

India's Best Institute for IES, GATE & PSUs

ESE 2024 : Mains Test Series

UPSC ENGINEERING SERVICES EXAMINATION

Electronics & Telecommunication Engineering Test-1: Network Theory + Control Systems [All Topics]

Name :				
Roll No :				
Test Centres				Student's Signature
Test Centres	Bhopal 🗌	Jaipur 🗌	Pune [Student's Signature

Instructions for Candidates

- Do furnish the appropriate details in the answer sheet (viz. Name & Roll No).
- 2. There are Eight questions divided in TWO sections.
- 3. Candidate has to attempt FIVE questions in all in English only.
- 4. Question no. 1 and 5 are compulsory and out of the remaining THREE are to be attempted choosing at least ONE question from each section.
- 5. Use only black/blue pen.
- 6. The space limit for every part of the question is specified in this Question Cum Answer Booklet. Candidate should write the answer in the space provided.
- 7. Any page or portion of the page left blank in the Question Cum Answer Booklet must be clearly struck off.
- 8. There are few rough work sheets at the end of this booklet. Strike off these pages after completion of the examination.

FOR OFFICE USE				
Question No.	Marks Obtained			
Section	on-A			
Q.1	34			
Q.2				
Q.3				
Q.4	32			
Section	on-B			
Q.5	32			
Q.6				
Q.7	17			
Q.8	48			
Total Marks Obtained	163			

Signature of Evaluator

Cross Checked by

Corp. office: 44 - A/1, Kalu Sarai, New Delhi-110016

Ph: 9021300500 | Web: www.madeeasy.in

IMPORTANT INSTRUCTIONS

CANDIDATES SHOULD READ THE UNDERMENTIONED INSTRUCTIONS CAREFULLY. VIOLATION OF ANY OF THE INSTRUCTIONS MAY LEAD TO PENALTY.

DONT'S

- 1. Do not write your name or registration number anywhere inside this Question-cum-Answer Booklet (QCAB).
- 2. Do not write anything other than the actual answers to the questions anywhere inside your QCAB.
- 3. Do not tear off any leaves from your QCAB, if you find any page missing do not fail to notify the supervisor/invigilator.
- 4. Do not leave behind your QCAB on your table unattended, it should be handed over to the invigilator after conclusion of the exam.

DO'S

- 1. Read the Instructions on the cover page and strictly follow them.
- Write your registration number and other particulars, in the space provided on the cover of QCAB.
- 3. Write legibly and neatly.
- 4. For rough notes or calculation, the last two blank pages of this booklet should be used. The rough notes should be crossed through afterwards.
- 5. If you wish to cancel any work, draw your pen through it or write "Cancelled" across it, otherwise it may be evaluated.
- 6. Handover your QCAB personally to the invigilator before leaving the examination hall.

Section A: Network Theory

- The Z parameter of a two port device N are Z_{11} = Ks, Z_{12} = Z_{21} = 10 Ks and Z_{22} = 100 Ks. Q.1 (a) A 1 Ω resistor is connected as load across the output port.
 - Find the input impedance $Z_{in} = \frac{V_1}{I_n}$ and construct its equivalent circuit.
 - (ii) Give the values of the element for K = 1 and $K = 10^6$.

[12 marks]

13 = 221 F1 + 222 F2

$$V_2 = -I_2$$
.
Lout $\epsilon q(2)$

$$\frac{V_1}{I_1} = 2in = Ks + \frac{100 k^2 s^2}{1 + 100 ks}$$

Q.1 (b) (i) Find voltage across the 5 Ω resistor using Mesh analysis.

(ii) Determine the current through the branch *AB* of the network shown below using Thevenin's equivalent.

[6 + 6 marks]

Do not write in

(11) Determine aunt AB boenen voing theunines theonem.

Step-1 calculable Ath. (Discornet Vellege. source - shorteet)

Step-2 find out Vm = 2

uning mush analysis.

100P-2

Vm 2 - 29 +20-24

Voh = 994 +20

Equivalent cot

Q.1 (c) Determine node voltages V_1 , V_2 and V_3 .

voltages $V_{1'}$ V_{2} and V_{3} . Suppressed to V_{1} V_{2} and V_{3} . Suppressed to V_{1} V_{2} V_{2} V_{3} V_{4} V_{2} V_{2} V_{3} V_{4} V_{5} V_{4} V_{5} V_{5} V_{6} V_{7} V_{8} V_{8

solve using nodal analysis.

[12 marks]

at node! Vi-V2 = 2Vx - super node

With

$$\frac{V_1 - V_3}{1} + \frac{V_1 - Y}{1} + \frac{V_2 - V_3}{1} + \frac{V_2}{1} = 2$$

·· ソタテンス

at nocle 3 $\frac{V_3 - V_2}{1} + \frac{V_3 - V_1}{1} = 8$

$$8 - V_3 = 3$$

Q.1 (d)

Show that a high Q-coil resonant circuit can be approximated as shown in figure.

For a practical tank circuit shown in figure below, the resonance occurs at 1 MHz. Assume a high *Q*-coil, find out the quality factor of high *Q*-coil at resonant frequency and the value of capacitance *C*.

[12 marks]

$$\frac{1}{2} = \frac{1}{Jx_{c}} + \frac{1}{R_{3}+Jx_{L}}$$

$$\Rightarrow \frac{1}{2} = \frac{1}{Jx_{c}} + \frac{1}{R_{3}+Jx_{L}}$$

$$\Rightarrow \frac{1}{2} = \frac{1}{2} + \frac{1}{2}$$

10.
$$f_0 = 1 \text{ mH3}, R_s = 100, L = 2 \text{ LX103 H}$$

$$10.5 = \frac{1}{2 \times 3.14} \int_{0.27}^{1} \int_{0.27}^{1} \frac{1}{2 \cdot 27} \int_{0.27$$

- Q.1 (e) A series R-L-C circuit having $R = 25 \Omega$, L = 2 H and $C = 30 \mu F$ is connected across an a.c. variable frequency source. At what frequencies will the phase angle of circuit be
 - 45° lagging and
 - (ii) 45° leading, the applied voltage.

[6 + 6 marks]

$$\frac{1}{R}$$
 $\frac{1}{R}$ $\frac{1}{R}$

$$R = WL - WC$$

$$R = WL - WC$$

$$W^{2}LC = 1 = RWC$$

$$W^{LC} = 1 = 2 \text{KWC}$$

Aut $R = 25 \text{ L} = 2 \text{ H}, C = 30 \text{MF}$
 $RC = 25 \times 30 \times 10^6$
 $LC = 2 \times 30 \times 10^6 = 26 \times 10^5$
 75×10^5

$$6 \times 10^{5} \text{ m}^{2} - 1 = 75 \times 10^{5} \text{ W}$$
 $6 \times 10^{5} \text{ W}^{2} - 75 \times 10^{5} \text{ W} - 1 = 0$

$$W = 135.50 \text{ add see}$$

$$T = 21.57 \text{ H}$$

Page 10 of 71

Do not write in this margin

Q.2 (a) For the network shown below, draw its graph and obtain tie set matrix $[B_f]$, taking branches 2, 4, 5 as tree branches. Also, determine the loop impedance matrix and find the loop equations.

[20 marks]

Page 11 of 71

MADE ERSY Question Cum Answer Booklet

Page 12 of 71

Q.2 (b)

- (i) A heater takes 10 A at 50 V. Calculate the impedance of a choke of 5 Ω resistance to be placed in series with it in order that it may work at 200 V, 50 Hz supply. Find the power factor of the circuit.
- (ii) State the maximum power transfer theorem. For the given circuit, what resistance should be connected across *x-y*, such that maximum power is developed across this load resistance? What is the amount of this maximum power?

[10 + 10 marks]

MADE EASY Question Cum Answer Booklet

Page 15 of 71

Q.2 (c) (i) A load Z draws 12 kVA at a power factor of 0.856 lagging from a 120 V rms sinusoidal source.

Calculate:

- 1. the average and reactive power delivered to the load.
- 2. the peak current and,
- 3. the load impedance.
- (ii) For the circuit diagram shown below, draw its graph and
 - 1. Obtain incidence matrix and cut-set matrix.
 - 2. How many trees are possible for this circuit?

[10 + 10 marks]

Page 18 of 71

Q.3 (a) I

For the network shown below, find internal current gain $G_{l'}$ voltage gain $G_{l'}$ power gain $G_{l'}$ input impedance Z_{in} and output impedance Z_{out} .

[20 marks]

MADE ERSY Question Cum Answer Booklet

Page 20 of 71

Q.3(b)

(i) Consider the circuit shown below. If the resistance of 5 Ω branch increases to 6 Ω , determine the compensation source and verify the results.

(ii) In the circuit given below, $r_1 = 8.2 \Omega$, $r_2 = 2.7 \Omega$, $L_1 = 0.01 H$, $L_2 = 0.03 H$, f = 25 Hz and the circulating current I = 10 A.

Find:

- 1. Voltage drop across each element.
- 2. Total resistive and inductive voltage drop.
- 3. Supply voltage.
- 4. Impedance angle of each of the R-L branch and power factor of the circuit.

[10 + 3 + 3 + 1 + 3marks]

MADE ERSY Question Cum Answer Booklet

Page 22 of 71

Q.3 (c) (i) What is the voltage and power gain of the circuit shown in figure? Assume $n = \frac{1}{10}$.

(ii) Consider the circuit shown below:

After being open for a long time, the switch is closed at t = 0. Find

- 1. $i_L(0^-)$
- 2. V_C(0⁻)
- 3. $i_R(0^+)$

- 4. $i_C(0^+)$
- 5. $V_C(0.2)$ using Laplace transform approach.

[10 + 10 marks]

MADE EASY Question Cum Answer Booklet

Page 25 of 71

Page 26 of 71

Q.4 (a)

Synthesize Cauer-I form and Cauer-II form of the network with driving point immitance

function
$$Y(s) = \frac{(s^2 + 1)(s^2 + 5)}{s(s^2 + 3)}$$

[20 marks]

Caur-I form

$$7(8) = \frac{s^4 + 5s^2 + s^2 + 5}{s^3 + 3s^4} = \frac{s^4 + 6s^2 + 5}{s^3 + 3s^4}$$

$$\frac{9(8) = \frac{5^4 + 55^2 + 5^2 + 5}{5^3 + 35} = \frac{5^4 + 65^2 + 5}{5^3 + 35}$$

$$7(s) = \frac{5+6s^2+54}{3s+5^3}$$

$$35+5^{3}$$
 $5+65^{2}+54$ $\frac{5}{35}$ $5+\frac{5}{3}$ 5^{2}

$$\frac{13}{3}s^{2}+s^{4}) \cdot 3s + s^{3} \cdot \frac{3}{13}s^{3}$$

$$\frac{13}{3}s^{2}+s^{4} \cdot \frac{3}{13}s^{3} + \frac{9}{13}s^{3} \cdot \frac{3}{13}s^{4}$$

$$\frac{4}{13} s^{3} \frac{13}{3} s^{2} + s^{4} \frac{13}{3} x^{13} \frac{13}{4} s^{3}$$

$$\frac{13}{3} s^{2} + \frac{13}{3} x^{13} \frac{13}{4} s^{3}$$

$$\frac{13}{3} s^{2} + \frac{13}{3} x^{13} \frac{13}{4} s^{3}$$

$$\frac{13}{13} s^{2} + \frac{13}{3} x^{13} \frac{13}{3} s^{2}$$

$$\frac{13}{13} s^{2} + \frac{13}{3} x^{2} + \frac{13}{3} x^{2}$$

$$\frac$$

Q.4(b)

(i) Find the Y-parameters for the 2-port network shown below.

(ii) For the circuit shown, draw the phasor diagram. Derive the condition for the two branch currents, I_L and I_C to be in quadrature.

[10 + 10 marks]

Yeara mules
$$I_1 = \frac{1}{1} = \frac{1}{1$$

W 17(634)

put I s Fo vale inel

$$V_1 = 17\left(\frac{-5}{3}\right)\frac{1}{2} + 20\frac{1}{2}$$

Y21 = -0.1200)

(Oak-2) 4 =0

54 + 0.2 V2 + 1/2 20

Q.4 (c) (i) Determine I_0 in figure using nodal analysis:

(ii) The circuit shown has zero initial energy. At t = 0, the switch 'S' is opened. Find the value of resistor R for the given excitation such that the response is $V(t) = 0.5 \sin \sqrt{2}t \ u(t)$.

The excitation is $i(t) = te^{-\sqrt{2}t} u(t)$.

[10 + 10 marks]

Do not write in

this margin

$$R = 2 \quad \text{ves} = 0.5 \text{ sin } 527 \text{ uet}$$

$$ies = 1 \text{ e}^{-524} \text{ uet}$$

slw open at it=0

$$2iq = \frac{V(8)}{F(8)} = \frac{52 \times 0.5}{5^2 + 2.}$$

$$4j = + \sqrt{5} + \sqrt{5$$

Section B: Control Systems

Q.5 (a) Using block diagram reduction technique, find the transfer function $\frac{C(s)}{R(s)}$ for the system shown below:

[12 marks]

Q.5(b)

The closed loop transfer function of a control system is given as $\frac{10}{s^3 + 0.1s^2 + 10}$. Determine the steady state error of the system when input is $5 + 10t + 4t^2$.

ess, = 2 for unitatep ess = A [12 marks] ess=2 fer unit remp ess= A ess=2 fer unit parabot ess= A ess= ess, t ess + ess3 - D & p=

to = positional

bp = lim aH

520

bp - lim 10

520

520

520

[ep = 00] $[ess] = \frac{5}{1+00}$

$$ess = 0 + 0 + u \times 10^{2}$$

$$ess = u \times 10^{2}$$

Q.5 (c)

The open loop transfer function of a unity feedback system is given by $G(s) = \frac{K}{s(1+sT)}$,

where *T* and *K* are constants having positive values. By what factor the amplifier gain be reduced so that

- (i) the peak overshoot of unit step response of the system is reduced from 75% to 20%.
- (ii) the damping ratio increases from 0.2 to 0.6.

[12 marks]

(1) mp changes 75-7. to 20%.

of Mp = or Reale over when it

1.mp = 0 1-62.

ETE = 0.75

sothaide doge

- Ky = doge 6-25)

-3.14 & z -0.287 [1-82

squary bothside

9.8592 = 0.082(1-42)

9.8542 = 0.082-0.08242

9.9329 = 0.082

9= 8-256×103

9.=0.090

del 41 =0.090

mp = 20%.

e 1/42 = 0.2

-160 TI-E2

-ne = -1.651-22 squaring botheride

9.85 62 = 2.56 (1-42)

9.35 6 2 2.56 - 2.56 62

12-41 42 - 2.56

q= 0.206

Q=0.484

mp - 9 92

1 2 = 0-454

$$s^2 + \frac{s}{T} + \frac{k}{T} = 0$$

$$2qwn = \frac{1}{T}$$
 $wn = \int \frac{k}{T}$

Q.5(d)

A control system is represented using the signal flow graph shown below:

- Construct a state model for the above system.
- Using the state model obtained in part (i), find the transfer function $\frac{C(s)}{U(s)}$.

[4+8 marks]

$$x_3 = 2401 - 2x_3 - 3x_1 - ux_1$$

 $x_2 = x_3 - x_2 - x_1$
 $x_3 = x_3 - x_2 - x_1$
 $x_1 = x_2$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ -1 & -1 & 1 \\ -4 & -3 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} 4(4)$$

$$y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ y_2 \\ y_3 \end{bmatrix} \qquad \text{Sub} = A x \text{ th} + B \text{ th}$$

$$y = (x_1 + b) + (x_2 + b)$$

$$y = (x_3 + b) + (x_4 + b)$$

$$A = \begin{bmatrix} 0 & 1 & 0 & 9 \\ -1 & -1 & 1 \\ -4 & -3 & -2 \end{bmatrix} \quad B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix} \quad C = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix}$$

- Q.5 (e)
- Consider the feedback system shown in figure. Find the values of k and b to satisfy the following frequency-domain specifications: $M_r = 1.6$, $\omega_r = 15$ rad/s.
- For the values of k and b determined in part (a), calculate the settling time and bandwidth of the system.

[12 marks]

(1) given that My=1-6, wo=15 rad leer.

$$M_{8} = \frac{1}{24\sqrt{1-4^{2}}}$$

$$= 1.6.$$

$$24\sqrt{1-4^{2}} = 0.625$$

$$w_{1} = 1.6.97 \text{ sad (see)}$$

$$24\sqrt{1-4^{2}} = 0.625$$

Wyz. Wn [1-292

squaring both aide

442 (1-42) = 0.3906

chas courtion

482-484-0.3906=0

1+ nH 20.

ent q = x, 4x-4x-0.3906=0

1+ K 20 s(s+b)

 $x_1 = 0.1096$, $x_2 = 0.890$, $x_3 = 0.890$, $x_4 = 0.890$, $x_5 = 0.890$

Land order

Conparing Eq D & D

29,000 26.

2x0.33x16.97 = b

B=11.23

· wn zle k=(16.97)2 K= 287.98

 $w_m = 16.97$ aalse k = 287.0K = 287.98 ad 4 = 0.943, Won 2 / 15 = wn [1-2x0.943]2

05 e (11) Suttlingtime.

dy = .4 -> 21.

ts = 3 - 5.1.

 $t_8 = \frac{4}{0.33 \times 16.97} = 0.7142 \text{ see}$ $t_8 = \frac{9}{0.33 \times 16.97} = 0.53570 \text{ see}$

BW = Bandwidth of sla

Bw = wn /1-2 42 + 1 444 - 44 +2

3 $16.97 \int [1-2\times(0.33)^2 + 4(0.33)^4 - 4(0.33)^2 + 2$ 2 $16.97 \int [1-2\times0.1089 + 4\times0.01185 - 4\times0.1089 + 2$

=16-97 0.7822+11.648

2 16.97 ×1.432

BW = 24.30. sad/see.

Q.6 (a)

The open loop transfer function of a control system with unity feedback is given by $G(s) = \frac{(2K+5)}{s(s-(2+K))}$

Calculate K for which

- (i) The system is stable.
- (ii) Both the poles of characteristic equation lies in the **lef**t of s + 1 = 0 line.
- (iii) One pole of the characteristic equation is present in left of s + 1 = 0 line.
- (iv) Poles are at -0.125 + 0.7i and at -0.125 0.7i.

[20 marks]

Page 46 of 71

Page 47 of 71

Page 48 of 71

Do not write in this margin

- Q.6 (b) Write a short note on the following compensators:
 - (i) Lag compensator
 - (ii) Lead compensator
 - (iii) Lead-lag compensator

[6 + 6 + 8 marks]

Page 50 of 71

Q.6 (c)

A linear time-invariant system is characterized by the homogeneous state equation

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

- (i) Compute the solution of the homogeneous equation assuming the initial state vector $x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.
- (ii) Consider now that the system has a forcing function and is represented by the following non homogeneous state equation:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} i$$

where u is a unit-step function. Compute the solution of this equation assuming initial conditions of part (a).

[10 + 10 marks]

Page 52 of 71

Q.7 (a)

The block diagram of a unity feedback system is shown in figure (i) and its step **res**ponse is shown in figure (ii). With the help of the given figures, calculate:

- (i) closed loop transfer function.
- (ii) the minimum value of 'K' for which the step response of the system would exhibit an overshoot as shown in figure (ii).
- (iii) If 'K' is taken twice of the minimum value, then calculate the time period 'T' indicated in figure (ii)

Fig. (ii)

[20 marks]

Page 54 of 71

Page 55 of 71

Q.7(b)

Find the transfer function for the bode plot shown below: (i)

Sketch the polar plot for the following transfer function:

$$G(s) = \frac{1+5s}{s^2(1+s)(1+2s)}$$

Also, calculate: Phase crossover frequency and corresponding gain margin.

[10 + 10 marks]

$$\frac{5 \times 10^{10}}{5 \times 10^{10}} = \frac{10^{10}}{10^{10}} = \frac{10^{10}}{1$$

1910 w = 1.55 [W2 = 3548 rad/see

put w, s was balle

ineq D

Trasferting
$$T(s) = \frac{\left| \left(\frac{S}{1.99} + 1 \right) \left(\frac{S}{35.48} + 1 \right)^3}{\left(\frac{S}{10} + 1 \right)^3}$$

Now, find out belief & 2)

ontial slep 20

M = +208dg W +20dg to b

M = 0 +20 dog 10 k

lo z 20 dogo k

(t=3.16)

$$T(s) = \frac{3.16 \cdot \left(\frac{s}{1.99} + 1\right) \left(\frac{s}{3s.49} + 1\right)^3}{\left(\frac{s}{1.99} + 1\right)^3}$$

polar.

plost.

Angle
$$[M] = \int [1+25w^2] \frac{1}{w^2} \int [w^2+1] \int [1+4w^2] \frac{1}{(w^2+1)} \frac$$

9t w 20	W=00.
$M = \infty$	0 .
d = +180	-270.

Now calculate wpc=2.

$$3 = 5 - 10 w^2 z0$$

W200

$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1}$

$$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{3}} \text{ added} \qquad x = 8.345$$

Page 59 of 71

Do not write in this margin

Q.7 (c)

Consider the feedback control system shown below:

The compensator block of the system is to be designed, such that the overall system will have a velocity error coefficient of 10 and a minimum phase margin of 43°. Compare the phase margin of the uncompensated system and compensated system.

[20 marks]

Page 60 of 71

Q.8 (a) Consider the following control system.

- Sketch the root locus diagram for $0 < K < \infty$ (i)
- Without the help of root locus diagram, determine the value of K that gives the system characteristic equation with a damping ratio of 0.5.

[10 + 10 marks]

31ep-2 Down Polezero diagram.

$$dA = (2r+1)180 \Rightarrow 60^{\circ}, 180^{\circ}, 300^{\circ}$$

Step 9 centroid

$$\sigma = 0 - 2 - 5 - 0$$

$$\sigma = -\frac{9}{3}$$
, $\sigma = -9.33$

Step 5 find out break away point

char. Equation
$$1+cn=0$$
.

1+ $\frac{K}{S(S+2)(S+5)}$

$$k = -5^3 - 55^2 - 25 - 105$$

$$\frac{dx}{ds} = 0, \quad -3s^{2} - 10s + 4s - 10 = 0$$

$$\frac{dx}{ds} = 0, \quad -3s^{2} + 10s + 4s + 10 = 0.$$

valled break point = -0.88, 5=-0.88 Ladie on Root locus.

8tep-6 entersection of Inganis. Uning RH Conetica.

chas.
$$1+014 = 0$$

Eq. $3+7s^2+10S+k=0$

Do not write in

this margin

2wn-7wn-1020

Q.8(b)

(i) The closed-loop poles of a system is shown in figure below:

Find the

- 1. Transfer function of the system
- 2. Settling time for 2% tolerance band.
- 3. Percentage peak overshoot.
- 4. Rise time
- 5. Delay time
- (ii) Determine the transfer function relating $V_0(s)$ and $V_i(s)$ for network shown in figure below. Calculate output voltage, $t \ge 0$ for a unit step voltage input at t = 0 when $C_1 = 1 \, \mu\text{F}$, $R_1 = 1 \, \text{M}\Omega$, $C_2 = 0.5 \, \mu\text{F}$ and $R_2 = 1 \, \text{M}\Omega$.

[10 + 10 marks]

86(1)
$$501^{9}$$
 Pells = $(5+6+2j)$

T(s) \Rightarrow $(5+6+2j)$ $(5+6-2j)$

T(s) \Rightarrow \xrightarrow{k} $(5+6)^2+4$ \Rightarrow $\xrightarrow{s^2+36+125+4}$

T(s) = \xrightarrow{k} $\xrightarrow{s^2+125+40}$ $\xrightarrow{s^2+125+40}$ of 818.

char equation It nH 20

compane Egn B& D

$$24wn = 126$$
 $4wn = 6.32 \text{ rad (see)}$

(for 2 -1. Haleronee band

$$T_8 = \frac{4}{9000} \Rightarrow \frac{4}{6} = 2/3$$
 $T_8 = 0.66 see$

(3)
$$-2 \approx 6$$
 $-2 \approx 6$ $-2 \approx 6$ $-2 \approx 6$ $-2 \approx 6$

1. mp = 1. Reak oversehood

$$7. mp = e \frac{\pi 4}{1 - 4^2} \times 100$$

$$= e \frac{\pi 6.948}{1 - 0.9482} \times 100$$

0/mp = 8-672 × 103

Wd = War [1-42 Wd = 6.82 [1-0.948]2 [Wd = 2.01 rad [see]

$$T_d = 1 \pm 0.7 \times 0.948$$
 6.32

Determine tourser sun,

$$V_{o(5)} = S(1)(0.7)$$
 $S(1) = S(1)(0.7)$
 $S(1) = S(1)(0.7)$
 $S(1) = S(1)(0.7)$
 $S(1) = S(1)(0.7)$
 $S(1) = S(1)(0.7)$

[20 marks]

Q.8 (c)

Sketch the Nyquist plot and using the plot, assess the stability of the closed loop system whose open-loop transfer function is

$$G(s)H(s) = \frac{K(s+4)}{s^2(s+2)}$$

open les ptous les fuetion,

$$ChH = \frac{K(s+4)}{s^2(s+2)}$$

for Region 4, Down polar plout.

$$G(SW)H(SW) = \frac{k(Jw+4)}{-w^2(Jw+2)}$$

magnitual | (400) H (400)

$$\frac{3 \quad k \int w^2 + 16}{w^2 \int w^2 + 4}$$

((SW) H(SW) 3 -180-den w+don w

4	et w =0	w=∞.
-	[M]· 🗪	€180 ·
	14 - 180	-180'

polar polar

w=00 W=0

For Region C2 put S = ROJO

5= lim ROTO.

CHERETO) => K (ReJO+4) R2 e250 (ReJO+2)

RADO, 2 mylesteel,

\$ 0. e10. =350 50 -30.

(+ + 1/2 - - M2 - 2 M2 - 3 M2

2000 Revelius

for Region C3 conirror image of polarphet Ci)

Region C4 put 5 = 8 & JO. in OLTF. S= lim reJO.

Cit (8eJO) = K(8eJO+4) 82 0210 (8010+2) 8-90, 00,1+0-20. ogleded.

> 3 00 [-0. (03-N2-) n/2. New +1/2 -9-0/2)

. 00 padius; and Ayle n/2 - n/2.

forstability

N=P-2

M= no of emcirclement of (-1,0)

P = no of open loop Right Pell

Z= no of close doop Right side pell.

M=0, P=0

0000 (Z=0) |818 - is stable |

