MADE	EASY
	Publications -

SOIL ####

Q.1	1 Which of the following soil formed by leaching action?		
	(c) Laterite soil	(d) Alluvial soil	
1.	(c)		
Q.2	Select the incorrect pair (a) Colluvial soil : Formed due to ch (b) Lacustrine soil : Found at bed of (c) Black cotton soil: Formed due to (d) Peat soil: Highly organic soil	nemical weathering still lake weathering of basalt rock	
2.	(a)		
Q.3	Which of the following range for property of soil is correct?		
	 (a) O < n ≤ 1 (c) O ≤ S ≤ 1 where : n = Porosity S = degree of saturation 	(b) e ≯ 1 (d) O < n_a < 1 e = Void ratio n_a = Percentage air voids	
3.	(c)		
Q.4	For a soil sample of volume 500 cc, degree of saturation = 70% and void ratio found to be 0.5. The volume of air in soil is (a) 50 cc (c) 100 cc	(b) 150 cc (d) 200 cc	
4.	(a)		
Q.5	To prepare embankment of 100 m ³ with soil should be brought from borrow pit i	h void ratio of 0.5, m ³ of in which soil has void ratio of 0.8.	

(a) 84 (b) 102 (c) 93 (d) 120

Q.6 Consider the following data for a soil sample and select the correct statement

Mass of soil in natural condition = 800 gMass of soil after over drying = 600 gVolume of soil taken = 320 cc

Void ratio = 0.9, G = 2.7

- (a) Degree of saturation is 100%
- (b) Saturated unit weight is 2.3 g/cc
- (c) Dry unit weight is 1.75 g/cc
- (d) Water content is 25%
- 6. (a)

Q.7 Soil sample of uniformly graded soil with spherical particle found at site with natural void ratio of 0.5. The density index of soil is approx
 (a) 35%
 (b) 73%

(c) 97% (d) 50%

7. (b)

- **Q.8** Which of the following form of water cannot be determined with water content test for soil
 - (a) Film water (b) Hygroscopic water
 - (c) Capillary water (d) Structural water

8. (d)

Q.9 Water displacement method is used to determine
(a) Specific gravity
(b) Water content
(c) Unit weight of soil
(d) Sensitivity of soil

9. (c)

- **Q.10** Pycnometer test is used to determine specific gravity as well as water content overdry and moist soil respectively
 - $m_1 = \text{mass of empty pyonometer}$
 - m_2 = mass of pycnometer and soil (dry or moist based on test)
 - m_3 = mass of pycnometer soil and water
 - m_4 = mass of pycnometer and water only.

Which of the following is/are correct?

1.
$$G = \frac{m_2 - m_1}{(m_2 - m_1) - (m_4 - m_3)}$$

2. $W = \left\{ \frac{m_2 - m_1}{m_3 - m_4} \left(\frac{G - 1}{G} \right) \right\} - 1$
3. $W = \left\{ \frac{m_2 - m_1}{m_4 - m_3} \left(\frac{G}{G - 1} \right) \right\} - 1$
4. $G = \frac{m_2 - m_1}{m_2 - m_1 + (m_4 - m_3)}$
(a) 1 and 2
(b) 2 and 3
(c) 2 and 4
(b) 3 and 4

- (a) Higher permeability (b) Lesser shear strength
- (c) Higher void ratio
- (d) Lesser saturation

11. (b)

made ea

Publications

Q.12 Liquidity index (w_i) can be determined as

(a)
$$\frac{w_L - w_P}{w_L - w_P}$$
 (b) $\frac{w - w_L}{w_L - w_P}$

(c)
$$\frac{w - w_P}{w_L - w_P}$$
 (d) $\frac{w_P - w}{w_L - w_P}$

12. (c)

- Q.13 Which of the following statement is correct?
 - (a) Coefficient of uniformity i.e. Cu for uniformly graded soil > 4
 - (b) Coefficient of uniformity i.e Cu for well graded gravel > 6

(c) Coefficient of curvature i.e.
$$C_c = \frac{D_{60}^2}{D_{30} \times D_{10}}$$

(d) Coefficient of curvature for well graded soil can't be less than 1

13. (d)

Q.14 If soil is existing in state of semi solid

(a) $l_c > 1$	(b) <i>I_L</i> < 1
(c) $W_s < W < W_p$	(d) s < 1
Which of the above parameter is not	correct?

14. (d)

Q.15Soil particles will be categorized as silt if particle size is
(a) $< 2\mu$
(c) $75\mu - 4.75$ mm(b) $2\mu - 75\mu$
(d) 4.75 mm - 80 mm

15. (b)

Q.16 In a fine grained soil sample 30% is silt content. Which has liquid limit and plasticity index of 60 and 35 respectively. Activity of soil is

(a) 0.5	(b) 1.17
(c) 2.8	(d) 1.2

16. (a)

- Q.17 For a soil suspension hydrometer gives reading of 25 and correction for meniscus and disperging agent observed to be 2, 1 respectively. The corrected density of soil suspension is
 - (a) 1.028 g/cc (b) 1.025 g/cc (c) 1.026 g/cc (d) 1.024 g/cc
- 17. (c)

Q.18	Consider the following data for a soil sam	nple
	Plastic limit = 27, liquid limit = 40	
	Percentage finer than 75 μ = 75%	
	Soil can be classified as	
	(a) CL	(b) MI
	(c) ML	(d) CH

- 18. (b)
- Q.19 Which of the following statement doesn't show property of GP-GC soil
 - (a) It is a poorly graded clayey gravel
 - (b) It has coefficient of uniformity 2
 - (c) It has plasticity index more than 8
 - (d) Percentage finer than 75μ is 3%
- 19. (d)
- **Q.20** Consider following result of sieve set and find out sample which can be classified as SC i.e. clayey sand

(a)
$$\frac{40\%}{30\%} \frac{4.75\%}{75\mu}$$
 (b) $\frac{\frac{5\%}{15\%}}{\frac{80\%}{75\mu}} \frac{4.75 \text{ mm}}{75\mu}$
(c) $\frac{30\%}{30\%} \frac{4.75 \text{ mm}}{75\mu}$ (d) $\frac{\frac{10\%}{60\%}}{\frac{30\%}{75\mu}} \frac{4.75 \text{ mm}}{75\mu}$

20. (d)

Q.21 Correct equation of U-line is (a) $I_p = 0.73 (w_L - 20)$ (b) $I_p = 0.9 (w_L - 20)$ (c) $I_p = 0.9 (w_L - 8)$ (d) $I_p = 0.73 (w_L - 8)$

21. (c)

Q.22 Height of capillary in soil is propositional to

(a) Plasticity index	(b) Grain size
(c) Void ratio	(d) Water content

22. (a)

Publications

Q.23 Net charge over kaolinite mineral is

(a) – 1	(b) +1
(c) 0	(d) -2

- 23. (c)
- Q.24 Montmorillonite
 - (a) is 2 : 1 mineral i.e. 2 octahedral unit and 1 silica tetrahedral unit
 - (b) is least compressible
 - (c) has net charge of +1
 - (d) result into maximum volume changes i.e. high activity value
- 24. (d)
- Q.25 Disperse structure of clay
 - (a) has lesser strength
 - (b) less permeable
 - (c) face to face orientation
 - (d) all of the above

25. (d)

Q.26 Match List-1 and List-2 with given code below.

List-1 (Clay mineral)

- A. Kalonite
- B. Montmorillonite
- C. Illite

Code:

	Α	В	С
(a)	1	3	2
(b)	2	1	З
(C)	3	2	1
(d)	1	2	3

26. (a)

List-2 (Example)

- 1. China clay
- 2. Laterite soil
- 3. Black cotton soil

6

27. (a)

Q.28Due to rise in capillary by h_c amount the effective stress at a section(a) increases by γh_c (b) decrease by $\gamma_w h_c$ (c) increase by $\gamma_w h_c$ (d) decrease by $\gamma_h h_c$

28. (c)

- Q.29 Rise in WT doesn't affect the effective stress at a section if
 (a) WT is at G/L
 (b) WT is above G/L
 (c) WT is below G/L
 (d) All of the above
- 29. (b)
- Q.30 Shrinkage limit of soil can be found as

(a)
$$w_s = \frac{1}{G} - \frac{1}{G_D}$$

(b) $w_s = \frac{G}{G_D}$
(c) $w_s = \frac{G}{G_D} - \frac{1}{G}$
(d) $w_s = \frac{G_D}{G}$

30. (c)

SOIL

Q.31 Relationship between average velocity (v) of flow and seepage velocity (v_s) is (a) $v_s = nV$ (b) $v = nV_s$

(c)
$$v = \frac{V_s}{n}$$
 (d) $vv_s = r$

31. (b)

made eas

Publications

Q.32 Coefficient of permeability of soil is proportional to

- (a) Presence of entrapped gases
- (b) Temperature
- (c) Dynamic viscosity of fluid (d) Presence of adsorbed water
- 32. (b)

Q.33 In constant head permeability test 600 ml water collected through soil of c/s area of 60 cm² in 60 sec under hydraulic gradient of 0.5. The coefficient of permeability for soil is
 (a) 0.67 cm/s

(a) 0.67 cm/s	(b) 0.22 cm/s
(c) 0.33 cm/s	(d) 0.87 cm/s

- 33. (c)
- Q.34 Three observations of head are taken in falling head permeability test for same soil sample in similar time interval find out the most correct possible observation:(a) 20, 35, 50(b) 20, 25, 30
 - (c) 20, 40, 80 (d) 20, 40, 60
- 34. (c)
- Q.35 Consider the following flow condition. The equivalent permeability is

35. (c)

- **Q.36** In a 1 m thick soil skelton (e = 0.6, G = 2.6) flow is taking place under head loss of 0.5 m, the FOS against piping failure is
 - (a) 1 (b) 2.5
 - (c) 2 (d) 3

36. (c)

- Q.37 Quick sand condition occurs in
 - (a) Pure clay

(b) Sandy silt

(c) Gravel (d) Well graded sand

37. (b)

- Q.38 In downward seepage flow, at any section
 - (a) Pressure head increased by iz
 - (b) Effective stress increased by $iz\gamma_w$
 - (c) Total head remain same
 - (d) Pore water pressure increase by $i\boldsymbol{z}\boldsymbol{\gamma}\boldsymbol{w}$

38. (b)

- Q.39 Flow net has which of the following property
 - (a) It is a graphical representation of Laplace equation
 - (b) discharge is parallel to flow line and perpendicular to equipotential line
 - (c) total head loss equally divided into equipotential line
 - (d) all of these

39. (d)

- **Q.40** By increasing compaction effort optimum moisture content _____ and maximum dry density _____.
 - (a) Increases, decreases(c) Increases, Increases
- (b) Decreases, decreases(d) Decreases, Increases

- 40. (a)
- Q.41 At dry side of optimum soil shows
 - (a) more swelling (c) flocculent structure
- (b) more deficiency of water
- (d) all of these

(b) vibratory roller

- 41. (d)
- **Q.42** Which of the following equipment suitable for clayey soil?
 - (a) smooth wheeled roller
 - (c) sheepfoot roller (d) none of these
- 42. (c)

SOIL ####

9

= Publications

(a)
$$c_v = \frac{m_v}{k\gamma_w}$$

(b) $c_v = \frac{m_v K}{\gamma_w}$
(c) $c_v = \frac{\gamma_w}{km_v}$
(d) $c_v = \frac{K}{m_v \gamma_w}$

43. (d)

made eas

Q.44For 10 cm thick clay sandwiched between two gravel layer and has $C_v = 0.002$
cm²/s. The time required for 50% consolidation is ______ sec.
(a) 2084(b) 1667

(c) 2500	(d) 2290
----------	----------

44. (c)

Q.45 If clay subjected to stress over soil in past history is more than stress in present, known as

(d) Sensitive clay

- (a) Under consolidated clay (b) Over consolidated clay
- (c) Normally consolidated clay

45. (b)

- Q.46 A 5 m thick layer subjected to stress of 100 kPa. The settlement of clay layer is _____ mm if coefficient of volume compressibility is $3 \times 10^{-4} \text{ m}^2/\text{kN}$ (a) 0.15 (b) 1.5
 - (c) 15 (d) 150

46. (d)

Q.47 In above question, calculate void ratio of clay after settlement if initial void ratio is 0.8

(a) 0.446	(b) 0.582
(c) 0.646	(d) 0.192

47. (a)

Q.48 The compression index of soil will be approx _____ if liquid limit of soil for undisturbed sample is 40%.

(a) 0.42	(b) 0.24
(c) 0.27	(d) 0.18

48. (c)

10

Q.49 Stress due to external load at any depth is

(a)
$$\sigma_z \propto z^2$$
 (b) $\sigma_z \propto \frac{1}{z}$

(c)
$$\sigma_Z \propto \frac{1}{Z^2}$$
 (d) $\sigma_Z \propto Z$

49. (c)

- Q.50 The unit for coefficient of compressibility is
 (a) cm²/s
 (b) m²/kN
 - (c) s/cm² (d) kN/m²

50. (b)

- Q.51 In the Mohr circle analysis for pure sand(a) Failure tangent starts from origin
 - (b) Critical angle $\theta_c = 45 + \frac{\phi}{2}$
 - (c) shear stress at failure is lesser than maximum shear strength
 - (d) all of the above
- 51. (d)
- Q.52 Most suitable lab test of shear strength to be performed over soft clay
 - (a) Direct shear test
 - (b) Vane shear test
 - (c) Unconfined compressive strength test
 - (d) any one the above

52. (b)

Q.53 In a Triaxial test performed on sandy soil having $\phi = 30^{\circ}$ the cell pressure applied is 100 kPa. The deviator stress is to applied for failure is _____.

- (a) 300 kPa (b) 200 kPa
- (c) 100 kPa (d) 500 kPa
- 53. (b)
- Q.54 The fastest condition to perform triaxial test is
 - (a) CD test (b) UU test
 - (c) CU test (d) UD test
- 54. (b)

Q.55 Unconfined compressive strength of a saturated clay sample is 150 kPa, the shear strength of clay is _____ kPa.

(a)	75	(b) 300
(C)	150	(d) 37.5

^{55. (}a)

made eas

Publications

- **Q.56** In which of the following condition only one unique Mohr circle development is possible for clay
 - (a) Total stress analysis U-U test
 - (b) Total stress analysis C-D test
 - (c) Effective stress analysis U-U test
 - (d) Effective stress analysis C-D test
- 56. (c)
- Q.57 Select the incorrect statement regarding pore pressure parameter given by skempton

(a)
$$B = \frac{\Delta u}{\Delta \sigma_3}$$

(b) $\overline{A} = \frac{\Delta u}{\Delta \sigma_d}$
(c) $\overline{A} = AB$
(d) $\Delta u = B[\Delta \sigma_1 + A(\Delta \sigma_1 - \Delta \sigma_3)]$

57. (d)

Q.58 The active earth pressure at top of vertical wall having pure cohesive soil as backfill is ______ kPa.

(a) 0	(b) -2C
(c) 2C	(d) 1

- 58. (b)
- Q.59 The given compaction curve is for well graded sand

Q.60	In active state of earth pressure (a) wall move away from backfill (b) shearing resistance mobilized upward (c) backfill tends to move along wall downward (d) all of the above		
60.	(d)		
Q.61	For any angle of friction of soil (a) $K_P < K_O < K_A$ (c) $K_P > K_O > K_A$	(b) $K_O > K_A > K_P$ (d) $K_A > K_P > K_O$	
61.	(c)		
Q.62	Active earth pressure at bottom of wall saturated upto G/L. (a) $K_a \gamma_{sat} H + K_a \gamma_w H$ (c) $K_a \gamma' H + \gamma_w H$	of H height, will be if backfill is (b) $K_a \gamma_{sat} H$ (d) $K_a \gamma_{sat} H + \gamma_w H$	
62.	(c)		
Q.63	Which of the following not included in Ra (a) Inclined backfill (c) Cohesionless soil	nkine theory of Earth pressure? (b) Wall friction (d) Isotropic	
63.	(b)		
Q.64	A pure cohesion soil ($\gamma = 16 \text{ kN/m}^3$, c = 20 kPa) placed as backfill behind 6 m vertical wall. The depth of tension crack is (a) 5 m (b) 5.5 m (c) 2.5 m (d) 3.2 m		
64.	(c)		
Q.65	Shear strength for a remoulded sample of clay and undisturbed sample of clayfound to be 50 kPa and 75 kPa. The sensitivity of clay is(a) 1.5(b) 0.67(c) 1.8(d) 2		
65.	(a)		
Q.66	Plate load test performed over a cohesive soil with a circular plate of 30 cm diameterwhich results into settlement of 20 mm. By keeping all parameter same, thesettlement of 3 m diameter footing over same soil will be(a) 20 mm(b) 200 mm(c) 0.2 mm(d) 2 mm		
66.	(b)		

Q.67	Heigher the SPT value for a soil (a) stiffer the consistency (c) higher the friction angle	(b) denser the soil(d) all of the above
67.	(d)	
Q.68	let ultimate bearing capacity of cohesive soil as per skemption will be kPa strip footing is built over ground level.	
	(a) 5.7 c	(b) 5 c
	(c) 6 c	(d) 9 c
68.	(b)	
Q.69	Undreamed pile are suitable for	
	(a) Cohesive soil	(b) Expansive soil
	(c) Gravelly soil	(d) Marine soil
69.	(b)	
Q.70	A strip footing built over sandy soil having water table at footing level. Net bearin capacity of soil can be calculated as	
	(a) $q_{nu} = \gamma D_F (N_q - 1) + 0.5 \gamma' B N \gamma$ (c) $q_{nu} = \gamma' D_F (N_q - 1) + \gamma' B N \gamma$	(b) $q_{nu} = \gamma' D_F (N_q - 1) + 0.5 \gamma' B N \gamma$ (d) $q_{nu} = \gamma D_F (N_q - 1) + 0.5 \gamma_{sat} B N \gamma$

70. (a)

MADE EASY

- Publications

- Q.71 Property of general shear failure
 - (a) The soil has $I_D < 30\%$
 - (b) It doesnot result into heaving of soil
 - (c) Stress path doesn't reach upto G/L
 - (d) None of these
- 71. (d)
- **Q.72** SPT conduced over a soil having WT at G/L and observed SPT number is 23. What would be corrected SPT value if overburden pressure correction is 1.
 - (a) 19 (b) 28
 - (c) 23 (d) 12
- 72. (c)

Q.73 Consider the given pressure distribution diagram

- (a) Flexible footing over clay soil
- (c) Flexible footing clayey soil
- (b) Rigid footing over sandy soil(d) Rigid footing over clayey soil

73. (d)

(a) Inside clearance =
$$\frac{D_3 - D_1}{D_1}(1 - 3\%)$$

(b) Outside clearance = $\frac{D_2 - D_4}{D_4} (0 - 2\%)$

(c) area ratio =
$$\frac{D_2^2 - D_1^2}{D_1^2}$$
 (10 - 20%)

(d) Recovery length < 1 for soil subjected to sewelling

74. (d)

- Q.75 Lime stablization of plastic clay results into
 - (a) decrement in swelling shrinkage
 - (b) decrement in plasticity index
 - (c) increment in dry density
 - (d) all of the above
- 75. (d)

