करना (d) बहुत काम करना	
Ans.	(b)	(व) बहुरा बगल बगला	
			End of Solution

CIVIL ENGINEERING PAPER-I

Detailed Solutions

Exam held on:

Q.6	निम्नलिखित में से स्त्रीलिंग शब्द नहीं है:	(b) प्रार्थना	
Ans.	(c) ऋतु (d)	(d) स्त्रीत्व	
ΑΠΟ.	(u)		End of Solution
Q.7	निम्नलिखित में से कौन–सा वाक्य शुद्ध ह	} ?	
	(a) यहाँ—वहाँ जाया—आया करो।	(b) बिजली आ—जा रही है।	
	(c) वह अपना सामान लेकर के जायेगा।	(d) सभी सदस्य अपनी राय दें।	
Ans.	(d)		
	"	कर् ।''	End of Solution
Q.8	''कृपया आज का अवकाश देने की कृपा उपर्युक्त वाक्य का शुद्ध रूप है:	प्रर	
	(a) आज का अवकाश अवश्य प्रदान करें	1	
	(b) आज का अवकाश देने की कृपा करें		
	(c) संभव हो तो आज का अवकाश देने		
	(d) कृपया करके आज का अवकाश दें।		
Ans.	(d)		
			End of Solution
Q.9	काल के बोध का संबंध किससे होता है?		
	(a) वचन	(b) क्रिया	
	(c) लिंग	(d) कारक	
Ans.	(b)		
Q.10	शुद्ध वर्तनी वाला शब्द हैः		End of Solution
	(a) अनुगृहीत	(b) अन्ताक्षरी	
	(c) अनुगृह	(d) अनुग्रहीत	
Ans.	(a)		
Q.11	'कवि' शब्द का स्त्रीलिंग हैः		End of Solution
··	(a) कवित्री	(b) कवयित्री	
	(c) कवियित्री	(d) काव्या	
Ans.	(b)		
			End of Solution

Detailed Solutions

Exam held on:

Q.12	'व' वर्ण है:	
	(a) अन्तस्थ व्यंजन	(b) ऊष्म व्यंजन
	(c) संयुक्त व्यंजन	(d) नासिक्य व्यंजन
Ans.	(a)	
		End of Solution
Q.13	निम्नलिखित में से 'चिकुर' श	ब्द का अर्थ है:
	(a) केश	(b) रंग
	(c) दृष्टि	(d) हाथ
Ans.	(a)	
0.44		End of Solution
Q.14		ब्द का समानार्थी विकल्प चुनिएः
	(a) प्रत्यक्ष	(b) प्रशस्त
	(c) विलोम	(d) प्रवर
Ans.	(c)	
Q.15	'दतिवत्त' शब्द के लिए निम्नी	End of Solution लिखित में से कौन—सा एक वाक्यांश प्रयोग किया जाता है?
Q . 10	(a) इतिहास का जानकार	राजित । त का ता पुक्क वाक्वात प्रकार क्या आता है.
	, ,	क्रम में किया गया यथातथ्य वर्णन
	(c) घटनाओं को बढ़ा—चढ़ाकर	
		र राज गरा। सार्वजनिक क्षेत्र की घटनाओं, तथ्यों आदि का विवरण
Ans.	(b)	
		End of Solution
Q.16	निम्नलिखित में से 'आंकुचन'	शब्द का विलोम क्या है?
	(a) प्रसारण	(b) विकर्षण
	(c) अनाकर्षक	(d) विसर्जन
Ans.	(a)	
Q.17	निम्नलिखित में से 'उबटन' १	End of Solution ाब्द का तत्सम रूप क्या है?
St. 17	(a) उबवर्तन	(b) उद्वर्तन
	(c) उदर्तन	(d) उद्वर्तन
Λ	• •	(3) 3401
Ans.	(b)	
		End of Solution

CIVIL ENGINEERING PAPER-I

Detailed Solutions

Exam held on:

Exam held on: **28-09-2025**

Q.10	(a) फ़ैसला (c) कटोरा	et है. (b) फ़ुनगी (d) लोटा	
Ans.	(a)		
			End of Solution
Q.19	निम्नलिखित में से 'कर्पट' शब्द का तद्	नव रूप है:	
	(a) कपट	(b) कपूर	
	(c) कडुआ	(d) कपड़ा	
Ans.	(d)		
			End of Solution
Q.20	वाक्यांश के लिए उपयुक्त शब्द की दृष्टि	से निम्नलिखित युग्मों में से गुलत	युग्म की पहचान
	कीजिए:	5 .	3
	(a) जिसकी थाह न मिले – अथाह		
	(b) जो जीता न जा सके – अजेय		
	(c) जिसके पास कुछ न हो – निर्धन		
	(d) अण्डे से जन्म लेने वाला – अण्डज		
Ans.	(c)		

Q.21 निम्नलिखित में से 'पर्वत के ऊपर की समतल भूमि' वाक्यांश के लिए एक शब्द है:

(a) उपत्यका

(b) अधित्यका

(c) आधिपत्य

(d) अथाह

Ans. (b)

End of Solution

End of Solution

Q.22 'उल्लंघन' शब्द में कौन-सा उपसर्ग है?

(a) ਤ

(b) उल्

(c) उत्

(d) उल्ल

Ans. (c)

End of Solution

Q.23 'अन्वीक्षण' का संधि-विच्छेद है:

(a) अनु + ईक्षण

(b) अना + ईक्षण

(c) अन् + इक्षण

(d) अनु + इक्षण

Ans. (a)

End of Solution

Live-Online Course for GENERAL STUDIES for **State Engineering and SSC Exams**

Full Fledged Course for General Studies

Subject Covered: History, General Science, Polity, Environment, Geography, General Knowledge, Economy & Current Affairs

Duration: 3 Months **Validity:** Till 31st Dec 2025

Batch commencing from

1st Sept, 2025 (8 AM - 11: 30 AM) | 25st Sept, 2025 (6 PM - 9: 30 PM)

Key Features

- 250 Hrs of quality teaching by renowned teachers of MADE EASY.
- Printed study material will be dispatched to your address.
- Comprehensive coverage as per latest syllabus and trends of various competitive exams.

Detailed Solutions

Exam held on:

Exam held on: **28-09-2025**

Q.24	'कृत्' प्रत्यय किसके साथ जुड़ते हैं? (a) सर्वनाम के	(b) संज्ञा के
	(c) क्रिया अथवा धातु के	(d) विशेषण के
Ans.	(c)	
Q.25	'विभागाध्यक्ष' शब्द में समास हैः	End of Solution
	(a) सम्प्रदान तत्पुरूष	(b) कर्मधारय
	(c) संबंध तत्पुरूष	(d) करण तत्पुरूष
Ans.	(c)	
		End of Solution
	figure. The reaction at the roller end	d'A' is: P C E D D
		L /2 L /2 >
	(a) 2P	(b) P
	(c) P/2	(d) Zero
Ans.	(d)	End of Solution
27.	A beam 10 m long, hinged at both en at a distance of 3 m from one end. (a) 4 kN (c) 3 kN	nds is subjected to a clockwise moment of 40 kNm
Ans.	(a)	
28.	The angular velocity (in rad/s) of a boo (a) 2πN/60 (c) πN/180	dy rotating at 'N' revolutions per minute is
Ans.	(a)	

End of Solution

CIVIL ENGINEERING PAPER-I

Detailed Solutions

Exam held on:

Exam held on: **28-09-2025**

29.	The permissible load for short column with helical reinforcement shall be times as compared to load in a similar member with lateral ties.				
	(a) 1.41	(b) 2			
	(c) 1.05	(d) 1.01			
Ans.	(c)				
		End of Solution			
30.		100 represents of tee bar (in mm).			
	(a) Length(c) Width	(b) Depth (d) None of the above			
Ans.	(b)	(a) None of the above			
		End of Solution			
31.	-	aximum strain in concrete at the outermost compression fibre			
	is taken as: (a) 0.002	(b) 0.003			
	(c) 0.0035	(d) 0.0025			
Ans.	(c)				
	` '	End of Solution			
32.	According to IS 456, spacing of longitudinal bars measured along the periphery of the column shall not exceed mm.				
	(a) 250	(b) 300			
	(c) 350	(d) 200			
Ans.	(b)				
		End of Solution			
33.		ingle of base 6 m and height 3 m is m ⁴ .			
	(a) 13.5 (c) 9.0	(b) 27.0 (d) 4.5			
Ans.	(d)	(a)			
A115.	(u)	End of Solution			
34.	As per IS 456, maximum shear stress ($\tau_{\rm c}$ max) is N/mm² for concrete grade of M40 and above.				
	and above.				
	(a) 2.5	(b) 1.5			
		(b) 1.5 (d) 2.0			
Ans.	(a) 2.5				

6

Detailed Solutions

Exam held on:

	A structure is to be constructed where terrain and size factor = 0.98, topogra Basic wind pressure will be N/mm (a) 2120 (c) 1272	
Ans.	(c)	
36.	In reinforced concrete beam, concrete (a) Shear (c) Compression	e is assumed to take no (b) Tension (d) None of the above
Ans.	(b)	
37.	For connecting looing flate to column s	End of Solution ections with 18 mm diameter bolt, the minimur
57.	width of flat should be mm.	ections with to min diameter boit, the minimul
	(a) 60	(b) 59
	(c) 54	(d) 36
Ans.	(c)	End of Solution
38.	In a bolted connection, pattern w (a) Chain (c) Diamond	
Ans.	(c)	
39.	then the net section area of the plate (a) 280	(b) 300
39. Ans.	then the net section area of the plate	thick. If the diameter of the bolt hole is 20 mm is $__$ cm ² .
Ans.	then the net section area of the plate (a) 280 (c) 28 (c)	thick. If the diameter of the bolt hole is 20 mm is cm². (b) 300
	then the net section area of the plate (a) 280 (c) 28	n thick. If the diameter of the bolt hole is 20 mm is cm². (b) 300 (d) 32.42
Ans.	then the net section area of the plate (a) 280 (c) 28 (c) Butt weld is also known as (a) Lap weld	thick. If the diameter of the bolt hole is 20 mm is cm². (b) 300 (d) 32.42 End of Solution (b) Green weld

CIVIL ENGINEERING PAPER-I

Detailed Solutions

Exam held on:

	In a conjugate beam, the free e (a) Hinged (c) Fixed	end of a real (actual) beam will become the end. (b) Free (d) None of the above
Ans.	(c)	
	. ,	End of Solution
42.	•	inclined at an angle of 22°. No access is provided for e considered for design will be kN/m². (b) 0.61 (d) Zero
Ans.	(a)	
		End of Solution
43.	As per IS 456, the ratio of allow of plain bars is about:	vable bond stress in tension in deformed bars to that
	(a) 1.2	(b) 1.3
	(c) 1.6	(d) 1.4
Ans.	(c)	
		End of Solution
44.		tressed with a force of 2500 kN is designed by load we span of 10 m and to carry a total UDL of 40 kN/m. ofile should be mm. (b) 100 (d) 400
44. Ans.	balancing concept for an effecti The central dip of the cable pro (a) 200	cressed with a force of 2500 kN is designed by load ve span of 10 m and to carry a total UDL of 40 kN/m. ofile should be mm. (b) 100
	balancing concept for an effecti The central dip of the cable pro (a) 200 (c) 300	cressed with a force of 2500 kN is designed by load ve span of 10 m and to carry a total UDL of 40 kN/m. ofile should be mm. (b) 100
	balancing concept for an effecti The central dip of the cable pro (a) 200 (c) 300 (a)	cressed with a force of 2500 kN is designed by load we span of 10 m and to carry a total UDL of 40 kN/m. ofile should be mm. (b) 100 (d) 400
Ans.	balancing concept for an effecti The central dip of the cable pro (a) 200 (c) 300 (a) When geotextiles are placed un (a) 750	tressed with a force of 2500 kN is designed by load we span of 10 m and to carry a total UDL of 40 kN/m. ofile should be mm. (b) 100 (d) 400 End of Solution der water, the minimum overlap should be mm. (b) 600
Ans. 45.	balancing concept for an effecti The central dip of the cable pro (a) 200 (c) 300 (a) When geotextiles are placed un (a) 750 (c) 900 (c)	tressed with a force of 2500 kN is designed by load we span of 10 m and to carry a total UDL of 40 kN/m. ofile should be mm. (b) 100 (d) 400 End of Solution der water, the minimum overlap should be mm. (b) 600
Ans. 45.	balancing concept for an effection. The central dip of the cable provided (a) 200 (c) 300 (d) (e) 300 (d) (e) 300 (d) (e) 300 (e) 300 (for each of the cable provided (a) 750 (c) 900 (c) (e) 300 (for each of the cable provided (a) 750 (d) 300 (e) 300 (e) 300 (for each of the cable provided (a) 750 (for each of the cable provi	tressed with a force of 2500 kN is designed by load we span of 10 m and to carry a total UDL of 40 kN/m. offile should be mm. (b) 100 (d) 400 $End \ of \ Solution$ der water, the minimum overlap should be mm. (b) 600 (d) 450 $End \ of \ Solution$ dation has h = 6 m, N _f = 6, N _d = 18 and K = 4 × m m³/day) per m length will be (b) 2.304

GATE 2026 ONLINE TEST SERIES

Streams: CE, ME, EE, EC, CS, IN, PI, CH

Tests are live

Quality Questions

Thoroughly researched, quality questions as per standard & orientation of GATE consisting MCQs, NATs & MSQs

GATE Interface

Test series interface is exactly similar to actual GATE

Anywhere, Anytime

Facility to appear in test anywhere & anytime (24 x 7)

Video Solution Get video solutions by senior faculties for proper understanding of concepts

Ask an **Expert** Ask your doubt to our experts, Get answer of your queries on chat window

Step by Step **Solutions**

Detailed, step by step and well illustrated solutions, For user's better understanding

Smart Report

Comprehensive and detailed analysis of test-wise performance. Evaluate yourself and get All India Rank

Virtual **Calculator Embedded**

Make yourself conversant in use of embedded virtual calculator

Available on android, iOS (Desktop & Laptop)

1584 + Newly Designed Questions

Scan to enroll

Q Queries: 9021300500

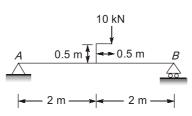
□ queryots@madeeasy.in

Enroll now www.madeeasy.in

Detailed Solutions

Exam held on:

48. Electro-osmosis for a clayey soil generally leads to: (a) Increase in water content (b) Increase in plasticity (c) Decrease in shear strength (d) Increase in shear strength Ans. (d) End of Solution 49. For a Standard Proctor compaction test, the mass of hammer (in kg) and drop of ham (in mm) are respectively: (a) 2.6 and 450 (b) 4.8 and 310 (c) 4.89 and 450 (d) 2.6 and 310 Ans. (d) End of Solution End of Solution End of Solution (a) 9.5 (b) 9.8 (c) 7.3 (d) 7.6 Ans. (c)			
(a) 3 (b) 6 (c) 4 (d) 5 Ans. (a) End of Solut 48. Electro-osmosis for a clayey soil generally leads to: (a) Increase in water content (b) Increase in plasticity (c) Decrease in shear strength (d) Increase in shear strength Ans. (d) End of Solut 49. For a Standard Proctor compaction test, the mass of hammer (in kg) and drop of ham (in mm) are respectively: (a) 2.6 and 450 (b) 4.8 and 310 (c) 4.89 and 450 (d) 2.6 and 310 Ans. (d) End of Solut 50. A soil has a liquid limit of 30. The corresponding plasticity index given by A-line (a) 9.5 (c) 7.3 (d) 7.6 Ans. (c) End of Solut 51. A soil sample has LL = 45%, PL = 25% and SL = 15%. For a natural water con of 30%, the consistency index will be: (a) 25% (b) 40%	47.		undation level is generally of width times the test
48. Electro-osmosis for a clayey soil generally leads to: (a) Increase in water content (b) Increase in plasticity (c) Decrease in shear strength (d) Increase in shear strength Ans. (d) End of Solution 49. For a Standard Proctor compaction test, the mass of hammer (in kg) and drop of ham (in mm) are respectively: (a) 2.6 and 450 (b) 4.8 and 310 (c) 4.89 and 450 (d) 2.6 and 310 Ans. (d) End of Solution 50. A soil has a liquid limit of 30. The corresponding plasticity index given by A-line (a) 9.5 (b) 9.8 (c) 7.3 (d) 7.6 Ans. (c) End of Solution End of Solutio		(a) 3	
48. Electro-osmosis for a clayey soil generally leads to: (a) Increase in water content (b) Increase in plasticity (c) Decrease in shear strength (d) Increase in shear strength Ans. (d) End of Solution 49. For a Standard Proctor compaction test, the mass of hammer (in kg) and drop of ham (in mm) are respectively: (a) 2.6 and 450 (b) 4.8 and 310 (c) 4.89 and 450 (d) 2.6 and 310 Ans. (d) End of Solution End of Solution End of Solution 50. A soil has a liquid limit of 30. The corresponding plasticity index given by A-line (a) 9.5 (b) 9.8 (c) 7.3 (d) 7.6 Ans. (c) End of Solution 51. A soil sample has LL = 45%, PL = 25% and SL = 15%. For a natural water con of 30%, the consistency index will be: (a) 25% (b) 40%	Ans.	(a)	
49. For a Standard Proctor compaction test, the mass of hammer (in kg) and drop of ham (in mm) are respectively: (a) 2.6 and 450 (b) 4.8 and 310 (c) 4.89 and 450 (d) 2.6 and 310 Ans. (d) End of Solution End of Solution End of Solution 50. A soil has a liquid limit of 30. The corresponding plasticity index given by A-line (a) 9.5 (b) 9.8 (c) 7.3 (d) 7.6 Ans. (c) End of Solution End of Solution End of Solution 51. A soil sample has LL = 45%, PL = 25% and SL = 15%. For a natural water con of 30%, the consistency index will be: (a) 25% (b) 40%	48.	(a) Increase in water content(b) Increase in plasticity(c) Decrease in shear strength	generally leads to:
 49. For a Standard Proctor compaction test, the mass of hammer (in kg) and drop of ham (in mm) are respectively: (a) 2.6 and 450 (b) 4.8 and 310 50. A soil has a liquid limit of 30. The corresponding plasticity index given by A-line (a) 9.5 (c) 7.3 (d) 7.6 51. A soil sample has LL = 45%, PL = 25% and SL = 15%. For a natural water con of 30%, the consistency index will be: (a) 25% (b) 40% 	Ans.	(d)	
(c) 4.89 and 450 Ans. (d) End of Solution 50. A soil has a liquid limit of 30. The corresponding plasticity index given by A-line (a) 9.5 (b) 9.8 (c) 7.3 (d) 7.6 Ans. (c) End of Solution End of Solution End of Solution 51. A soil sample has LL = 45%, PL = 25% and SL = 15%. For a natural water configure of 30%, the consistency index will be: (a) 25% (b) 40%	49.	(in mm) are respectively:	n test, the mass of hammer (in kg) and drop of hammer
50. A soil has a liquid limit of 30. The corresponding plasticity index given by A-line (a) 9.5 (b) 9.8 (c) 7.3 (d) 7.6 Ans. (c) End of Solution End of Solution End of Solution 51. A soil sample has LL = 45%, PL = 25% and SL = 15%. For a natural water con of 30%, the consistency index will be: (a) 25% (b) 40%		• •	
 A soil has a liquid limit of 30. The corresponding plasticity index given by A-line (a) 9.5 (b) 9.8 (c) 7.3 (d) 7.6 Ans. (c) End of Solution of 30%, the consistency index will be: (a) 25% (b) 40% 	Ans.	(d)	Ford of Colorism
Ans. (c) End of Solution 51. A soil sample has LL = 45%, PL = 25% and SL = 15%. For a natural water con of 30%, the consistency index will be: (a) 25% (b) 40%	50.	(a) 9.5	ne corresponding plasticity index given by A-line is:
51. A soil sample has LL = 45%, PL = 25% and SL = 15%. For a natural water con of 30%, the consistency index will be: (a) 25% (b) 40%	Ans.		
of 30%, the consistency index will be: (a) 25% (b) 40%		A 450/ DI	End of Solution
	51.	of 30%, the consistency index w (a) 25%	vill be: (b) 40%
Ans. (d)	Anc	(d)	

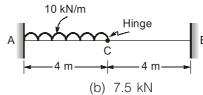

CIVIL ENGINEERING PAPER-I

Detailed Solutions

Exam held on:

Exam held on: **28-09-2025**

52. The reaction at support 'B' of the statically determinate beam shown below is ___ kN.


- (a) 4.25
- (c) 3.75

- (b) 5.75
- (d) 6.25

Ans. (d)

End of Solution

53. Determine the reactions at 'C' of the beam shown below:

- (a) 6.5 kN
- (c) 8.5 kN

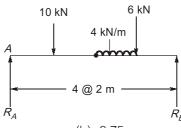
(d) 5.5 kN

Ans. (b)

End of Solution

- 54. A simply supported beam is acted upon by a concentrated load at the centre. It causes a maximum deflection of 10 mm and slope at ends of 0.002 radians. The span of the beam is ___ m.
 - (a) 10

(b) 15


(c) 16

(d) 12

(b) Ans.

End of Solution

55. The ratio of reactions R_A and R_B in the simply supported beam shown in the figure is _____.

- (a) 1.50
- (c) 0.50

- (b) 0.75
- (d) 1.00

Ans. (d)

End of Solution

Page

Detailed Solutions

Exam held on:

56.	The capillary rise in silt is 50 cr size of these two soils is:	n and that of fine sand is 30 cm. The difference in pore	
	(a) 6.00×10^{-3} cm (c) 8.00×10^{-3} cm	(b) 3.00×10^{-3} cm (d) 4.00×10^{-3} cm	
Ans.	(d)		
		End of Solution	
57.	(a) 1/2	bout of the compression index. (b) 1/20	
	(c) 1/10 to 1/5	(d) 5 times	
Ans.	(c)	Find of Collection	
50	A 71.1 P. 1. 1. 1. 1.	End of Solution	
58.	A soil has a discharge velocity velocity is m/s.	\prime of 6 \times 10 ⁻⁷ m/s and a void ratio of 0.5. Its seepage	
	(a) 12×10^{-7}	(b) 18×10^{-7}	
	(c) 36×10^{-7}	(d) 24×10^{-7}	
Ans.	(b)		
		End of Solution	
59.	The range of optimum moisture (a) 14% to 20%	e content for the Standard Proctor test for clayey soil is: (b) 12% to 16%	
	(c) 6% to 10%	(d) 8% to 12%	
Ans.	(a)		
		End of Solution	
60.		ts on the surface of ground. The vertical stresses directly m will be kN/m². The value of influence factor is	
	(a) 1.5	(b) 15.0	
	(c) 150.0	(d) 0.15	
Ans.	(a)		
		End of Solution	
61.	For a highly over-consolidated clay, the pore water pressure coefficient A_f is in the range of:		
	(a) 0.7 to 1.3	(b) -1.0 to -0.5	
	(c) -0.5 to 0.0	(d) 0.3 to 0.7	
	(0)		
Ans.	(c)		

CIVIL ENGINEERING PAPER-I

Detailed Solutions

Exam held on:

Exam held on: **28-09-2025**

62. For finding final setting time of cement by Vicat Apparatus, diameter of the needle used

is _____ mm.

(a) 1

(b) 0.1

(c) 0.5

(d) 5

Ans. (d)

End of Solution

63. Barkan's Relation (formula) is given by:

[where:

K = Stiffness

E = Young's Modulus

 μ = Poisson's Ratio

A = Base area of machine]

(a)
$$K = \left(\frac{1.13E}{1-\mu^2}\right)A$$

(b)
$$K = \left(\frac{1.13E}{1+\mu^2}\right)A$$

(c)
$$K = \left(\frac{1.13E}{1-\mu^2}\right)\sqrt{A}$$

(d)
$$K = \left(\frac{1.13E}{1+\mu^2}\right)\sqrt{A}$$

Ans. (a)

End of Solution

64. To find the efficiency of the utilization of resources on the project, cost performance indicator (CPI) can be calculated as:

[where:

PV = Planned value

AC = Actual cost

EV = Earned value]

(a) Ratio of EV and AC

(b) AC/PV

(c) AC/EV

(d) PV/AC

Ans. (a)

End of Solution

65. As per IS code, the depth of well foundations should not be less than _____ times the maximum scour depth.

(a) 1.2

(b) 1.5

(c) 1.75

(d) 1.33

Ans. (d)

End of Solution

ESE 2026 PRELIM EXAM

Online Test Series

An early start gives you an extra edge!!

Test series is live.

Scan to enrol

Key Features:

Newly designed quality questions as per standard of ESE

Due care taken for accuracy

Error free comprehensive solutions.

Comprehensive and detailed analysis report of test performance

Including tests of Paper-I (General Studies & Engineering Aptitude) and Paper-II (Technical syllabus)

All India Ranking

Available on android, iOS (Desktop & Laptop)

Streams Offered: CE, ME, EE, E&T

Detailed Solutions

Exam held on:

Exam held on: **28-09-2025**

66. Relation between E, K and C is given by:

[E, K and C have usual meaning.]

(a)
$$E = \frac{3K + C}{6KC}$$

(b)
$$E = \frac{3KC}{3K + C}$$

(c)
$$E = \frac{6KC}{3K + C}$$

(d)
$$E = \frac{9KC}{3K + C}$$

Ans. (d)

End of Solution

67. A cantilever beam 6 m long carries a point load of 100 kN at its free end and a point load 'W' at its middle. If the maximum bending moment in the cantilever beam is 900 kNm, the value of load 'W' will be ____ kN.

(a) 100

(c) 250

(d) None of the above

Ans. (a)

End of Solution

68. The state of 2D stress at a point is given by a matrix:

$$\begin{bmatrix} \sigma_{xx} & \tau_{xy} \\ \tau_{yx} & \sigma_{yy} \end{bmatrix} = \begin{bmatrix} 100 & 30 \\ 30 & 20 \end{bmatrix} MPa$$

The maximum shear stress will be ___ MPa.

(a) 100

(b) 110

(c) 50

(d) 75

Ans. (c)

End of Solution

69. The diameter of kernel of a hollow circular section is: [where:

d = internal diameter

D = external diameter]

(a)
$$\frac{D^2 + d^2}{D}$$

(b)
$$\frac{D^2 + d^2}{4D}$$

(c)
$$\frac{D^2 + d^2}{2D}$$

(d)
$$\frac{D+d}{2}$$

Ans. (b)

End of Solution

Page

CIVIL ENGINEERING PAPER-I

Detailed Solutions

Exam held on:

70.	Gantt Chart has coordinates. (a) 4 (c) 2	(b) 5 (d) 3	
Ans.	(c)		End of Colories
71.	In a roof, queen post truss is comm (a) up to 3.5 m (c) from 8.0 m to 12.0 m	nonly used for spans: (b) from 5.0 m to 8.0 m (d) from 3.5 m to 5.0 m	End of Solution
Ans.	(c)		
72.	The damp-proof course: I. may be horizontal or vertical II. should be continuous III. should be of good impervious means the correct option: (a) I, II and III are correct (c) II and III are correct	naterial (b) I and III are correct (d) I and II are correct	End of Solution
Ans.	(a)		
73.	The process of sulphate attack cause (a) compression and cracking (c) compression	(1.)	End of Solution
Ans.	(b)		End of Solution
74.	A moulding provided under the nosin strength to nosing is called: (a) Newel Post (c) Baluster	g to beautify the elevation of a step (b) Soffit (d) Scotia	
Ans.	(d)		
75.	The lowest part of a structure which (a) Plinth (c) Basement	n transmits the load to the soil is (b) Superstructure (d) Substructure	_ End of Solution known as:

Detailed Solutions

Exam held on:

Exam held on: **28-09-2025**

76. The unit of coefficient of consolidation (C_v) is:

(a) cm/s

(c) cm/s²

(d) None of the above

Ans. (b)

End of Solution

77. A 30 cm diameter concrete pile is driven into a homogeneous consolidated clay deposit (c = 40 kN/m² and α = 0.7). If the embedded length of the pile is 10 m, estimate the safe load (FOS = 2.5) in kN.

(a) 222π

(b) 148π

(c) 74π

(d) 37π

Ans. (d)

End of Solution

In the case of silty fine sands, when the observed value of penetration number (N) 78. exceeds 15, the corrected penetration number (N_C) will be:

(a) $15 - \left(\frac{N-15}{2}\right)$

(b) $15 + \left(\frac{N-15}{2}\right)$

(c) $15 - \left(\frac{N+15}{2}\right)$

(d) $15 + \left(\frac{N+15}{2}\right)$

Ans. (b)

End of Solution

79. According to Rankine's formula, the minimum depth of foundation when q = 180 kN/m^2 , $\gamma = 20 kN/m^3$ and $\phi = 30^\circ$, is ____ m.

(a) 1.0

(b) 4.0

(c) 2.0

(d) 0.5

Ans. (a)

End of Solution

80. Single-sheet pile cofferdams are suitable up to a height of _____ m.

(a) 15

(c) > 15

(d) 10

Ans. (b)

End of Solution

CIVIL ENGINEERING PAPER-I

Detailed Solutions

Exam held on:

Exam held on: **28-09-2025**

81.	Equipment productivity refers to: (a) The cost-effectiveness of construction (b) The output achieved by construction (c) The efficiency of construction worker (d) The safety measures implemented of	equipment in a given time s	
Ans.	(b)		End of Solution
82.	The costs associated with accidents on (a) Both direct costs and indirect costs (b) Only indirect costs (c) Only direct costs (d) None of the above	construction sites are:	End of Solution
Ans.	(a)		
83.		tructing: b) Bridges d) Steel buildings	End of Solution
Ans.	(c)		5 1 (C) ii
84.	• •	ne floor is known as: b) Rise d) Landing	End of Solution
Ans.	(a)		
85.		in which one or more interme b) Gap d) Normally	ediate sizes are
Ans.	(b)	,	
86.		n a staircase is known as: b) Soffit d) None of the above	End of Solution
Ans.	(c)		
			End of Solution

16

NATIONAL SCHOLARSHIP TEST (NST.)

Test Date: 2 Nov, 2025

Last date to Register: 28 Oct, 2025

Test Pattern

Time Duration : 60 Minutes

▼ Total Questions : 60 MCQs

✓ Weightage Per Question: 2 Marks

✓ Negative Marking: 0.66 Marks

Test Syllabus :

Technical Subjects: 40 Questions
Reasoning & Aptitude : 10 Questions
Engineering Mathematics : 10 Questions

▼ Test Fee: Rs. 50/-

Offline Batches at Delhi

from First week of Dec 2025 Streams: CE, ME/PI, EE, EC/IN, CS

Live-Online Batches

from Last week of Nov, 2025 Streams: CE, ME/PI, EE, EC/IN, CS

Scan to register

NST is valid for

Foundation Courses for

ESE 2027 GATE 2027

- Offline Mode
- Live-Online

Features of Foundation Courses:

- ✓ Classes by experienced & renowned faculties.
- ✓ Facility for doubt removal.
- Systematic subject sequence & timely completion.
- ✓ Concept practice through workbook solving.
- ✓ Comprehensive & updated books (Optional).
- Exam oriented learning ecosystem.
- **♥** Efficient teaching with comprehensive coverage.
- ✓ Proper notes making & study concentration.
- Regular performance assessment through class tests.

For more details, visit our website: www.madeeasy.in

Corporate Office: 44 - A/1, Kalu Sarai, Near Hauz Khas Metro Station, New Delhi - 110016

9021300500

nst@madeeasy.in

www.madeeasy.in

MADE EASY Centres: Delhi | Bhopal | Hyderabad | Jaipur | Pune

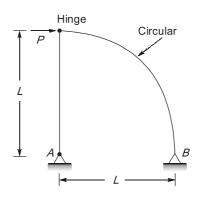
Detailed Solutions

Exam held on:

Exam held on: **28-09-2025**

87.	For a stair, the sum of riser and (a) 40 - 45 (c) 10 - 20	tread, in centimetres, should be: (b) 25 - 35 (d) 20 - 25	
Ans.	(a)		Fund of Columbian
88.	The minimum frequency limit of 6 - 15 m ³ shall be:	of sampling of concrete of each grade	End of Solution e for volume
	(a) 1 (c) 3	(b) 4 (d) 2	
Ans.	(d)	_	Fund of Columbian
89.	What is the permissible tolerance depth 200 mm or less? (a) ± 5 mm (c) ± 10 mm	as per IS code for the reinforcement place (b) ± 15 mm (d) None of the above	End of Solution d for effective
Ans.	(c)		
90.	What is the minimum grade of cond (a) M15 (c) M10	crete for reinforced concrete work (for seve (b) M25 (d) M20	End of Solution re exposure)?
Ans.	(*)	_	
91.		slenderness ratio of a beam, strut or tensoccurs due to loads other than wind or so (b) 250	
	(c) 300	(d) 350	
Ans.	(c) 300 (a)	(d) 350	
	Allowable average shear stress i 250 N/mm² is N/mm².	n an unstiffened web of beams made of s	End of Solution steel of grade
Ans. 92. Ans.	(a) Allowable average shear stress i	(d) 350	

17


CIVIL ENGINEERING PAPER-I

Detailed Solutions

Exam held on:

Exam held on: **28-09-2025**

93. Reaction at support 'B' of the structure shown in the figure is:

- (a) $P\sqrt{2}$

- (b) P
- (d) $\frac{P}{\sqrt{2}}$

(b) Ans.

End of Solution

94. General equation for finding deflection in a beam is given by the equation: (Symbols have usual meaning)

(a) $M = EI \frac{d^2y}{dx^2}$

(b) $M = EI \frac{dy}{dx}$

(c) $\frac{M}{EI^2} = \frac{d^2y}{dx^2}$

(d) None of the above

Ans. (a)

End of Solution

95. An isotropic soil has the vertical permeability of 'k' and horizontal permeability of '4k'. The equivalent permeability of the transformed section is:

(a) 2.0 k

(b) 1.5 k

(c) 8.0 k

(d) 0.5 k

(a) Ans.

End of Solution

96. What is the minimum value of reinforcement for design of machine foundation of the machines that pump explosive gases?

(a) 25 kg/m^3

(b) 50 kg/m^3

(c) 40 kg/m³

(d) 30 kg/m^3

Ans. (c)

End of Solution

Page

Detailed Solutions

Exam held on:

	(c) 60°	(d) 30°	
Ans.	(c)		End of Columbian
98.	Deadweight used for applying a test I (a) Safe load (c) Allowable load	oad on a pile is known as: (b) Working load (d) Kentledge	End of Solution
Ans.	(d)		5 1 (61)
99.	For a void ratio of 0.60, the relationship the hydraulic gradient (i) for quicksan (a) G = 0.6 i + 1 (c) G = i + 0.6		End of Solution solids (G) and
Ans.	(d)		
100.	Kani's method is an excellent extension (a) Moment Area method (c) Unit Load method	on of: (b) Slope-Deflection method (d) None of the above	End of Solution
Ans.	(b)		
101.	A cantilever beam of length 4 m carries If the maximum bending moment in the end of the cantilever beam will be (a) $\frac{320}{3EI}$	e cantilever beam is 80 kNm, slo (b) $\frac{640}{3EI}$	_
Ans.	(c) $\frac{188}{3El}$	(d) None of the above	
			End of Solution

CIVIL ENGINEERING PAPER-I

Detailed Solutions

Exam held on:

Exam held on: **28-09-2025**

- 102. A strut of length 'L' is fixed at one end and free at the other. Euler's buckling load for this strut is 10 kN. If both the ends of the strut are now fixed, what will be its Euler's buckling load?
 - (a) 180 kN

(b) 120 kN

(c) 160 kN

(d) 25 kN

Ans. (c)

End of Solution

103. The frequency of oscillation of a compound pendulum is:

 K_G = Radius of gyration about the centroidal axis, and h = Distance between the point of suspension from centre of gravity]

(a)
$$2\pi\sqrt{\frac{gh}{K_G^2+h^2}}$$

(b)
$$2\pi\sqrt{\frac{K_G^2+h^2}{gh}}$$

(c)
$$\frac{1}{2\pi} \sqrt{\frac{K_G^2 + h^2}{gh}}$$

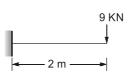
(d)
$$\frac{1}{2\pi} \sqrt{\frac{gh}{K_G^2 + h^2}}$$

Ans. (d)

End of Solution

- 104. The energy possessed by a body for doing work by virtue of its position is known as:
 - (a) Kinetic Energy

(b) Angular Kinetic Energy


(c) Strain Energy

(d) Potential Energy

Ans. (d)

End of Solution

A cantilever beam is shown in the figure. The moment to be applied at the free end 105. of the beam for zero deflection at that point is

(a) 12 kN-m

(b) $9 \, kN(-)$

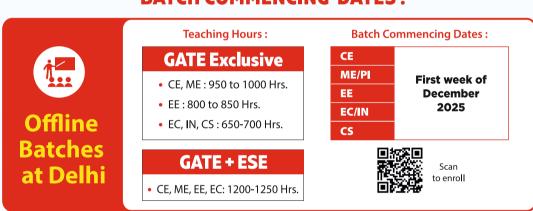
(c) 12 kN-m(-)

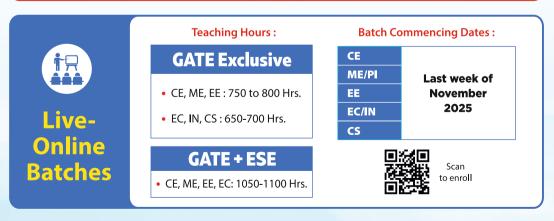
(d) $9 \, kN(-)$

Ans. (c)

End of Solution

Page


Announcing Foundation Courses for


ESE & GATE: 2027

The foundation batches are taught comprehensively which cover the requirements of "all technical-syllabus based examinations".

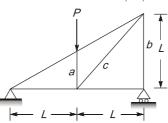
- Classes by experienced & renowned faculties.
- Comprehensive & updated study material.
- Exam oriented learning ecosystem.
- Concept practice through workbook solving.
- Efficient teaching with comprehensive coverage.
- Similar teaching pedagogy in offline & online classes.
- Systematic subject sequence and timely completion.
- Regular performance assessment through class tests.

BATCH COMMENCING DATES:

More batches to be announced soon. | Courses with SES (State Engineering Services) are also available. | Low Cost EMI Facility Available | Admissions Open

Delhi Centre: 44-A/1, Kalu Sarai, Near Hauz Khas Metro Station, New Delhi-110016 • Ph: 9021300500

MADE EASY Centres: Delhi | Bhopal | Hyderabad | Jaipur | Pune www.madeeasy.in



Detailed Solutions

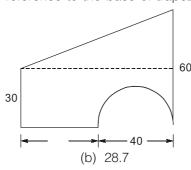
Exam held on:

Exam held on: **28-09-2025**

As shown in the figure, the forces in members a, b, c in the truss are respectively: 106.

(a) $\frac{P}{2}$, P, zero

(b) $P, \frac{P}{2}, \text{zero}$


(c) $\frac{P}{2}, \frac{P}{2}, P$

(d) P, P, P

Ans. (b)

End of Solution

107. A semi-circular area is removed from a trapezium as shown in the figure. The centroid of the remaining area with reference to the base of trapezium will be approximately:

- (a) 31.2
- (c) 24.3

(d) 26.5

Ans. (a)

End of Solution

- In order to double the period of simple pendulum, the length of the string should be: 108.
 - (a) Tripled

(b) Doubled

(c) Halved

(d) Quadrupled

Ans. (d)

End of Solution

- 109. One Watt is equal to _____
 - (a) 1 WN-s

(b) $1 \text{ N-m}^2/\text{s}$

(c) 1 N-m/s

(d) 1 N/m-s

Ans. (c)

End of Solution

CIVIL ENGINEERING PAPER-I

Detailed Solutions

Exam held on:

	body is		
	(a) 1	(b) Between 0 and 1	
	(c) 0	(d) None of the above	
Ans.	(b)		
		End of Solution	
111.	Maximum deflection 'y' in a c free end is given by: ['E' and 'I' have usual meanir	cantilever beam of length 'L' carrying a point load 'W' a	
	(a) $y = \frac{5}{384} \frac{WL^4}{EI}$	(b) $y = \frac{3WL^5}{48EI}$	
	(c) $y = \frac{WL^3}{3EI}$	$(d) y = \frac{WL^3}{48EI}$	
Ans.	(c)	End of Colution	
112	Which of the following glass is most suitable to withstand high temperature?		
112.	Which of the following glass		
112.	Which of the following glass (a) Lead glass (c) Soda-lime glass		
112. Ans.	(a) Lead glass	is most suitable to withstand high temperature? (b) Tempered glass (d) Borosilicate glass	
Ans.	(a) Lead glass(c) Soda-lime glass(d)	is most suitable to withstand high temperature? (b) Tempered glass (d) Borosilicate glass End of Solution	
Ans.	(a) Lead glass(c) Soda-lime glass(d)In a water tank design, (internal contents)	is most suitable to withstand high temperature? (b) Tempered glass (d) Borosilicate glass End of Solution nal diameter < 6 m), minimum thickness of concrete shel	
Ans.	(a) Lead glass(c) Soda-lime glass(d)	is most suitable to withstand high temperature? (b) Tempered glass (d) Borosilicate glass End of Solution nal diameter < 6 m), minimum thickness of concrete shel	
Ans.	(a) Lead glass(c) Soda-lime glass(d)In a water tank design, (intern for shaft type staging shall be added to the content of the content	is most suitable to withstand high temperature? (b) Tempered glass (d) Borosilicate glass End of Solution and diameter < 6 m), minimum thickness of concrete shelpe mm.	
Ans. 113.	 (a) Lead glass (c) Soda-lime glass (d) In a water tank design, (intern for shaft type staging shall be (a) 180 	is most suitable to withstand high temperature? (b) Tempered glass (d) Borosilicate glass End of Solution all diameter < 6 m), minimum thickness of concrete shelp to the property of the	
	(a) Lead glass (c) Soda-lime glass (d) In a water tank design, (intern for shaft type staging shall be (a) 180 (c) 160 (c) Minimum pitch in riveted con	is most suitable to withstand high temperature? (b) Tempered glass (d) Borosilicate glass End of Solution all diameter < 6 m), minimum thickness of concrete shelpe mm. (b) 200 (d) 225 End of Solution	
Ans. 113. Ans.	(a) Lead glass (c) Soda-lime glass (d) In a water tank design, (intern for shaft type staging shall to (a) 180 (c) 160 (c) Minimum pitch in riveted condiameter of rivet.	is most suitable to withstand high temperature? (b) Tempered glass (d) Borosilicate glass End of Solution and diameter < 6 m), minimum thickness of concrete shell be mm. (b) 200 (d) 225 End of Solution anection shall not be less than times the nominal	
Ans. 113. Ans.	(a) Lead glass (c) Soda-lime glass (d) In a water tank design, (intern for shaft type staging shall be (a) 180 (c) 160 (c) Minimum pitch in riveted con	is most suitable to withstand high temperature? (b) Tempered glass (d) Borosilicate glass End of Solution all diameter < 6 m), minimum thickness of concrete shelpe mm. (b) 200 (d) 225 End of Solution	
Ans. 113. Ans.	(a) Lead glass (c) Soda-lime glass (d) In a water tank design, (intern for shaft type staging shall be (a) 180 (c) 160 (c) Minimum pitch in riveted condiameter of rivet. (a) 3.0	is most suitable to withstand high temperature? (b) Tempered glass (d) Borosilicate glass End of Solution and diameter < 6 m), minimum thickness of concrete shelp to e mm. (b) 200 (d) 225 End of Solution anection shall not be less than times the nominal graduation in the	

Detailed Solutions

Exam held on:

115.	For fire-resistant masonry, which ston (a) Compacted sandstone (c) Fine grained granite	(b) Limestone (d) None of the above
Ans.	(a)	End of Soluti
116.	When maximum stresses in both steel a values, the section is said to be a/ar (a) Underground section	and concrete simultaneously reach their allowal
	(c) Balanced section	(d) Over-reinforced section
Ans.	(c)	
117.	Limiting value of depth of neutral axi	s for Fe 415 is:
	[where d = effective depth] (a) 0.48 d	(b) 0.42 d
	(c) 0.46 d	(d) 0.53 d
Ans.	(a)	
118.	Bored compaction piles are modificate (a) Under-reamed pile (c) Sand pile	ion of: (b) Sheet pile (d) None of the above
Ans.	(c)	
119.	The weight of Portland cement for state (a) 0.55 kg/m ³ (c) 1430 kg/m ³	end of Solution and ard purposes is taken as: (b) 1000 kg/m³ (d) 2000 kg/m³
Ans.	(c)	
120.	As per Indian Standards, OPC ceme (a) 4 (c) 3	nt is available in grade(s). (b) 2 (d) 1
Ans.	(b)	
		End of Soluti

Foundation Courses for

2027

GATE

Tablet Course

- Pre-loaded full fledged recorded course
- Android OS based 10.5 inch Samsung tablet
- · Internet access does not required
- Classes by senior faculties
- · Validity: 2 Years
- · Learn at your own pace
- Tablet is reusable for normal purpose after validity expires

Recorded Course

- Recorded Course
- Full fledged holistic preparation
- Classes by senior faculties
- Lectures can be watched anytime/ anywhere
- Courses are accessible on PC & Mac desktops/laptops/android/ iOS mobile devices.
- · Learn at your own pace
- Validity: 1 year
- Internet connection required

Teaching Hours

- **♥ GATE Exclusive** CE, ME, EE: 800 to 900 Hrs.
 - EC, IN, CS, CH: 650-700 Hrs.
- **♥ GATE + ESE** CE, ME, EE, EC : 1100 to 1200 Hrs.
- - EC, IN, CS, CH: 950-1050 Hrs.

Note: State Engineering Services Examination. • The course is offered with a validity options of 1 year and 2 years.

Admissions Open for **ESE 2026 & GATE 2026**

Admissions Open from **1 Jan 2026** for **ESE 2027 & GATE 2027** For Online Courses, Download: "MADE EASY Prime" App now

Android

Low Cost EMI Facility Available

Delhi Centre: 44-A/1, Kalu Sarai, Near Hauz Khas Metro Station, New Delhi-110016 • Ph: 9021300500

CIVIL ENGINEERING PAPER-I

Detailed Solutions

Exam held on:

For 'Acid test' of stones, stones are kept in 1% hydrochloric acid (HCl) for day (a) 7 (b) 3	r(s).
(c) 1 (d) 14	
(a)	
End of Solution	ion
Density of solid concrete blocks to be used as load-bearing walls should be: (a) More than 1800 kg/m³ (b) Approximately 1000 kg/m³ (c) Exactly 2400 N/m² (d) Less than 1800 kg/m³	
(a)	
End of Solution	ion
Barbed wire fencing is measured in units. (a) Gauge (b) Square metre (c) Cubic metre (d) Metre	
	i o u
While conducting the 'Smith Test' for stones, stones are to be kept immersed in water for a minimum period of hours. (a) 12	
(d)	
What does steel jacketing refer to? (a) Wrapping the entire building in 'FRP' (b) Base isolation (c) Encasement of individual columns with steel plates (d) Adding shear walls	rion
(c)	
End of Soluti	ion
	(a) 7 (b) 3 (c) 1 (d) 14 (a) End of Solution Density of solid concrete blocks to be used as load-bearing walls should be: (a) More than 1800 kg/m³ (b) Approximately 1000 kg/m³ (c) Exactly 2400 N/m² (d) Less than 1800 kg/m³ (a) End of Solution End of Solution