

India's Best Institute for IES, GATE & PSUs

ESE 2024 : Mains Test Series UPSC ENGINEERING SERVICES EXAMINATION

Electronics & Telecommunication Engineering

Test-4: Electronic Devices & Circuits + Advanced Communication [All topics] Analog & Digital Communication Systems-1 [Part Syllabus] Signals and Systems-2 + Microprocessors and Microcontroller [Part Syllabus] Name:

Roll No

Test Centres	1.2800			Student's Signature
Delhi 🗌	Bhopal 🗌	Jaipur 🗌	Pune 🗌	
Kolkata 🗌	Hyderabad 🗹			

Instructions for Candidates

- Do furnish the appropriate details in the answer sheet (viz. Name & Roll No).
- 2. There are Eight questions divided in TWO sections.
- Candidate has to attempt FIVE questions in all in English only.
- 4. Question no. 1 and 5 are compulsory and out of the remaining THREE are to be attempted choosing at least ONE question from each section.
- 5. Use only black/blue pen.
- 6. The space limit for every part of the question is specified in this Question Cum Answer Booklet. Candidate should write the answer in the space provided.
- 7. Any page or portion of the page left blank in the Question Cum Answer Booklet must be clearly struck off.
- 8. There are few rough work sheets at the end of this booklet. Strike off these pages after completion of the examination.

The second second	FOR	ROTFIC	EU°L		
Que	estion M	Marks Obtained			
. Section-A					
	QI				
2.2					
*	Q.3	(
	Q.4				
		ection			
	Q.5		1		
	0.6				
Q.Y					
	Q.8				
Tot	al Mark				
Total Marks Obtained					
Signature of Evaluator			Cross Checked by		

Corp. office: 44 - A/1, Kalu Sarai, New Delhi-110016

Ph: 9021300500 | Web: www.madeeasy.in

IMPORTANT INSTRUCTIONS

CANDIDATES SHOULD READ THE UNDERMENTIONED INSTRUCTIONS CAREFULLY, VIOLATION OF ANY OF THE INSTRUCTIONS MAY LEAD TO PENALTY.

DONT'S

- 1. Do not write your name or registration number anywhere inside this Question-cum-Answer Booklet (QCAB).
- 2. Do not write anything other than the actual answers to the questions anywhere inside your QCAB.
- 3. Do not tear off any leaves from your QCAB, if you find any page missing do not fail to notify the supervisor/invigilator.
- 4. Do not leave behind your QCAB on your table unattended, it should be handed over to the invigilator after conclusion of the exam.

DO'S

- 1. Read the Instructions on the cover page and strictly follow them.
- Write your registration number and other particulars, in the space provided on the cover of QCAB.
- 3. Write legibly and neatly.
- 4. For rough notes or calculation, the last two blank pages of this booklet should be used. The rough notes should be crossed through afterwards.
- 5. If you wish to cancel any work, draw your pen through it or write "Cancelled" across it, otherwise it may be evaluated.
- 6. Handover your QCAB personally to the invigilator before leaving the examination hall.

Page 1 of 64

Do not write in this margin

Section A : Electronic Devices & Circuits + Advanced Communication Topics

Q.1 (a) The

The energy band gap of silicon (Si) depends on the temperature as follows:

$$E_g = 1.17 \text{ eV} - 4.73 \times 10^{-4} \frac{T^2}{T + 636}$$

If the intrinsic carrier concentration of Si at T = 300 K is $1.05 \times 10^{10} \text{ cm}^{-3}$, what is the intrinsic carrier concentration of Si at temperature T = 77 K? (Assume at 300 K, KT = 0.026 eV, $E_g(300 \text{ K}) = 1.12 \text{ eV}$)

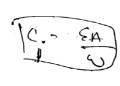
12 marks]

dol

$$h_2 = A (300)^2 = \frac{3}{2 \times 0.026}$$
 $h_2 = A (301)^2 = \frac{2 \times 0.026}{2 \times 0.026}$

Ag (2741 = 1.16P)

h 2 = (300) = (1.10-1.12)


h 2 = (300) = (2000)

$$\frac{n_1}{k_2} = 8.4:$$

Q.1 (b) Consider a silicon one-sided abrupt junction with $N_A = 2 \times 10^{19}$ cm⁻³ and $N_D = 8 \times 10^{15}$ cm⁻³. Calculate the ratio of junction capacitance, $\frac{C_j(V_R = 0 V)}{C_j(V_R = -4V)}$ at T = 300 K,

where V_R is the applied voltage across the junction. (Assume, V_T = 0.0259 V, ϵ_s = 11.9 ϵ_0 , n_i = 9.65 × 10⁹ cm⁻³)

[12 marks]

$$\frac{C_{1}(q_{1})}{C_{2}(q_{1})}$$

Q.1 (c)

Two step index fibers exhibit the following parameters:

- A multimode fiber with a core refractive index of 1.5, a relative refractive index difference of 3% and an operating wavelength of $0.82\,\mu\text{m}.$
- (ii) An 8 µm core diameter single mode fiber with an core refractive index same as (i), a relative index difference of 0.3% and an operating wavelength of 1.55 μm_{\cdot}

Estimate the critical radius of curvature at which large bending losses occur in both cases.

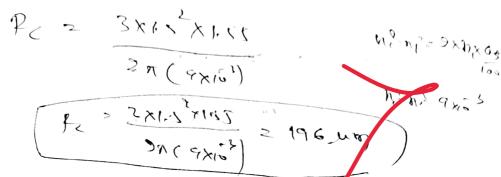
[8:+ 4 marks]

44

N= 1.2; V= 32 Y=0.85 med

113 HS 5 - 0,03 x 32 1-2 5

1011 = 0.135


3 x 1.5 x 0.88

P = 48.30 20 mg

2a = 8 mm: h/=

A = 0.37, A=1,000m

J. (

Q.1(d) A base station transmitter has a power output of 10 watts operating at a frequency of 250 MHz. The transmitter is connected by 20 m of an RF coaxial cable, which has a loss of -3 dB/100 m specification, to an antenna that has a gain of 9 dBi. The receiving antenna is 25 km away and has a gain of 4 dBi. There is negligible loss in the receiver feeder line, but the receiver is mismatched; the receiving antenna and feeder cable are designed for a 50Ω impedance, but the receiver input has 75Ω impedance, resulting into a mismatch loss of about 0.2 dB. Calculate the power delivered to the receiver, assuming free space propagation.

[12 marks] dz granj Pin 2 low: f = 250mm P7 = lon 2 - 3 dB . 1 = 20m. PF 62 -3 x 24 = - 0.6dB G+ = 9dB; 10 log 97 = 9 0. 2dB = 6 PHGILY &

$$P_{8} = 10 \times 34.5 \times 1.41$$

$$\frac{2(1 \times 35 \times 10^{3} \times 950 \times 10^{6})}{3 \times 10^{6}}$$

$$P_{8} = 1.39 \times 10^{1}$$

$$9.38.55 dB$$

$$0.382.104 \text{ but of}$$

$$P_{8} = -38.55 dB$$

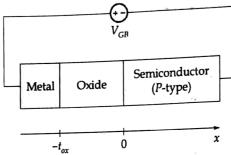
$$P_{8} = -38.55 dB$$

- Q.1 (e)
- (i) A photoconductor with dimensions L=6 mm, W=2 mm and D=1 mm is placed under uniform radiation. The absorption of light increases the current by 2.83 mA. A voltage of 10 V is applied across the device. As the radiation is suddenly cutoff, the current falls, initially at a rate of 23.6 A/s. The electron and hole mobilities are $3600 \text{ cm}^2/\text{V-s}$ and $1700 \text{ cm}^2/\text{V-s}$ respectively. Find:
 - 1. the equilibrium density of electron-hole pairs generated under radiation.
 - 2. the minority carrier lifetime.
 - 3. the excess density of electrons and holes remaining 1 ms after the radiation is cut off.
- (ii) A field transistor has $N_A = 10^{17}$ cm⁻³, $\frac{Q_f}{q} = 10^{11}$ cm⁻² and an n^+ polysilicon local interconnect as the gate electrode. If the requirement for sufficient isolation between device and well is $V_{th} > 20$ V, calculate the minimum field oxide thickness. (Assume $\phi_{ms} = -0.98$ V, $\epsilon_s = 11.9 \epsilon_0$, $\epsilon_{ox} = 3.9 \epsilon_0$, $n_i = 9.65 \times 10^9$ cm⁻³, $V_T = 26$ mV)

[6 + 6 marks]

59

(1)


0.83

Mm 2 - 0.98 - 1011.

MADE ERSY Question Cum Answer Booklet

Q.2 (a)

Consider a MOS structure shown below:

The oxide thickness, $t_{ox} = 50$ nm and the doping level in the substrate is $N_a = 10^{16}$ cm⁻³. Assume, intrinsic carrier concentration of semiconductor, $n_i = 10^{10}$ /cm³, thermal voltage, $V_T = 26$ mV, $\epsilon_{oxide} = 3.45 \times 10^{-13}$ F/cm, $\epsilon_{si} = 1.05 \times 10^{-12}$ F/cm.

Calculate the hole concentration, P at the oxide-semiconductor interface (i.e., x = 0) under the following conditions:

- (i) At flatband.
- (ii) At threshold
- (iii) At a condition in which the potential build up from the quasi-neutral body of semiconductor to x = 0 is 0.5 V.
- (iv) At a condition when the capacitance per unit area of the MOS structure is 50 nF/cm². [20 marks]

Page 9 of 64

Do not write in this margin

Q.2(b)

- Explain in detail noise in photodetector. (i)
- The quantum efficiency of a particular silicon APD operating at a wavelength of $0.8~\mu m$ is 90%. The incident optical power is $0.5~\mu W$. The output current is $13~\mu A$. Determine the multiplication factor of the photodiode.

[10 + 10 marks]

dolg

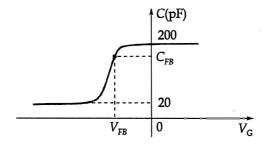
Harais Horles

R- P7

Whom. there hoise in this detected

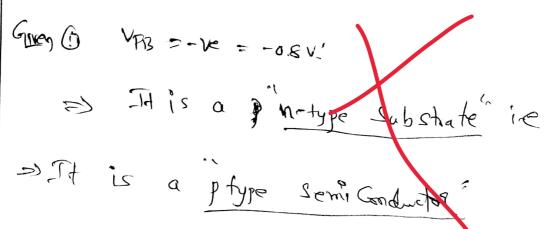
Dayle Count

D Rail wire,


(2) There Nois-

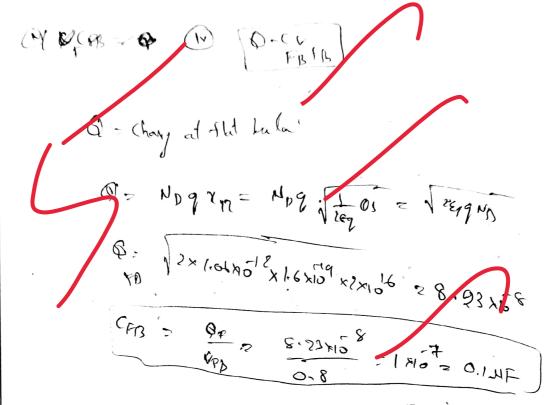
(3) Proj Noise

of Photo Nort.


=13 + SERI 4 SERE

Q.2 (c) The high frequency C-V characteristic curve of a MOS capacitor is shown in the figure below. The area of the device is 2×10^{-3} cm². The metal-semiconductor work function difference is $\phi_{\rm ms} = -0.5$ V and $V_{FB} = -0.8$ V. The oxide is SiO₂ and the semiconductor is silicon with doping concentration 2×10^{16} cm⁻³. Assume $\varepsilon_{\rm si} = 1.06 \times 10^{-12}$ F/cm, $\varepsilon_{\rm ox} = 3.45 \times 10^{-13}$ F/cm, $n_i = 1.5 \times 10^{10}$ cm⁻³ and kT = 0.026 eV.

- (i) Is the semiconductor n or p-type?
- (ii) What is the oxide thickness?
- (iii) What is the equivalent trapped oxide charge carrier density?
- (iv) Determine the flat-band capacitance C_{FB} .


[20 marks]

(0)

use Ku

6:13

Q.3 (a) Consider a GaAs pn diode at T=300 K with $N_a=N_d=10^{17}$ cm⁻³ and with a cross sectional area of 10^{-3} cm². The minority carrier mobilities are $\mu_n=3000$ cm²/V-sec and $\mu_p=200$ cm²/V-sec. The life times are $\tau_{p0}=\tau_{n0}=\tau_0=10^{-8}$ sec. As a approximation, assume the electron-hole generation and recombination rates are constant across space charge region. Calculate the total diode current at a reverse bias voltage of 5 V and at a forward bias voltage of 0.5 V.

(Assume, $V_t = 0.0259 \text{ V}$, $n_i = 1.8 \times 10^6 \text{ cm}^{-3}$, $\epsilon_G = 13.1 \epsilon_0$)

[20 marks]

Page 15 of 64

Do not write in this margin

Q.3 (b)

- (i) Determine the change in the electron density of E-layer when the critical frequency changes from 4.5 MHz to 1.5 MHz for ionospheric communication between mid day and sun set periods.
- (ii) In a RSA cryptosystem, a participant A uses two prime numbers p = 13 and q = 17 to generate public and private keys. If the public key of A is 35, then find the private key of A.

[10 + 10 marks]

MADE EASY Question Cum Answer Booklet

Page 17 of 64

Do not write in this margin

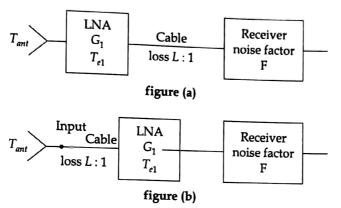
O not write in this margin

Q.3 (c)

- (i) Give the performance comparison between IPv4 and IPv6 in detail.
- (ii) 1. Determine the minimum cluster size for a cellular system designed with an acceptable value of signal to co-channel interference ratio $\frac{C}{I} = 18 \, \text{dB}$. Assume the path loss exponent as 4 and co-channel interference at the mobile unit from six equidistant co-channel cells in the first tier.
 - 2. If the acceptable $\frac{C}{I}$ is enhanced to 20 dB, will the cluster size determined in (i) be adequate? If not, then what should be the cluster size?

[10 + 10 marks]

E&T

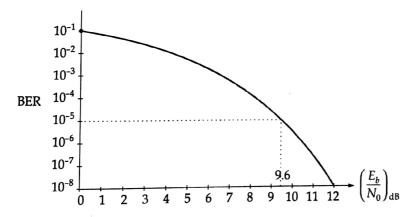

MADE ERSY Question Cum Answer Booklet

Page 19 of 64

Do not write in this margin

Oo nox write in this marris Q.4 (a)

(i) For the system shown in figure (a), the receiver noise figure is 12 dB, the cable loss is 5 dB, the LNA gain is 50 dB, and its noise temperature 150 K. The antenna noise temperature is 35 K. Calculate the noise temperature referred to the input. Also, repeat the calculation when the system of figure (a) is arranged as shown in figure (b).



(ii) A QPSK signal is transmitted by satellite. Raised cosine filtering is used, for which the roll off factor is 0.2 and a bit error rate (BER) of 10^{-5} is required. For the satellite downlink, the losses amount to 200 dB, the receiving earth station $\frac{G}{T}$ ratio is 32 dB K⁻¹, and the transponder bandwidth is 36 MHz.

Calculate:

- 1. the bit rate which can be accommodated, and
- 2. the EIRP required.

BER versus $\left(\frac{E_b}{N_0}\right)$ plot for baseband signalling for QPSK modulated waveform is shown below:

[10 + 10 marks]

Q.4 (b)

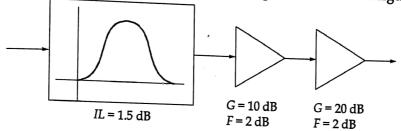
A silicon pnp bipolar transistor at T=300 K has uniform dopings of $N_E=10^{18}$ cm⁻³, $N_B=10^{16}$ cm⁻³, and $N_C=10^{15}$ cm⁻³. The metallurgical base width is 1.2 μ m. Let $n_i=1.5\times 10^{10}$ cm⁻³, $D_B=10$ cm²/s and $\tau_{B0}=5\times 10^{-7}$ s. Assume that the minority carrier hole concentration in the base can be approximated by a linear distribution. Let $V_{EB}=0.625$ V.

- (i) Determine hole diffusion current density in the base for $V_{BC} = 10 \text{ V}$.
- (ii) Estimate the Early voltage for V_{BC} = 5 V. Use the results from part (i).

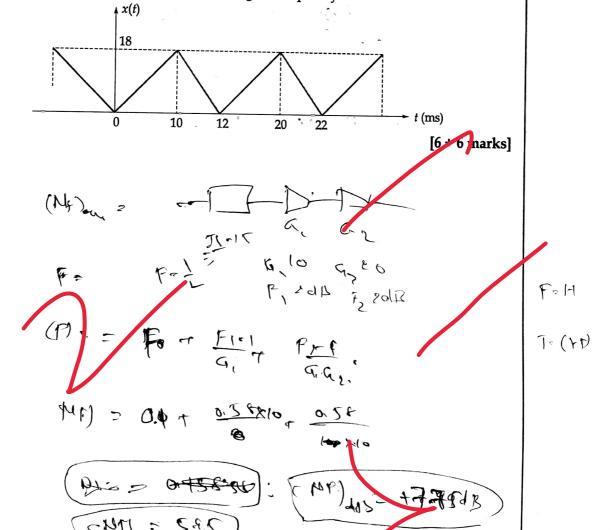
[20 marks]

- Q.4 (c)
- (i) Consider that a geographical service area of a cellular system is $4200 \, \mathrm{km^2}$. A total of 1001 radio channels are available for handling traffic. Suppose the area of a cell is $12 \, \mathrm{km^2}$.
 - 1. How many times would the cluster of size 7 have to be replicated in order to cover the entire service area? Calculate the number of channels per cell and the system capacity.
 - 2. If the cluster size is decreased from 7 to 4, then does it result into increase in system capacity? Comment on the results obtained.
- (ii) Give the performance comparison of UDP and TCP.

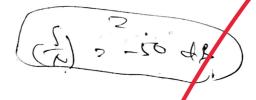
[10 + 10 marks]


MADE EASY Question Cum Answer Booklet

Page 27 of 64


Do not write in this margin

Section B: Analog & Digital Communication Systems-1 + Signals and Systems-2 + Microprocessors and Microcontroller-2


- Q.5 (a) (i) Consider the following wireless local area network (WLAN) receiver front-end as shown in figure where the bandwidth of the bandpass filter is 100 MHz centered at 2.4 GHz. Assume the system is at room temperature.
 - 1. Find the noise figure of the overall system.
 - 2. What is the resulting signal-to-noise ratio at the output, if the input power level is -90 dBm?
 - 3. Can the components be rearranged to give a better noise figure?

(ii) A message signal shown below phase modulates a carrier signal $A_c \cos \omega_c t$, where $f_c = 1$ MHz. If a maximum frequency deviation of 75 kHz is needed, determine the value of the phase constant (K_p) to be used by the modulator. With this value, find the range of variation of modulated signal frequency.

B

G=509B ; G=19B

F=1= 10001 F= 8018 ; F=8018

we are intercher that going

G, S, from JG2 F

Now! F= f + F2 - F1-1

or = 0.1 + 0.28 X = + 0.28

P > 611+ 5.87 5.67

(NF = 5.8) " dorocat.

SI = He Colomby to topingo. Kond of mys

SI = At Colomby to topingo. Kond of mys

At the Colomby to topingo.

At t

Q.5 (b)

(i) 1. A WSS random process X(t) with auto correlation function

$$R_{XX}(\tau) = Ae^{-\alpha|\tau|}$$

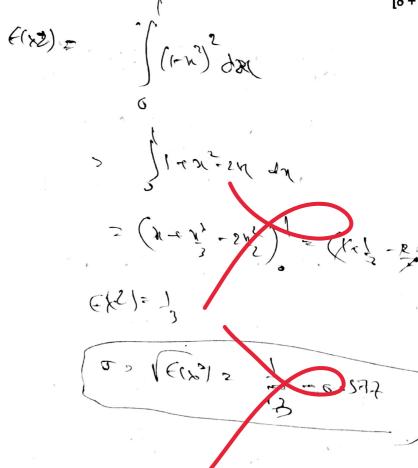
where \hat{A} and α are real positive constants is applied to the input of an LTI system with impulse response,

$$h(t) = e^{-\beta t} u(t)$$

where b is a real positive constant. Find the auto correlation of the output Y(t) of the system.

2. Let X(t) and Y(t) be both zero-mean and WSS random processes. Consider the random process Z(t) defined by

$$Z(t) = X(t) + Y(t)$$


- (a) Determine the auto correlation function and the power spectral density of Z(t) if X(t) and Y(t) are jointly WSS.
- **(b)** If X(t) and Y(t) are orthogonal, then show that the mean square of Z(t) is equal to the sum of the mean squares of X(t) and Y(t).
- (ii) If the probability density function $f_X(x)$ of a random variable X is given by

$$f_X(x) = (1 - x^2)$$
 for $0 \le x \le 1$

Find the standard deviation of this random variable.

[8 + 4 marks]

1 /2 Y(-11 = Proton to they.

Property = Property = Property

Sypiniz 2Ad 1 depin

Jul. Jan. Jul. 12 (45 ms 140)

シイナンストナイナイナイン

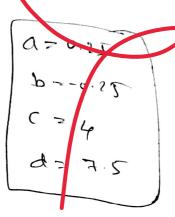
Prodert = (retire (HM) + MH) + MH+m)

5232 = Styl91 + Svy/7) Frollyn.

(2(th) = 7 HAY(4)? = E(X(A) = Y(A) = 2 E(A) A) (D) > 4(x41/2 e 4/2) e (1x) e

Q.5 (c) Consider the following Discrete Time Sequences: $x_1(n) = \{1, a, b, 2\}$ and $x_2(n) = \{c, 2, d, 4\}$

- (i) If the linear convolution of the sequence is $\{1, 3, 7, 13, 14, 14, 8\}$ then find, the values of a, b, c and d.
- (ii) Find circular periodic convolution of the sequences $x_1(n)$ and $x_2(n)$ in terms of a, b, c and d.
- (iii) Also find circular periodic convolution of the sequence $x_1(n)$ and $x_2(n)$ for the values of a, b, c and d calculated in (i).


[12 marks]

su,

(ii)

bc+ 2a+d = 7

YIM = KIMES aIN

Q.5 (d) Describe the program status word register present in the 8051 microcontroller.

[12 marks]

Page 37 of 64

Page 38 of 64

Do not write in this margin

Q.5 (e)

A 12 MHz carrier is frequency modulated using a modulating signal $m(t) = A_m \sin 4\pi \times 10^3 t$. The resultant FM signal has frequency deviation of 8 kHz.

- Derive the expression for capture range of a PLL used for demodulation of this
- (ii) What should be the capture range of a PLL used for demodulation of this signal? [10 + 2 marks]

des

-fc = 13mHA, mH1 = Am SM 27 And

Af = S:

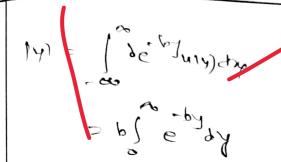
1-

Page 39 of 64

Q.6 (a)

The probability density function of two independent random variables X and Y are given by

$$f_X(x) = ae^{-ax}u(x)$$
 and $f_Y(y) = be^{-by}u(y)$


where a,b are positive real constants and $u(\cdot)$ represents the unit step function. Determine the probability density function of the random variable \boldsymbol{Z} for each of the following cases: (Assume z > 0)

(i)
$$Z = X - Y$$

(ii)
$$Z = \frac{X}{Y}$$

(i)
$$Z = X - Y$$
 (ii) $Z = \frac{X}{Y}$ (iii) $Z = \min(X, Y)$ (iv) $Z = \max(X, Y)$

[20 marks]

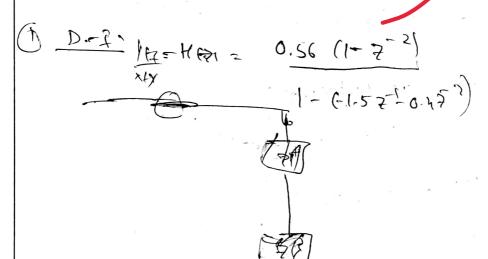
Page 43 of 64

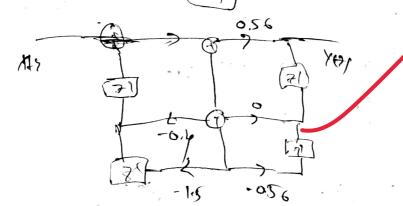
Do not write in this margin

Q.6(b)

Given a second-order transfer function,

$$H(z) = \frac{0.56(1 - z^{-2})}{1 + 1.5z^{-1} + 0.4z^{-2}}$$

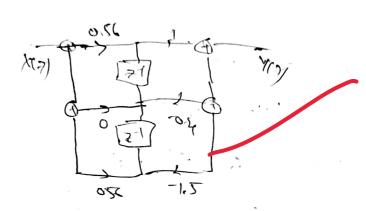

Perform the filter realization and write the difference equations using the following realizations:


- (i) Direct form I and direct form II.
- (ii) Cascade form via the first-order sections.
- (iii) Parallel form via the first-order sections.

[8+6+6 marks]

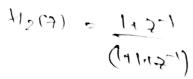
$$H(12) = \frac{0.56(1-2^{-2})}{1+1.52^{-1}+0.42^{2}}$$

$$H(12) = \frac{0.56(1-2^{-1})(1-2^{-1})}{(1+0.34\cdot 2^{-1})(1-2^{-1})}$$



1 7 mme 331-1900

Just -1 122 Alumb 4 04 Alums) - 020 112) - 0.20 xum 5)



1) is the difference Eg, Fr. D-J. D. A.

(1)

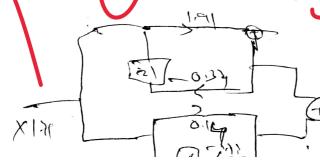
Y(12) (1+0:271)= 0:56(1-7-1) K(12)

Jem + J. (m. 1) = 0.20 1(m) - 1.56 JM. 1)

A2131 € 121013-() =(147-1)x12) 12-27.

(3 8 cm) + p1 2 5 cm-1) = 1 yold) + 2 (p-1) IdiA E.

0.56 Y,+1


1/1

H(>1 > A (-11.11)

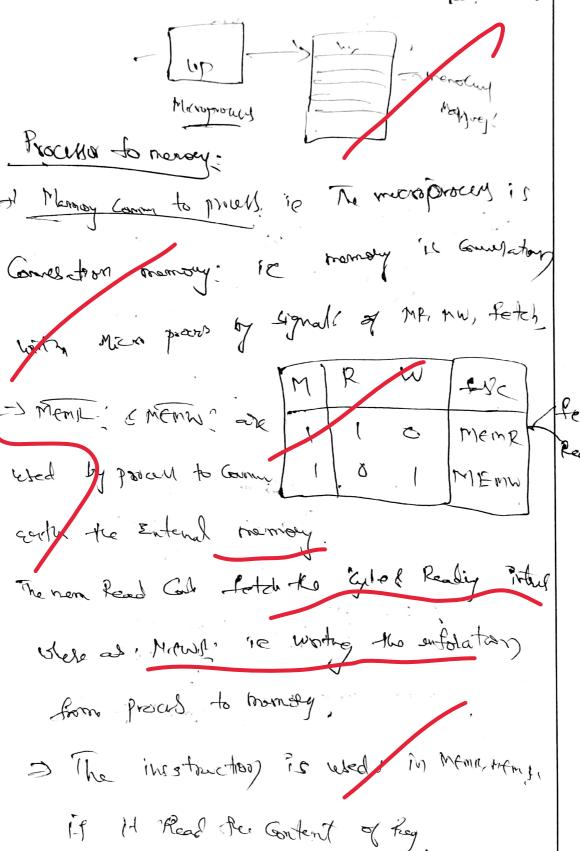
H(\$1 = 10.37454) -1 0.16

1.99 : 42012 0.17 140.2777 : 42012 0.17

7,(m) +0.34)(m-1)= 1.01 1,(m) (7,00) (1 1/2-1) =0.34 /(1)

Do not write in this margin

Page 46 of 64


Q.6 (c)

E&T

- (i) Draw and describe the block diagram for processor to memory communication and processor to I/O communication.
- (ii) Write some differences between Microcontroller and Microprocessor.

[15 + 5 marks]

Sola

Process to Ito Communication

=> For Convenie contrary of Up to Esteral Signal floring

grosevol to The we well for Jow sgral,

By the's Signal we Got Commentation to Spal:

=> To Synchoro tro tro Speed of To and procent

we will we some of butser Rogster.

of fa of larger Taboutar) To Real on en suite

of The Strend dance Sould Full , SNIA without &

s that up will all according the Prosty of souther tray of that this

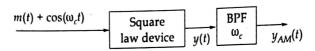
To adoletry Rm 51M also yeld to Read and

water I/o: and make set Thebrigh

[20 marks]

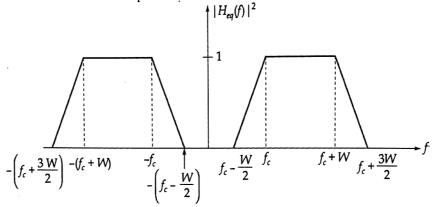
In PAR. your copyed On this many sintention of the form of the for

ı


Page 49 of 64

Autre in

Q.7 (b)


(i) Consider the system shown below used for generation of amplitude modulated signal. The average value of m(t) is zero and maximum value of |m(t)| is A_m . The square-law device with input x(t) and output y(t) is defined by

$$y(t) = 6.5x(t) + 12x^2(t)$$

What should be the value of $A_{m'}$ required to produce AM signal with modulation index of 0.85?

(ii) In a receiver meant for the demodulation of SSB AM signals, the band-pass filter has the characteristics $H_{\rm eq}(f)$ as shown in the figure below. Find FOM of the system.

[5 + 15 marks]

Page 51 of 64

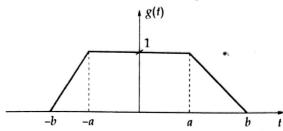
Q.7 (c)

- (i) The message signal m(t) has a bandwidth of 15 kHz, a power of 18 W. It is desirable to transmit this message to a destination via a channel with 85 dB attenuation and additive white noise with power spectral density, $S_n(f) = \frac{N_0}{2} = 10^{-13}$ W/Hz and achieve a SNR at the receiver output of at least 55 dB. What is the required transmitter power and channel bandwidth if the following modulation schemes are employed?
 - 1. DSB AM
 - 2. SSB AM
 - 3. Conventional AM with modulation index equal to 0.65.
- (ii) For a superheterodyne receiver having no RF amplifier, the loaded Q of the antenna coupling circuit is 120. If the super heterodyne receiver is to be improved for HF reception so that its image rejection at 30 MHz is as good as at 1500 kHz. Assuming IF of 455 kHz, determine:
 - 1. loaded Q of an RF amplifier to be used for achieving the improved performance.
 - new IF for achieving the improved performance in the absence of RF amplifier.
 [12 + 8 marks]

Page 54 of 64

Page 55 of 64

Page 56 of 64


Do not write in this margin

Q.8 (a)

(i) Find the inverse z-transform of

$$X(z) = \frac{z^3 - 10z^2 - 4z + 4}{2z^2 - 2z - 4}$$
; with ROC $|z| < 1$

(ii) 1. Using time shifting and time differentiation properties; find the Fourier transform $G(j\omega)$ of the trapezoidal signal shown below:

What is the condition under which this procedure is valid?

2. Calculate the value of G(2j), if $a = \frac{b}{2} = 1$.

[10 + 7 + 3 marks]

(3-1) (3-19)

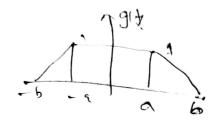
x>(>(> -2-5

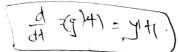
 $\chi^{5}(S) = -\frac{2.2}{(2+1)} = \frac{1+5-1}{1+5-1}$

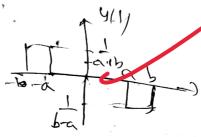
Wa-11 - 3 - 2-1 = -1

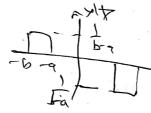
(-1) M(-44-11 -) = 1 = 1

(1-34) = (-124)


31m) = -5.5(-1) U(n-1)


(3rn) = -4.5 ((h) + 0.55 (h-1) - 5:5 (r) ((h-1)


P


1-06

-1516



We know shoulded,

y () = 5mc (w(a-b) + 5mc (w(a-b) = 5mg

guw) = In [SMC (unal) Jud con (ver Jud

[20 marks]

Q.8(b)

Explain the Envelope detection and synchronous detection methods for demodulation of AM signal. Show that in an envelope detector, to avoid diagonal clipping,

 $RC \le \frac{1}{m} \frac{\sqrt{1-\mu^2}}{\mu}$. Also, explain the Quadrature null effect in synchronous detector.

In Envelope datecto.

The Capacita outpil veltage

will get the mile out get get

Le Should filter to get get

-) Cliffer - Can be donn't Vollett to Voltalty) to get

Sant = (Ste (the Collected) + utle Colintion)

(14 A Cos 9 Tof the Acoustint) < Aproland (14)

LA [Colorate asong - Singaful)

Sho = 0: 600 71

1 to Acongled + experiently A country - Sinoned

Do not

this margin

Mot Colon fort & A Street of the

MADE ERSY Question Cum Answer Booklet

Monday & H swendaring.

Six entend.

for & sinendum

to L. T. Long

FC 2 & Son V Tu

Synchronic detatoris

rult

1

Stan et 1

Propried

For the of of mutphead on orp: 1'y we will

get Lit met Isn = the most card).

Q= G; C00=1 5=q0 / (Op = 0) 1

Colo 2 will be the Outer tall Estacle in The Syurhan dote br.

Page 62 of 64

Do not write in this margin

Q.8 (c)

Briefly describe the 8255 A programmable peripheral interface and also draw the block diagram of 8255 A.

[20 marks]

Page 63 of 64

Page 64 of 64

Do not write in this margin

0000