

India's Best Institute for IES, GATE & PSUs

# **ESE 2024 : Mains Test Series**

UPSC ENGINEERING SERVICES EXAMINATION

### **Electronics & Telecommunication Engineering**

Test-2: Signals and Systems + Microprocessors and Microcontroller [All topics] Network Theory-1 + Control Systems-1 [Part Syllabus]

| Name :      |           |          |        |                     |
|-------------|-----------|----------|--------|---------------------|
| Roll No :   |           |          |        |                     |
| Test Centre | es        |          |        | Student's Signature |
| Delhi 🗆     | Bhopal 🗌  | Jaipur 🗌 | Pune - |                     |
| Kolkata 🗌   | Hyderabad |          |        |                     |

#### **Instructions for Candidates**

- 1. Do furnish the appropriate details in the answer sheet (viz. Name & Roll No).
- 2. There are Eight guestions divided in TWO sections.
- 3. Candidate has to attempt FIVE questions in all in English only.
- 4. Question no. 1 and 5 are compulsory and out of the remaining THREE are to be attempted choosing at least ONE question from each section.
- 5. Use only black/blue pen.
- 6. The space limit for every part of the question is specified in this Question Cum Answer Booklet. Candidate should write the answer in the space provided.
- 7. Any page or portion of the page left blank in the Question Cum Answer Booklet must be clearly struck off.
- 8. There are few rough work sheets at the end of this booklet. Strike off these pages after completion of the examination.

| CE USE           |  |
|------------------|--|
| Marks Obtained   |  |
| n-A              |  |
|                  |  |
|                  |  |
|                  |  |
|                  |  |
| n-B              |  |
|                  |  |
|                  |  |
|                  |  |
|                  |  |
| 114              |  |
| Cross Checked by |  |
|                  |  |

Corp. office: 44 - A/1, Kalu Sarai, New Delhi-110016

Ph: 9021300500 | Web: www.madeeasy.in

#### IMPORTANT INSTRUCTIONS

# CANDIDATES SHOULD READ THE UNDERMENTIONED INSTRUCTIONS CAREFULLY, VIOLATION OF ANY OF THE INSTRUCTIONS MAY LEAD TO PENALTY.

#### DONT'S

- Do not write your name or registration number anywhere inside this Question-cum-Answer Booklet (QCAB).
- 2. Do not write anything other than the actual answers to the questions anywhere inside your QCAB.
- 3. Do not tear off any leaves from your QCAB, if you find any page missing do not fail to notify the supervisor/invigilator.
- 4. Do not leave behind your QCAB on your table unattended, it should be handed over to the invigilator after conclusion of the exam.

#### DO'S

- 1. Read the Instructions on the cover page and strictly follow them.
- Write your registration number and other particulars, in the space provided on the cover of OCAB.
- 3. Write legibly and neatly.
- 4. For rough notes or calculation, the last two blank pages of this booklet should be used. The rough notes should be crossed through afterwards.
- If you wish to cancel any work, draw your pen through it or write "Cancelled" across it, otherwise it may be evaluated.
- 6. Handover your QCAB personally to the invigilator before leaving the examination hall.

### Section A: Signals and Systems + Microprocessors and Microcontroller

Q.1 (a) Determine the order of a low-pass Butterworth filter that is to provide 40 dB attenuation at  $\omega = 2\omega_0$ . (Here,  $\omega_0$  is the cut-off frequency)



Page 2 of 74

Do not write in this margin

Q.1 (b)

Write a 8085 program to generate continuous square wave with a period of 560  $\mu$ s. Assume the system clock period is 350 ns and use bit  $D_0$  to output the square wave. Use register B as delay counter. Display the square wave at PORT 0.



Page 3 of 74

Do not write in this margin

Q.1 (c)

- (i) Enumerate all internal registers present in 8259 programmable interrupt controller. Write short notes on their individual functionality.
- (ii) Draw the timing diagram for 8085 instruction DAD B.

[6 + 6 marks]



Q.1 (d)

 $X(e^{j\omega})$  is the Discrete time Fourier transform of a discrete time sequence x(n).

Assume 
$$x_1(n) = \begin{cases} x(n/2); & n\text{-even} \\ 0; & n\text{-odd} \end{cases}$$
  
 $x_2(n) = x(2n)$ 

The  $X(e^{j\omega})$  is shown in below figure,



Sketch  $X_1(e^{j\omega})$  and  $X_2(e^{j\omega})$ 



Page 6 of 74



Page 7 of 74

Do not write in this margin

Q.1 (e)

Write a 8086 program to find the number of positive and negative data items in an array of 100 bytes of data stored from the memory location 3000 H: 4000 H. Store the result in the offset addresses 1000 H and 1001 H in the same segment. Assume that the negative numbers are represented in 2's complement form.

- Q.2 (a)
- (i) Find the convolution of two sequences:

$$y[n] = x[n] * h[n]$$

where  $x[n] = (0.8)^n u[n]$  and  $h[n] = (0.2)^n u[n]$ . Find the value of  $Y(e^{j\pi})$ .

(ii) The differential equation of a stable system with zero initial conditions is given as

$$\frac{d^2y}{dt^2} + \frac{dy}{dt} - 2y(t) = x(t) - 2\frac{dx}{dt}$$

Find the impulse response of the system and the initial value of impulse response. [10 + 10 marks]



Page 9 of 74



Page 10 of 74

Do not write in this margin

Q.2 (b)

- (i) Explain the concept of direct memory access with reference to 8085 microprocessor.
- (ii) Describe briefly microprocessor instructions used for memory location called stack.[10 + 10 marks]



Page 11 of 74

Q.2 (c)

Determine the 8-point DFT X(k) of a discrete sequence  $x(n) = \{0, 1, 2, 3, 4, 5, 6, 7\}$  using the radix-2 DIT-FFT algorithm.

[20 marks]





Page 14 of 74

Q.3 (a)

Let 
$$g_1(t) = \{[\cos(\omega_0 t)]x(t)\} * h(t)$$
 and  $g_2(t) = \{[\sin(\omega_0 t)]x(t)\} * h(t)$  where

 $x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk100t}$  is a real valued periodic signal and h(t) is the impulse response of a stable LTI system.

Find the value of  $\omega_0$  and any necessary constraints on  $H(j\omega)$  to ensure that  $g_1(t)=\text{Re}\{a_5\}$  and  $g_2(t)=\text{Img}\{a_5\}$ 

[20 marks]



Page 16 of 74

- Q.3 (b)
- (i) For an 8085 microprocessor, draw the lower and higher order address bus during the machine cycle.
- (ii) Explain the RIM instruction format and how it is executed.
- (iii) Write an assembly language program for an 8085 microprocessor to find 2's complement of a 16-bit number. Write comments for selected instruction.

[5 + 5 + 10 marks]





Page 19 of 74



Page 20 of 74

Do not write in this margin

Q.3 (c)

Explain the all addressing modes of 8051 microcontroller with example for each addressing mode.

[20 marks]



- Q.4 (a)
- (i) Consider the frequency response of an ideal high pass filter,

$$H(e^{j\omega}) = 1 \text{ for } \frac{\pi}{4} \le |\omega| \le \pi$$
  
= 0 for  $|\omega| \le \frac{\pi}{4}$ 

- **1.** Find the value of  $h(n) \forall$  length of the filter, N = 11.
- 2. Find H(z).
- (ii) Write comparisons between IIR and FIR filters.

[15 + 5 marks]

$$H(e^{j\omega}) = |for \frac{\pi}{4} \leq |\omega| \leq \pi$$

$$o for |\omega| \leq \pi/4.$$

$$h(m) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H(e^{j\omega}) e^{j\omega n} d\omega$$

$$= \frac{1}{2\pi} \left[ \int_{-\pi}^{-\pi/4} e^{j\omega n} d\omega + \int_{\pi/4}^{\pi} e^{j\omega n} d\omega \right]$$

$$= \frac{1}{2\pi} \left[ \int_{-\pi}^{\pi} e^{j\omega n} d\omega + \int_{\pi/4}^{\pi} e^{j\omega n} d\omega \right]$$

$$= \frac{1}{2\pi} \left[ \int_{-\pi}^{\pi} e^{j\omega n} d\omega + \int_{\pi/4}^{\pi} e^{j\omega n} d\omega \right]$$

h(n) = 
$$\frac{1}{2\pi jn}$$
  $\left[\left(e^{j\frac{n\pi}{4}} - e^{jn\pi}\right)^{-1} + \left(e^{jn\pi}\right)^{-1} + \left(e^{jn\pi}\right)^{-1}\right]$   
=  $\frac{1}{2\pi jn}$   $\left[\left(e^{j\frac{n\pi}{4}} - e^{jn\pi}\right)^{-1} + \left(e^{jn\pi}\right)^{-1}\right]$ 

$$h(n) = -\frac{8in(m\pi/a)}{n\pi}$$

$$H(z)$$
:  $\sum_{n=-\infty}^{\infty} h(n) z^{-n} = -\sum_{n=0}^{\infty} \frac{8in(n\pi v)}{n\pi} z^{-n}$ 



2) = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (2, 1/10) 2-10 = (

Page 24 of 74



Page 25 of 74

A continuous time system has impulse response  $h(t) = e^{2t}u(1-t)$ . If the input to the system is given by, x(t) = u(t) - 2u(t-2) + u(t-5), then find the output y(t) using convolution integral.

[20 marks]

Soing

$$\beta(t) = \ell^{2t} u(1-t)$$
  $\chi(t) = u(t) - 2u(t-2) + u(t-5)$ 

$$y(t) = \chi(t) * h(t)$$

$$= \int_{-\infty}^{\infty} \chi(\tau) h(t-\tau) d\tau$$

$$= \int_{-\infty}^{\infty} \left[ u(z) - 2u(z-z) + u(z-5) \right] \left[ e^{2(t-z)} + u(1-(t-z)) \right] dz$$

$$y(t) = e^{2t} \left[ \int_{-\infty}^{\infty} e^{2\tau} u(t+\tau-t) u(\tau) d\tau - 2 \int_{-\infty}^{\infty} e^{2\tau} u(\tau-2) u(t+\tau-t) d\tau + \int_{-\infty}^{\infty} e^{-2\tau} u(\tau-5) u(t+\tau-t) d\tau \right]$$

$$\mathcal{G}(t) = e^{2t} \left[ \int_{0}^{\infty} e^{-2z} u(1-t+z)dz - 2 \int_{0}^{\infty} e^{-2z} u(1-t+z)dz \right]$$

$$I_{1} = \int_{0}^{\infty} e^{2z} u(1-t+z) dz \neq 0 \qquad 1-t+z \neq 0$$

$$t \leq 1 \qquad t > 1$$

$$I_{1} = 0 \qquad I_{1} = \int_{0}^{\infty} e^{-2z} dz \qquad t \neq 0$$

So, 
$$I_1 = \int_{-2}^{\infty} e^{\lambda z} dz = \frac{e^{2z}}{-2} \Big|_{t-1}^{\infty} = \frac{e^{2(t-1)}}{2} \frac{t + 1}{2}$$

$$= \frac{e^{-2(t-1)}}{2} \mathbf{u}(t-1)$$

Similarly,
$$\overline{J} = 2 \int_{0}^{2\pi} e^{2\pi t} \left( z - (t-1) \right) dz.$$

$$\overline{J} = 2 \int_{0}^{2\pi} e^{2\pi t} dz = \frac{1}{2} \int_{0}^{2\pi} e^{2\pi t} dz$$

$$\overline{J}_{3} = \int_{0}^{\infty} e^{-2z} (T_{-}(t-1)) dz$$

$$\overline{J}_{3} = \int_{0}^{\infty} e^{-2z} dz \quad t \ge 6.$$

$$\overline{J}_{3} = \frac{e^{-2z}}{2} u(t-6).$$

Sol 
$$y(t) = \frac{e^{2t}}{2} \left[ e^{2(t-1)} u(t-1) - 2e^{-2(t-1)} u(t-3) + e^{-2(t-1)} u(t-6) \right]$$

$$y(t) = \frac{e^2}{2} \left[ u(t-1) - 2u(t-3) u(t-4) \right]$$

Q.4 (c)

- (i) Explain the control signals in handshake mode with 8155 I/O.
- (ii) Explain the following instructions of 8085 microprocessor giving operand, number of T-states, description and flags affected.
  - 1. XTHL
- 2. SHLD
- 3. STAX

- 4. PCHL
- 5. SPHL

[10 + 10 marks]



#### Section B: Network Theory-1 + Control Systems-1

Q.5 (a) Consider the circuit shown below, which contains a 0.1 A independent current source common to loop 1 and 3 as shown in circuit diagram. Find the value of loop currents  $I_1$ ,  $I_2$ ,  $I_3$  and the power delivered by each independent and dependent sources.







$$\frac{\text{KCL at } P:-}{0.04 \text{ Vx}} = \frac{\text{Vx}}{150} + 0.1$$

=)  $\text{Vx} = 3\text{V}$ 

travillate your

in a control

KVL in loop 2 =

KUL i'm 6000 33-

$$I_1 - I_2 = 0.04 \text{ m}$$
  
= 0.12 A. -4

B/W P & B.

KVL in outer loop

& From (985)

$$\exists I_1 = 52 = 0.115A.$$

Power delivered by 30V Source = 30 x II = 30x0115 = 3.45 W

Puting I in @ V1 = 3.5V

Power absorbed by V, dependent source = 3.5 x 0.12 = 0.42 W. (or)

Pdelivered by V, soure = - 0.42W



Evaluate  $\frac{C_1}{R_1}$  and  $\frac{C_2}{R_1}$  for a system whose block diagram representation is shown in Q.5 (b) figure. Use block diagram reduction technique.











$$\frac{Q}{R_1} = \frac{G_1 G_4 G_5 G_6 H_2}{(1+G_4) - G_1 (H_2 G_4 G_5 - G_2 (1+G_4))}$$

- Q.5 (c)
- The open loop transfer function of a feedback system is  $G(s)H(s) = \frac{K(1+s)}{(1-s)}$ . (i) Comment on stability of the feedback system using Nyquist plot.
- A unity feedback system has the forward transfer function  $G(s) = \frac{K_1(2s+1)}{s(5s+1)(1+s)^2}$ .

The input r(t) = 1 + 6t is applied to the system. Determine the minimum value of  $K_1$ if the steady state error is to be less than 0.1.

Nyquist Contour.

So, Nyquist plot

[6+6 marks]

$$G(8) H(8) = \frac{K(1+8)}{(1-8)}$$

GH(jw) = 
$$\frac{K(1+jw)}{(1-jw)}$$

for 
$$\omega: 0 \to \infty$$
  
 $\phi: 0 \to T$ 

Conditionally Stable 5/8.

$$N = +1$$
  $N = P - \chi$ .

80, if -1 is inside the circle
then SIS is stable.

K>1 Stable S/s. > Marginally stable

-l= -K

N=0

Sumstable stable

(il

$$\sqrt{\eta(8)} = \frac{K_1(28+1)}{8(58+1)(8+1)^2}$$

$$\frac{E(8)}{R(8)} = \frac{1}{1 + G(8) H(8)^{9}} = \frac{1}{1 + G(8)}$$

$$e^{1/3} = \lim_{k \to \infty} e(t) = \lim_{k \to \infty} F(k) = \lim_{k \to \infty} \frac{8+6}{k^2}$$

$$\frac{1}{8+6}$$

$$\frac{1}{8+6$$

$$8) = \frac{1}{8^{2}}$$

$$8 \rightarrow 0 \quad 1 + \frac{K_{1}(28+1)}{8(58+1)(8+1)^{2}}$$

= - lim 
$$\frac{8+6}{87}$$
 x  $\frac{8(58+1)(8+1)^2}{8(58+1)(8+1)^2 + k_1(48+1)}$ 

Last States

almis all alternisms to

Men on Broke.

= day my pa Door att oby

- Lug removed to be forth (8) 3100 To-

ilde & plan roll 1 2 de 1

Mary Manyor to

Q.5 (d)

(i) In the magnetically coupled circuit shown in figure below, find  $V_2$  for which  $I_1 = 0$ . What voltage appears at the  $j8\Omega$  inductance under this condition?



(ii) In a series LCR circuit, the maximum inductor voltage is twice the maximum capacitor voltage. However, the circuit current lags the applied voltage by 30° and the instantaneous drop across the inductance is given by  $V_L = 100 \sin 377t \text{ V}$ . Assuming the resistance to be 20  $\Omega$ , find the values of the inductance and capacitance.

[6 + 6 marks]



Page 38 of 74



Page 39 of 74

Q.5 (e)

The closed loop transfer function of a feedback system is given by

$$T(s) = \frac{1000}{(s + 22.5)(s^2 + 2.45s + 44.4)}$$

- (i) Determine the resonant peak  $M_r$  and resonant frequency  $\omega_r$  of the system by drawing the frequency response curve.
- (ii) Determine the bandwidth of the equivalent second order system.

[6 + 6 marks]



Page 41 of 74

Q.6 (a)

(i) Let  $i_{s_1} = 10 \cos 10t$  A and  $i_{s_2} = 6 \cos 10t$  A in the circuit shown below.

Find: 1.  $V_1(t)$ ; 2.  $V_2(t)$ ; 3. the average power being supplied by each source.



(ii) Find the impedance  $Z_L$  so that maximum power can be transferred to it in the network shown below. Also, find the maximum power delivered to load  $Z_L$ .



[10 + 10 marks]



Page 43 of 74



Page 44 of 74



Page 45 of 74

Q.6 (b)

A unity negative feedback system has  $G(s) = \frac{K(s+6)}{s(s+2)}$ . When K = 50, find change in closed loop pole locations for a 10% change in the value of K.

[20 marks]



MADE EASY Question Cum Answer Booklet Page 47 of 74

Q.6 (c)

- (i) Prove that the bandwidth of a series RLC circuit is given as  $\frac{R}{L}$  rad/sec.
- (ii) A constant voltage at a frequency of 1 MHz is applied to an inductor in series with a variable capacitor. When the capacitor is set to 500 pF, the current has its maximum value while it is reduced to one-half when the capacitor is 600 pF. Find resistance, inductance and Q-factor of inductor.

[8 + 12 marks]



Page 49 of 74



Q.7 (a)

The Bode magnitude plot of the open loop transfer function G(s) of a certain unity feedback control system is given in figure.



Estimate the magnitude of transfer function at each of the corner frequencies and also calculate the phase margin.

[20 marks]

Solz

So, TF of S/3 = 
$$\frac{K}{(1+\frac{8}{\omega_{c_1}})(1+\frac{8}{\omega_{c_2}})}(1+\frac{8}{\omega_{c_2}})$$
= 
$$\frac{10^5}{(1+\frac{8}{5})(1+\frac{8}{40})^2(1+\frac{8}{100})}$$

Magnitude = 
$$\frac{10^5}{\sqrt{\left(1+\frac{\omega^2}{45}\right)\left(1+\left(\frac{\omega}{40}\right)^2\right)^2\left(1+\left(\frac{\omega}{100}\right)^2\right)}}$$

at 
$$\omega = 5$$
 magnitude =  $97971.55$ .  
at  $\omega = 5$  Magnitude =  $69535.95$ 

So, 
$$\left(1+\frac{\omega^2}{25}\right)\left(1+\frac{\omega^2}{1600}\right)\left(1+\frac{\omega^2}{104}\right) = /10^{10}$$
  
=  $\left(\omega^2+101\right)\left(\omega^2+1600\right)\left(\omega^2+25\right)$ 



for 
$$K_2$$
 using slope of St. line
$$\frac{K_1 - K_2}{\log 40 - \log 100} = -60$$

$$K_2 = 58.661$$

Phone of TF: at was.

$$\phi = o - + am^{-1} \left( \frac{\omega_{gc}}{\omega_{ci}} \right) - 2x + am^{-1} \left( \frac{\omega_{gc}}{\omega_{ci}} \right) - tam^{-1} \left( \frac{\omega_{gc}}{\omega_{ci}} \right)$$

$$= -340.2^{\circ}.$$

(1- pm) N1 mys

(1- pm) N2 mys

(1- pm) N2 mys

(1- pm) N3 my

(1-

3 (25) + 2 + (3+1) 6 = 0701

Q.7 (b) Find current across 2 Henry inductor as shown in the network below using

- (i) Thevenin's theorem;
- (ii) Draw the Norton's equivalent circuit.



[15 + 5 marks]

Soi?



$$I_1 = \frac{(101 - j50)}{(4 + j200)} I_2 = 0.76 / -115.2° I_2$$

Putting in 1.

$$10/0 = 200\sqrt{2}$$
.  $245^{\circ} \approx 0.56$   $215.2^{\circ}$   $15.2^{\circ}$   $15.2^{$ 

1200

Rtn: Short circuit independent voltage souse



Za

 $Z_{3} = \frac{96 \times 100}{200 + j200}$   $Z_{3} = \frac{96 \times 100}{200}$   $Z_{3} = \frac{96 \times 100}{200}$ 

(4+)200)

200+j20°

4 Z2 T

$$=33.94$$
 (== 5(+) 49  
=24=j24







Q.7 (c)

(i) Derive the expression for gain margin and phase margin of a unity feedback second order system with transfer function,

$$\frac{C(s)}{R(s)} = \frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}$$

Sketch the polar plot of the transfer function given below:

$$G(s) = \frac{1+4s}{s(1+s)(1+2s)}$$

Determine whether the polar plot cuts the imaginary axis. If so, determine the frequency at which the plot cross the imaginary axis.

[10 + 10 marks]

30121

TF: 
$$\frac{\omega_{n}^{2}}{8^{2}+2\xi_{1}\omega_{n}g+\omega_{n}^{2}}$$

$$T(j\omega) = \frac{\omega_{n}^{2}}{(\omega_{n}^{2}-\omega^{2})+2\xi_{1}\omega_{n}(j\omega)} = \frac{1}{(1-\frac{\omega}{\omega_{n}})^{2}+j\xi_{1}\frac{\omega}{\omega_{n}}}$$

$$T(j\omega) = \frac{1}{(1-\frac{\omega}{\omega_{n}})^{2}+4\xi_{1}^{2}\frac{\omega}{\omega_{n}}}$$

$$T(j\omega) = \frac{1}{(1-\frac{\omega}{\omega_{n}})^{2}+4\xi$$

$$\left(T(j\omega) = - tom^{-1} \left[ \frac{2^{\epsilon_{i}} \left(\frac{\omega}{\omega_{n}}\right)}{1 - \left(\frac{\omega}{\omega_{n}}\right)^{2}} \right]$$

ii)

for phase (mossover from the 
$$\frac{1}{1-(\frac{\omega}{\omega_n})^2} = 0$$
 $\frac{2^{\frac{\omega}{\omega_n}}(\frac{\omega}{\omega_n})}{1-(\frac{\omega}{\omega_n})^2} = 0$ 
 $\frac{1}{1-(\frac{\omega}{\omega_n})^2}$ 
 $\frac{1}{1-(\frac{\omega}{\omega_n})^2}$ 
 $\frac{1}{1-(\frac{\omega}{\omega_n})^2}$ 
 $\frac{1}{1-(\frac{\omega}{\omega_n})^2}$ 

So, for phose Morgin 
$$\frac{1}{2^{4}} \frac{1}{\sqrt{1-44^2}} = -\frac{1}{4^2} \frac{1}{\sqrt{1-44^2}} \frac{1}{\sqrt{1-44^2}}} \frac{1}{\sqrt{1-44^2}} \frac{1}{\sqrt{1-44^2}} \frac{1}{\sqrt{1-44^2}} \frac{1}{\sqrt{1-44^2$$

$$G(3) = \frac{(+48)}{\$(1+8)(1+28)}$$

$$G(3\omega) = \frac{(+48)}{\$(1+8)(1+28)}$$

$$G(3\omega) = \frac{(+48)}{\$(1+8)(1+28)}$$

$$G(3\omega) = \frac{(+48)}{\$(1+8)(1+28)}$$

$$G(3\omega) = \frac{(+48)}{(1+23)(1+23)}$$

$$G(3\omega) = \frac{(-48)}{(1+23)(1+23)}$$

$$G(3\omega) = \frac{(-48)}{(-48)(1+23)}$$

$$G(3\omega) = \frac{(-48)}{(-48)(1+2$$

$$\frac{\left(g_{1}(j\omega)\right)}{=-90^{\circ}-\tan^{-1}(4\omega)-90^{\circ}-\tan^{-1}(\omega)-\tan^{-1}(2\omega)}$$

$$=-90^{\circ}-\tan^{-1}(\omega)-\tan^{-1}(2\omega)+\tan^{-1}(4\omega)$$

at 
$$w=1$$
:  $(q(1)w) = -90^{\circ}$   
at  $w=1$ :  $(q(1)w) = -122.47^{\circ}$ 



folor plot does not cut ju axis from as: 0 - 300

Polar plot neither but ju and hor 180° gr

Mathematically, for -180.

$$\frac{1}{1-2\omega^2} = 190 + \tan^{-1}(4\omega)$$

$$\frac{3\omega}{1-2\omega^2} = \frac{-1}{\tan(\tan^2(4\omega))}$$

$$\frac{3\omega}{1-2\omega^2} = \frac{-1}{\tan(\tan^{-1}(4\omega))} = \frac{-1}{4\omega}$$

$$12\omega^2 = 2\omega^2 - 1$$

$$= \frac{-1}{10} \times \text{ to real rook}$$

for - 900

$$+ cm^{-1} \left( \frac{\omega + \lambda w}{1 - 2\omega^2} \right) = + cm^{-1} (4w)$$

Polar plot Cuts jw ax10. for w= - rod /80



- Q.8 (a)
- (i) Find the value of the current 'I' flowing through the 100  $\Omega$  resistor in the bridge shown below using Superposition Theorem. (Assume other sources are grounded, when one is used at a time)



- (ii) A certain series RLC resonant circuit has resonant frequency,  $f_0$  = 200 Hz, quality factor,  $Q_0$  = 7.5 and inductive reactance,  $X_L$  = 250  $\Omega$  at resonance.
  - 1. Find the values of R, L and C
  - 2. If the source voltage,  $V_S = 5 \angle 45^\circ$  V is connected in series with the circuit, find exact value for magnitude of capacitor voltage,  $|V_C|$  at f = 300 Hz.

Soft ()

By KCL

$$\frac{30^{\circ} \text{ MeV}}{30^{\circ}} + \frac{V\rho}{100} + \frac{V\rho}{40} = 10$$

$$\frac{V\rho}{30} + \frac{V\rho}{100} + \frac{V\rho}{40} = 10$$

$$\frac{1}{30} + \frac{1}{100} + \frac{1}{40}$$

$$= 146.34V$$

$$I = \frac{V\rho}{100} = 1.464$$





$$S_{0} = \frac{0 - (-30)}{100}$$

$$V_{0} = \frac{1}{25} + \frac{1}{100} + \frac{1}{20}$$

$$V_{0} = -30V$$







Page 63 of 74



Page 64 of 74



## MADE EASY Question Cum Answer Booklet Page 65 of 74

Q.8 (b)

Consider the circuit shown below, which contain some dependent and independent sources.



Find

- (i) Currents  $I_1$ ,  $I_2$  and  $I_3$  using mesh analysis.
- (ii) The maximum power transferred to the load, connected across  $2\Omega$  as shown below:



[10 + 10 marks]







## MADE ERSY Question Cum Answer Booklet Page 68 of 74

Menerally of no contract of the contract of w to which is a - 1816 Q.8 (c)

- A feedback control system has  $G(s) = \frac{10}{s(s+10)}$  and  $H(s) = e^{-T_1 s}$ . Find  $T_1$  for which system is marginally stable.
- Sketch the root locus for the positive feedback system as drawn below for  $0 < K < \infty$ .

$$R(s) \xrightarrow{+} \underbrace{K(s+1)}_{s^2 + 0.4s + 0.4} C(s)$$

Also, comment on the stability of the system.

[10 + 10 marks]

i) 
$$G(8) = \frac{10}{8(3+10)}$$
  $H(8) = e^{-T/8}$   
 $G(8) = \frac{10}{3\omega(3\omega+10)}$   $-jT/\omega$ 

$$|GK(j\omega)| = \frac{10}{\omega \sqrt{100+\omega^2}}$$
  $(GK(j\omega) = \sqrt{1}, \omega - 90^{\circ} - tom^{-1}/\omega)$ 

 $|GH(J\omega)| = \frac{10}{\omega J_{100} + \omega^2}$   $(GH(J\omega)) = J_1\omega - 90^\circ - tom^{-1/\omega}$ By Polor Plot if plot cuts  $\frac{190^\circ \text{ axt}}{(-1,0)}$  than sis will be marginally at which it w fo which \$ = -180°

$$-180 = -T_1 \omega - 90 - tam^{-1} \left(\frac{\omega}{10}\right)$$

$$90 = T_1 \omega + tam^{-1} \left(\frac{\omega}{10}\right)$$

$$tam \left(90 - T_1 \omega\right) = \frac{\omega}{10} - 0$$

$$\omega^2 = -100 + \sqrt{10^4 + 400}$$





Property of the

Bergerman Hill





Page 74 of 74