y to avoid avoid columbiation

India's Best Institute for IES, GATE & PSUs

ESE 2023 : Mains Test Series

ENGINEERING SERVICES EXAMINATION

Electrical Engineering

Test-5: Basic Electronics Engineering + Analog Electronics + Electrical Materials + Electrical Machines-1 + Power Systems-2

		1			
toll No:					
	vor Ellinger	Student's Signature			
est Cent	169	A CONTRACT OF STREET			
est Cent	Bhopal Jaipur				

Instructions for Candidates

- 1. Do furnish the appropriate details in the answer sheet (viz. Name & Roil No).
- 2. There are Eight questions divided in TWO sections.
- 3. Candidate has to attempt FIVE questions in all in English only.
- 4. Question no. 1 and 5 are compulsory and out of the remaining THREE are to be attempted choosing at least ONE question from each section.
- 5. Use only black/blue pen.
- 6. The space limit for every part of the question is specified in this Question Cum Answer Bookiet. Candidate should write the answer in the space provided.
- 7. Any page or portion of the page left blank in the Question Cum Answer Booklet must be clearly struck off.
- 8. There are few rough work sheets at the end of this booklet. Strike off these pages after completion of the examination.

Question No.	Marks Obtained
Section	on-A
Q.1	32
Q.2	44
Q.3	
Q.4	47
Secti	on-B
Q.5	34
Q.6	
Q.7	32
Q.8	
Total Marks Obtained	189

Signature of Evaluator Cross Checked by

Sourash	
vuma ~	

Corp. office: 44 - A/1, Kalu Sarai, New Delhi-110016

Ph: 9021300500 | Web: www.madeeasy.in

IMPORTANT INSTRUCTIONS

CANDIDATES SHOULD READ THE UNDERMENTIONED INSTRUCTIONS CAREFULLY. VIOLATION OF ANY OF THE INSTRUCTIONS MAY LEAD TO PENALTY.

DONT'S

- 1. Do not write your name or registration number anywhere inside this Question-cum-Answer Booklet (QCAB).
- 2. Do not write anything other than the actual answers to the questions anywhere inside your QCAB.
- 3. Do not tear off any leaves from your QCAB, if you find any page missing do not fail to notify the supervisor/invigilator.
- 4. Do not leave behind your QCAB on your table unattended, it should be handed over to the invigilator after conclusion of the exam.

DO'S

- 1. Read the Instructions on the cover page and strictly follow them.
- 2. Write your registration number and other particulars, in the space provided on the cover of QCAB.
- 3. Write legibly and neatly.
- 4. For rough notes or calculation, the last two blank pages of this booklet should be used. The rough notes should be crossed through afterwards.
- 5. If you wish to cancel any work, draw your pen through it or write "Cancelled" across it, otherwise it may be evaluated.
- 6. Handover your QCAB personally to the invigilator before leaving the examination hall.

-Q.1 (a)

Section A: Basic Electronics Engineering + Analog Electronics + Electrical Materials

For the circuit shown in figure below, the two identical Si PN junction diodes are connected in parallel and a 0.5 V of forward bias is applied. Diode D_1 is heated to 400°K temperature and diode D_2 was kept at 300°K temperature. Calculate the ratio between the current flowing through diode D_1 and diode D_2 . (Ideality factor of Si = 2).

[12 marks]

$$V_{01} = 0.5 V$$
 $V_{1} = \frac{T}{11600} = \frac{400}{11600} = 94.48 \text{mV}$

Acaon Az

$$J_{D1} = J_{S} \left[e^{V_{D1}/N_{T_{1}}} - 1 \right] - \int_{0}^{\infty} dy \text{ shockley equal}_{1}$$
 $J_{D2} = J_{S} \left[e^{V_{D2}/N_{T_{1}}} - 1 \right]$

Alvidry
$$\frac{101}{102} = \frac{0.5}{2 \times 34.48m} = \frac{0.5}{2 \times 34.48m} = \frac{0.5}{2 \times 35m} = 1$$

EE

MADE EASY Question Cum Answer Booklet

Page 2 of 73

Q.1 (b)

The average magnetic moment along the field direction per spin in Bohr magnetron when a paramagnetic spin system is subjected to a uniform magnetic field is 3.2×10^{-4} Bohr magnetron. Calculate the uniform magnetic field applied if the temperature is 27°C. (1 Bohr magnetron = 9.27×10^{-24} A/m²).

[12 marks]

Let the setal magnetic moment caused by

Po = $\frac{e^{2\pi}}{4m}$ Po = $\frac{e^{2\pi}}{4m}$ $\frac{1}{4m}$ $\frac{1}{4m}$ $\frac{1}{4m}$ $\frac{1}{4m}$ $\frac{1}{4m}$

In Complete Solution 17.5

Page 4 of 73

Q.1 (c) Consider the circuit shown in figure below:

If both transistor have parameters $\mu_n C_{ox}$ = 40 μ A/V² and V_{Th} = 0.9 V then calculate the output voltage V_o .

[12 marks]

$$1.55 (5.1-v_0) = v_0-v_9$$

 $7.91-1.55 v_0 = v_0-v_9$

Q.1 (d)

Write a short note on Top-down technique and bottom-up technique used in nano-material synthesis.

[12 marks]

Top-down Technique :-

- -> Here large specimens are brought up 4 are divided upon nanometer level either in all directions, one direction, two directions, there directions.
- The methods used here are attattion, gathding etc.
- recharques.
- Detrom-up Technique:
- attached to get the earge material.
- -> collotdal dispersion is one of the method used here.
- by using above nethed
- waster formed are minimal.

MADE EASY Question Cum Answer Booklet

the state of the s

Page 8 of 73

Q.1 (e)

The Hall coefficient of a certain silicon specimen was found to be -8.25×10^{-5} m³/C at 300° K. If the conductivity is 2.50 U/cm, then find :

- (i) type of semiconductor
- (ii) density of charge carrier
- (iii) mobility of charge carrier

[12 marks]

(i)

th = -8'25 × 10⁻⁵

since it is negative. It is N-type extature

semiconductor

(ii)

density of charge causes $= \frac{1}{2} = \frac{12121\cdot 21}{2122}$

(iii)

 $\sigma = nq \mu n$ $2.5 = 12122 \times \mu n$ $\mu n = 2.0625 \times 10^{-4} \text{ cm/v-s}$ EE

MADE EASY Question Cum Answer Booklet

Page 10 of 73

Consider the circuit shown in figure Q.2 (a)

Find the relation between input V_i and output V_o . (Assume the op-amp is ideal).

By Nedal at Vg.

$$\frac{2V_0}{R}$$
 + $\frac{V_b}{2}$ sc + $\frac{(V_0-V_0)}{2}$ sc ∞

$$V_{0}\left[\frac{2}{R}+\frac{sc}{2}+\frac{sc}{2}\right]$$
 $V_{0}\left[\frac{sc}{2}\right]$.

$$\frac{v_0 \left[\frac{sc}{2}\right]}{\left[\frac{sc+2}{R}\right]}$$

$$V_0 \Rightarrow V_0 \left[\frac{SRC}{2SRC + 4} \right]$$

$$\frac{v_i}{R} = v_A \left[\frac{2}{R} + sc \right] \Rightarrow v_A = \frac{v_i}{2 + sRc} - \frac{v_i}{2 + sRc}$$

using O A Q

$$\frac{2}{SRC} \times \frac{v_i}{(2+SRC)} = -\left[\frac{SRC}{2SRC+4}\right] v_0$$

Q.2(b)

Zirconium has an HCP crystal structure and a density of 6.51 g/cm³.

- (i) Calculate the volume of its unit cell in cubic meters if the atomic weight of Zirconium is 91.2 g/mol.
- (ii) If c/a ratio is 1.593, then compute the values of c and a.

[20 marks]

(1)

(ii)

volume of Hexagon = $6 \times 6 \times \frac{5}{4}$ a

thus,

1.593 x 6 x 1/2 · a> = 2.145 x 10-2>.

then,

c= 1.593 a =

2· 758 Å

(8)

Q.2 (c)

Determine the small signal voltage gain of the circuit shown in below figure having parameters $V_T = 0.8 \text{ V}$, $k = \frac{\mu_n C_{ox} W}{2L} = 1.2 \text{ mA/V}^2$, $\lambda = 0$. Also calculation gate-to-source voltage (V_{GSQ}).

[20 marks]

DC-analyps ; -

All ac small signal vottage source -> short All capacitees open.

Feom circuit 1920

= 0.92 V

Here

mall signel model: -

vo= -gm (RollRL) vas-

t vas = vix 500 (by voltage division).

we get,

- gm [RAII RL] x 500

- 504

 $\frac{Av = \frac{v_0}{v_1} = -5.04}{8}$

Goodfoach

Page 17 of 73

Do not write in this margin

Q.3 (a)

The electron mobility of Indium (In) is measured to be 7.5 cm²/V-s and the resistivity of In is $9.43 \times 10^{-6} \,\Omega$ -m at room temperature (27°C).

- (i) Calculate the number of free electrons donated by each In atom in crystal.
- (ii) If the mean free path of electrons in In is 8.2 nm then calculate the mean speed of electrons in In.
- (iii) Calculate the thermal conductivity of In at room temperature.

(Assume atomic mass of In = 115 g/mol and density = 7.3 g/cm^3]

[20 marks]

MADE EASY Question Cum Answer Booklet

Page 18 of 73

EE

Q.3 (b)

A silicon transistor with β = 50 is used in a self bias circuit as shown in figure below.

The operating point is Q(11.5 V, 1.5 mA). For stability factor $S \le 2$, determine the values of R_1 , R_2 and R_E .

[20 marks]

MADE EASY Question Cum Answer Booklet

Page 22 of 73

Page 23 of 73

Do not write in this margin

Q.3 (c)

- (i) An amplifier has a mid-frequency gain of 800. Its upper and lower cut-off frequency f_U and f_L are 16 kHz and 40 Hz respectively. Determine the bandwidth of the amplifier. What will be the bandwidth if 2% of the output signal is given as a negative feedback?
- (ii) Define superconductivity. What are the condition required for superconductor? Also briefly discuss the properties of superconductor.

[10 + 10 marks]

MADE EASY Question Cum Answer Booklet

Page 24 of 73

Q.4 (a)

(i) A crystal oscillator has the following parameters:

$$L_s = 0.33 \text{ H}, C_s = 0.065 \text{ pF}, C_p = 1 \text{ pF}, R_s = 5.5 \text{ k}\Omega$$

- (a) Calculate the series-resonant frequency.
- (b) By what percentage does the parallel-resonant frequency exceed the series resonant frequency?
- (c) Calculate the quality factor Q of the crystal at series and parallel resonant frequencies.
- (ii) A solid specimen of dielectric has ε_r = 4.1 and tan δ = 0.001 at a frequency of 60 Hz. If it is subjected to an alternating field of 45 kV/cm then calculate the heat generated in the specimen due to the dielectric loss.

(i)

[15 + 5 marks]

(a)

$$W_{3} = \frac{1}{\sqrt{2\pi \sqrt{23} \times 0.065 \times 10^{-12}}}$$

$$= \frac{1}{2\pi \sqrt{0.33 \times 0.065 \times 10^{-12}}} = 1.09 \text{ MHz}$$

(b)

(()

(a) series =
$$\frac{w_3 L}{R}$$

= 271 x 1.09 x to x 0.33 5.5 x 103

(Q) series = += 410.92

(Q) jaranel = wp R Cer

= 1.171×10 × 2.2×10 × 0.061033

= 3.767 × 10-4

10

(ii)

Wf = (Elms) x f x Ex" (war /(m))

 $W_f = \frac{(45)^7 \times 60 \times (4.1) \times tm \delta \times 10^6}{1.8 \times 10^{12}}$

= (45) x60 x 4.1 x 6.001 x 106 wart/(n)

wf = 2.7675 watt/cm2 × 104

20

Wf - 276.75 WALT/m2

MADE EASY Question Cum Answer Booklet

Page 28 of 73

Q.4 (b)

Consider the circuit shown below:

If $V_{GS(TH)}$ = 5 V, $I_{D(ON)}$ = 3 mA at $V_{GS(ON)}$ = 10 V, then determine I_{DQ} , V_{GSQ} and V_{DS} . [20 marks]

By Theren's equivalent about 94 ground

since I=0 Vg=Vth

 $A \qquad vth = \frac{40 \times 18}{18 + 32} = 18 \text{ V}$

RTh = 22 11 18 = 9.9 m 52 Vg = 18 V

with $V_{GS} = 10$ thus $V_{J} = 8V$

from crault we can also say that

VA= 40-3 IX

 $= 40 - 3 \times 3 = 31 \text{ V}$

V ES = 2 V - QV = 23 V

theching for saturation

Ves > ves - VP

here

Vas - V7 7 10-5 = 5V

VAS = 23 V A

thus, condition satisfies & E-MOSFET

operating in saturation.

OX

ID= Ky (Vas-VT) -

operating contractions and the state of the

- VTh + Vas + 0,82 Is 20.

Vas = 18 -0.82 In -

ID = \[\left[\frac{18 - Vao}{0.82} \right] \] 20

By A

$$\frac{18 - v_{as}}{0.82} = (v_{as} - 5)^{-1} \times K$$

$$\frac{18 - v_{as}}{0.82} = (v_{as} + 25 - 10 v_{as})^{-0.12}$$

012 vas + 0.0195 vas -18.951 =0.

Vas = 12:49, -12:65

From 1

10 = 6,72 mA

Henres

Alro,

So,

Thus we can say that,

Q.4 (c) For the circuit shown below, the op-amp is considered to be ideal.

- (i) For an input voltage $V_a = 4 \text{ V}$, find the output voltage V_o and current I_o .
- (ii) Determine the range of input voltage V_a for linear operation if the saturation voltage of op-amp is ± 12 V.

[20 marks]

(i)
$$V = V^{(+)} = V^{(+)} = 0$$
 (vietnal ground).

$$I = \frac{\sqrt{\sqrt{2}}}{\sqrt{4}} \left[\frac{\sqrt{\sqrt{2}}}{4} + \frac{10}{6} \right] - C$$

For
$$V_{a=4}$$

$$I = d.67 \text{ mat}$$

At 1 by
$$1.02$$
 $10+1=\frac{v_0}{10}$
 $10+2.67=-5.34$
 $10=-3.204 \text{ m A}$

(ii)

$$v_0 = -12 \left[\frac{v_0}{4} + \frac{10}{6} \right].$$

$$12 = -12 \left[\frac{\sqrt{k} + \frac{10}{6}}{4} \right]$$

$$-12 = -12 \left[\frac{\sqrt{a} + \frac{10}{6}}{4} \right]$$

MADE EASY Question Cum Answer Booklet

Page 34 of 73

2.5, (a)

Section B: Electrical Machine-1 + Power Systems-2

The single line diagram of a 4-bus power system is shown in figure. Reactances are given in per unit on a common MVA base. The transformer T_1 and T_2 have tap settings of 0.8:1 and 1.25:1 respectively. Obtain the bus admittance matrix of the system.

[12 marks]

Transmission for A

$$\begin{bmatrix} TJ_A = \begin{bmatrix} 0.8 & 0 \\ \hline 0.8 & 0 \end{bmatrix}$$

somilarly for D

 $[T]eq = [TAJ[T]b = \begin{cases} 0.8 & 0 \\ 0 & \frac{1}{0.8} \end{cases} \begin{bmatrix} 1 & j \times t \\ 0 & 1 \end{bmatrix}$

similarly.

$$T_{34} = \begin{bmatrix} 1 & 0.2i \\ 0 & 1 \end{bmatrix}$$

Alroj

$$T(42) = \begin{bmatrix} 1.25 & \hat{1}.25 & x_{42} \\ 0 & \frac{1}{1.35} \end{bmatrix}$$

overell Parameree

$$[T] = \begin{bmatrix} 0.8 & j0.8 \times 0.0125 \\ 0 & 1.25 \end{bmatrix} \begin{bmatrix} 1 & 0.2j \\ 0 & 1 \end{bmatrix}$$

$$[T] = \begin{bmatrix} 1 & 0.296 j \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} v_1 \\ z_1 \end{bmatrix} = \begin{bmatrix} 1 & 0/296 \hat{j} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} v_2 \\ z_2 \end{bmatrix}.$$

$$80$$
, $I_{1} = I_{2} = \frac{-1}{0.29ij} v_{2} + \frac{1}{0.29ij} v_{1}$

$$\begin{bmatrix} I_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sigma'296j} & -\frac{1}{\sigma'296j} \\ \frac{1}{\sigma'296j} & \frac{1}{\sigma'296j} \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

$$Y = \begin{bmatrix} 3.38 \\ -2.38 \end{bmatrix} \begin{bmatrix} -2.38 \\ -2.38 \end{bmatrix}$$

$$Y = -i \begin{bmatrix} 3.38 & -3.38 \\ 3.38 & -3.38 \end{bmatrix}$$

[12 marks]

-Q.5(b)

An electromagnet, shown in figure, is required to exert a 500 N force on the iron at an airgap of 1 mm, while the exciting coil is carrying 25 A dc. The cross-section at the air gap is 600 mm² in area. Calculate the required number of turns in the exciting coil.

Here
$$k(x) = \frac{2x}{\mu o A}$$

So,

$$L(n) = \frac{N^{2}}{2(n)} = \frac{\mu_{0} N^{2} A}{2n}$$

we know ,

substituting the values on next

$$500 = \frac{1}{2} \times \frac{4\pi \times 10^{-7} \times N^{2} \times 600 \times 10^{-6}}{2 \times 10^{-6}} \times 625$$

- Q.5 (c)
- A 3- ϕ , squirrel cage induction motor is designed to restrict the maximum starting line current drawn from 400 V, 3- ϕ supply to 120 A. If starting current of motor is six times the full load current. What is the maximum permissible full KVA rating of motor when
- (i) it is directly connected to the supply mains?
- (ii) it is connected through an auto-transformer with a tapping of 60%?
- (iii) it is designed for the use with star-delta starter?

[12 marks]

(i) with direct connection:

WA rating = J3xxxx I/L

(ii) with tapping of 60%.

50,

Ile =
$$(0.6)^{2} \times 120 = 7.2$$

WA ratings SIX (OVL) X IX

(iii)

with stay - sella starter

$$Int = \frac{Int}{\sqrt{3}} = 6 I ft$$

$$I_{1} = \frac{120}{\sqrt{3} \times 6} = 11.55 A$$

Q.5(d)

A 230 V, 20 hp, 60 Hz, 6 pole, 3-\phi induction motor driving a constant torque load of rated frequency, rated voltage and rated hp, has a speed of 1175 rpm and an efficiency of 92.10%. Determine the new operating speed if a system disturbance causes 10% drop in voltage and 6% drop in frequency. Assuming the friction, windage and stray power loss remain constant.

[12 marks]

$$lg: lin = \frac{lout = lout}{n} = \frac{20 \text{ h}}{n} = \frac{20 \times 746}{0.921} = \frac{16.2}{0.921}$$

with 1175 ym,

So,

substituting values

$$g' = \frac{3 \times (0.9 \text{ V})}{\left[42 + (1.73 \text{ Rz})^{-1}\right]} \times \frac{42}{s'}$$

$$Tg' = \frac{3\times(6.9\,\text{V})}{\left[42+(11.73\,42)^{-1}\right]} \times \frac{42}{\text{s'}} \times \frac{1}{(\text{w'sm})}$$

with comstant touque

$$\frac{1}{w_{sm}} \times \frac{3 \times v^{2}}{\left[x_{2}^{2} + \left(12.48 \times 12\right)^{-}\right]} \times \frac{42}{S} = \frac{3 \times \left(0.9 \text{ V}\right)}{\left[x_{2}^{2} + \left(1.73 \times 12\right)^{-}\right]} \times \frac{42}{S\left(w_{sm}^{2}\right)}$$

thus

Q.5 (e) Consider the Y_{bus} of a 4-bus power system,

$$Y_{\text{bus}} = \begin{bmatrix} -6 & 2 & 2.5 & 0 \\ 2 & -10 & 2.5 & 4 \\ 2.5 & 2.5 & -9 & 4 \\ 0 & 4 & 4 & -8 \end{bmatrix}$$

where first, second, third and fourth row refers to bus 1, 2, 3 and 4 respectively and all the given entries in matrix are in per unit. Draw the reactance diagram of given power system.

 $y_{31} = y_{12} = -2j$ j $y_{13} = -2.5j = y_{31}$ j $y_{41} = y_{14} = 0$ $y_{23} = y_{32} = -2.5j$ j $y_{24} = y_{42} = -4j$

Alm, y112 -1.5j y22 = -1.5j

y22 = 0; y44 = 0

MADE EASY Question Cum Answer Booklet

Page 44 of 73

Do not write in this margin

Q.6 (a)

The figure shows the single line diagram of a simple three-bus power system with generation at bus-(1) and bus-(2). The voltage at bus-(1) is $V = 1.0 \angle 0^{\circ}$ pu. The voltage magnitude at bus-(2) is fixed at 1.05 pu with real power generation of 400 MW. A load consisting of 500 MW and 400 MVAR is taken from bus-(3). Line admittances are marked in per unit on a 100 MVA base. The line resistances and line charging susceptances are neglected.

Using Newton-Raphson method, start with the initial guess of $V_2^{(0)} = 1.05 + j0$ and $V_3^{(0)} = 1.0 + j0$ and keeping $|V_2| = 1.05$ pu, determine the phasor values of V_2 and V_3 after one iteration.

[20 marks]

MADE EASY Question Cum Answer Booklet

Page 47 of 73

Do not write in this margin Q.6(b)

(i) The fuel inputs for two plants are given as:

$$F_1 = 0.005P_1^2 + 2P_1 + 10 \text{ Rs/hr}$$

 $F_2 = 0.005P_2^2 + 0.75P_2 + 15 \text{ Rs/hr}$

The loss coefficients are $B_{11} = 0.0015$, $B_{22} = 0.0025$ and $B_{12} = -0.0005$. The cost of power received by each plant is 2.6 Rs/MWhr, then calculate the generating schedule and the load received by the system.

(ii) A generating station having a capacity of 200 MW and it is supplying 600×10^6 units in a year, the load factor of the unit is 0.60. Find plant utilization factor, plant capacity factor and reserve capacity of the plant.

[14 + 6 marks]

Do not write in this margin 7.6 (c) The following test data were taken as a 7.5 hp, 4-pole, 208 V, 60 Hz, Y-connected induction motor having a rated current of 28 A.

$$V_{\rm dc} = 9.07 \, \text{V}, I_{\rm dc} = 28.0 \, \text{A}$$

$$V_t = 208 \text{ V}; f = 60 \text{ Hz}; P_{\text{in}} = 420 \text{ W}$$

$$I_a = 8.12 \text{ A}$$
; $I_b = 8.20 \text{ A}$ and $I_c = 8.18 \text{ A}$

Blocked rotor test:

$$V_t = 25 \text{ V}, f = 15 \text{ Hz}, P_{\text{in}} = 920 \text{ W}$$

 $I_a = 28.1 \text{ A}, I_B = 28.0 \text{ A}, I_c = 27.6 \text{ A}$

- (i) Draw the equivalent circuit of motor and find its parameters. Assume the stator and rotor are equal reactances.
- (ii) Find the slip at the pull-out torque and find the value of the pull-out torque.

(Consider AC resistance to be 1.5 times of DC resistance)

[20 marks]

MADE EASY Question Cum Answer Booklet

Page 54 of 73

Do not write in this man

- .7 (a)
- A single machine is connected to a load centre through a transmission line as shown in figure. The load centre is represented by a reactance connected to an infinite bus. The generator is initially operating with $P_e=1.0$ pu and the magnitudes of voltages V_1 and V_2 are 1.0 pu. Assume $X_g=0.3$ pu, $X_t=0.1$ pu, X=0.4 pu and $X_2=0.1$ pu.
- (i) Find the maximum step increase in mechanical power that will not cause transient instability.
- (ii) Find the critical clearing angle and time for a three phase fault at the generator terminal. Generator is initially supplying power of 1.0 pu. Assume that post-fault system is identical to the prefault system. (H = 4.0 sec, $f_B = 50 \text{ Hz}$).

[10 + 10 marks]

(i) steady state stability Almit

$$S^{3}L = \frac{EgEb}{xg+xt+x+x_{2}}$$

Jhus,

Instrally supplying Pe = 1 gu

$$S_0 = S_0 = \frac{1}{1.11} = \frac{64.28}{1.11}$$

thus,

(ii)

by equal area cutrella

δca-80= 1.11 (con δca + 60 8 0) - π + 80 + 8 ca

By swing equation

$$\frac{2H}{2\pi \times 50} \frac{d^3s}{dt} = 1.$$

Do not write in this ma

- 7(b)
- (i) An 11500/2300 V transformer is rated at 100 kVA as a 2-winding transformer. If the windings are connected in series to form an auto-transformer, what will be the possible voltage ratios and output? Also calculate the power transferred through conduction and induction and percentage saving in conductor material.
- (ii) Write any four applications of auto-transformers.

[16 + 4 marks]

Vs= 13800

(" KVA: VXI).
$$I = \frac{100 \times 10^3}{2300} = 43.48 A$$

$$S cond = \frac{S}{a} = \frac{600.024}{a}$$

$$Scand = \frac{600.024}{1.2} = 500.02 \text{ kVA}$$

thus,
$$S_{\text{toduction}} = \frac{600.024}{1.2} = 500.02 \text{ kVA}$$

$$S_{\text{toduction}} = S - S_{\text{cond}} = 100.004 \text{ hVA}$$

$$S_{\text{toduction}} = \frac{100}{\alpha}$$

$$= 83.33.7$$

S: (kvA) earing =
$$\frac{1}{n}$$
 = $\frac{1}{20}$ kvA
Should = $\frac{3}{n}$ = $\frac{1}{20}$ kvA
Jud = $\frac{3}{n}$ = $\frac{100}{n}$ kvA
"I saving = $\frac{100}{n}$ = $\frac{1667}{n}$ "

(B) Afferential coscading aid":

100 = 100 = 125%.

- a = \[\frac{-2200}{2700} = 4
 - Is = 8-696 A

Jian = -200,008 WA

-600,024 NVA J. savy = 25% (100)

- Applications ef Autotranformers (ii)
 - 1 To connect two fower upters as their voltage ratio will be near to 2.
 - (2) In the stasting of Induction motor to unit the stretting current.
- 3) Insulation works Autoteansformers are used like insulating with voltage constair.
- (4) It can be used as beoster transformer in Praction your.

Q.7 (c)

- (i) For a 3-φ, induction motor, maximum torque is twice the full load torque and starting torque is 1.6 times the full load torque. In order to get a full load slip of 5%, determine the percentage reduction in rotor resistance. Neglect the stator impedance.
- (ii) Two generating units rated 300 MW and 400 MW have governor speed regulation of 6% and 4% respectively from no load to full load. Both the generating units are operating in parallel to share a load of 600 MW. Assuming free governor action, determine the load shared by both units and frequency of operation. (Assume no-load frequency to be 50 Hz).

[10 + 10 marks]

[(3max) + (0'05)] x 0'5 = 2 x 0'05 x 0max. 0'5 (0max) - 2 x 0'05 0max + 0'5 x (0'05) =0

0max = 0.187, 0'01342

. Smax for (1se) of 5%.

now)

That
$$\frac{1}{\text{Trank}} = \frac{2}{(3 \text{max})' + \frac{1}{(3 \text{max})'}}$$

$$\frac{2}{(3 \text{max})'} = \frac{2}{(3 \text{max})'} =$$

(2mix) - 2 (pmix) + 0.8 =0

(SMAX) = 0'55]

we know,

(smnx) max = 12

with (smax)' Ler coror certitance be a A

ng be K

m,

2 = 0.553 K

Fee (su) 2005

ester remmare, l'= 0:187 k

1. reduction = 0:187 k-0:553k = -66:1841/

cii)

Let foe first unit, Load Maring 1e f., second unit would be 600 f.

in neady water operating frequency for

both unies should be same-

JNL - 0.06 X1 = JNL - 0.04 × (600-1)

 $\frac{6}{3}P = \frac{4}{4} \left(600-P\right).$

21= 60v-f

18=200) -> 11 mor

2nd untr,

600-1 3) 400 mw

frequency or which broad: 600 mw 13 delivered is.

$$f = 50 - 0.04$$

 $f = 49.96 H2$

- (a)
- A 600 kVA, 1- ϕ transformer with 0.012 pu resistance and 0.06 pu reactance is connected in parallel with a 300 kVA transformer with 0.014 pu resistance and 0.045 pu reactance to share a load of 800 kVA at 0.8 pf lagging. Find the load shared by each transformer when :
- (i) both the secondary voltages are 440 V.
- (ii) the open circuit voltages are respectively 445 V and 455 V. (Also comment on the results).

[20 marks]

Do not write in this margin Q.8 (b)

- (i) Explain the advantages of HVDC power transmission in detail.
- (ii) A d.c. link has a loop resistance of 10 Ω and is connected to transformer giving secondary voltage of 120 kV at each end.

The bridge connected converters operates as follows:

Rectifier : $\alpha = 15^{\circ}$, $X = 15 \Omega$

Inverter : δ_o = 10°, γ = 15°, X = 15 Ω . Allow 5° margin on δ_o for δ .

Calculate the direct current delivered if inverter operates on constant β control.

[14 + 6 marks]

MADE EASY Question Cum Answer Booklet

(c)

- (i) A 250 MVA, 60 Hz, two-pole synchronous generator with inertia constant H of 5.4 MJ/MVA. Assume the machine is running steadily at synchronous speed with a shaft input of 331, 100 hp. The electrical power developed suddenly changes from its normal value to a value of 200 MW. Determine the acceleration or deceleration of rotor. If acceleration computed for the generator is constant for a period of 9 cycles, determine the change in the power angle in that period, frequency of system and speed of generator at the end of 9 cycles.
- (ii) In a transmission line each conductor is at 20 kV and supported by a string of 3 suspension insulators. The air capacitance between each cap-pin junction and tower is one fifth of the capacitance C of each insulation unit. A guard ring, effective only over the line-end insulator unit is fitted so that the voltages on two units nearest to line-end are equal.

Calculate the voltage on line-end unit and the value of capacitance C_X .

[10 + 10 marks]

Six (var vy)

Six (var vy)

Six (var vy)

Six (var vy)