GATE

mork

Detailed Explanations of Try Yourself Questions

Instrumentation Engineering

Signals and Systems

2
 Detailed Explanation of
 Try Yourself Questions

T1 : Solution

(a)

Even part of $x(t), \quad x_{e}(t)=\frac{1}{2}[x(t)+x(-t)]$
Signal $x_{e}(t)$ is obtained as follows:

T2 : Solution
(c)

We can perform following sequence of transformation.
$x\left(1-\frac{t}{2}\right) \xrightarrow[\text { time compression }]{t-2 t} x(1-t) \xrightarrow[\text { folding }]{t \rightarrow-t} x(t+1) \xrightarrow[\text { time shifting }]{t \rightarrow t-1} x(t)$

Graphically it is obtained as

T3 : Solution

(a)

The expression of $x(t)$ is $x(t)=\sum_{k=-\infty}^{\infty} \delta(t-4 k)-\delta(t-4 k-1)$.
So $x(t)$ is a subtraction of two signals each periodic with period 4 . So $x(t)$ is periodic with period 4 .

T4 : Solution

The signal is,

$$
\begin{aligned}
x(t) & =3 e^{-t} u(t) \\
E_{x} & =\int_{0}^{\infty}\left[3 e^{-t}\right]^{2} d t=4.5
\end{aligned}
$$

T5 : Solution

(d)

$$
\begin{aligned}
y(t) & =4^{2} \cos ^{2}\left(200 t+\frac{\pi}{6}\right) \\
& =4^{2} \frac{\left(1+\cos 2\left(200 t+\frac{\pi}{6}\right)\right)}{2} \\
& =8+8 \cos \left(400 t+\frac{\pi}{3}\right)
\end{aligned}
$$

Thus the DC component is 8 .

T6 : Solution

(b)

Cosine function is a periodic signal. As all periodic signals are power signals, therefore the given signal is power signal.

T7 : Solution
(a)

$$
\int_{-\infty}^{\infty} \delta(t) \cos \left(\frac{3 t}{2}\right) d t=f(0)=\cos \left(\frac{3 \times 0}{2}\right)=\cos 0=1
$$

Fourier Series

1
 Detailed Explanation of
 Try Yourself Questions

T1 : Solution

(a)

Given that Fourier series coefficient of $x(t)$ is a_{k}
So,

$$
x(t) \xrightarrow{\text { F.S. }} a_{k}
$$

Now, real part of $x(t)$ is $\frac{x(t)+x^{*}(t)}{2}$
and if

$$
x(t) \xrightarrow{\text { F.S. }} a_{k}
$$

then

$$
x^{*}(t) \xrightarrow{\text { F.S. }} a_{-k}^{*}
$$

So real part of $x(t), \quad \frac{x(t)+x^{*}(t)}{2} \xrightarrow{\text { F.S. }} \frac{a_{k}+a_{-k}^{*}}{2}$
T2 : Solution
(d)

T3: Solution
(b)

T4: Solution

Power of signals is

So power is

$$
\begin{aligned}
\sum_{-\infty}^{\infty}\left|C_{n}\right|^{2} & \Rightarrow \sum_{-2}^{2}\left|C_{n}\right|^{2} \\
& =\sum_{-2}^{2}\left|C_{n}\right|^{2}=(2)^{2}+(8)^{2}+(8)^{2}+(2)^{2}=136
\end{aligned}
$$

Fourier Transform

00 ?
 Detailed Explanation of
 Try Yourself Questions

T1 : Solution

(b)

The Fourier transform is $X(\omega)=u(\omega)-u(\omega-2)$, we know that

- If signal is real then $X(\omega)$ is conjugate symmetric.
- If signal is imaginary then $X(\omega)$ is conjugate anti-symmetric

The given $X(\omega)$ is neither conjugate symmetric nor conjugate anti-symmetric.
So $x(t)$ is complex signal.

T2 : Solution

(c)

Fourier transform of $x(t)$

$$
X(j \omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t=\int_{-\infty}^{\infty} x(t) \cos (\omega t) d t-j \int_{-\infty}^{\infty} x(t) \sin (\omega t) d t
$$

If $x(t)$ is odd, then $x(t) \sin \omega t$ is an even function and $x(t) \cos \omega t$ is an odd function.
So,

$$
\int_{-\infty}^{\infty} x(t) \cos (\omega t) d t=0
$$

and,

$$
\begin{aligned}
& X(j \omega)=j \int_{-\infty}^{\infty} x(t) \sin (\omega t) d t \\
& X(j \omega)=-2 j \int_{0}^{\infty} x(t) \sin (\omega t) d t
\end{aligned}
$$

or,

T3 : Solution

(a)

Given $X(j \omega)$ is real and odd, so $x(t)$ is imaginary and odd.

T4 : Solution

(a)

Fourier transform is $G(\omega)=\frac{\omega^{2}+21}{\omega^{2}+9}$

So,

$$
G(\omega)=\frac{\omega^{2}}{\omega^{2}+9}+\frac{21}{\omega^{2}+9}=1+\frac{12}{\omega^{2}+9}
$$

As we know that Fourier transform of $e^{-a|t|}$ is $\frac{2 a}{a^{2}+\omega^{2}}$

So

$$
g(t)=\delta(t)+2 \exp (-3|t|)
$$

T5 : Solution

(d)

If,

$$
x(t) \stackrel{F}{\longleftrightarrow} X(j \omega)
$$

then,

$$
\frac{d x(t)}{d t} \stackrel{F}{\longleftrightarrow}(j \omega) X(j \omega)
$$

(Time differentiation property)
and, $\quad \frac{d^{2} x(t)}{d t^{2}} \stackrel{F}{\longleftrightarrow}-\omega^{2} X(j \omega)$

$$
\frac{d^{2}[x(t-2)]}{d t^{2}} \longleftrightarrow \stackrel{F}{\longleftrightarrow}-\omega^{2} e^{-j 2 \omega} X(j \omega)
$$

(Time-shifting property)

T6 : Solution
(a)

We have,

$$
y(t)=\int_{-\infty}^{\tau} x(\tau) d \tau
$$

$$
\int_{-\infty}^{\tau} x(\tau) d \tau \stackrel{F}{\longleftrightarrow} \frac{X(j \omega)}{j \omega}+\pi X(0) \delta(\omega)
$$

(Time integration property)

So,

$$
\begin{aligned}
Y(j \omega) & =\frac{X(j \omega)}{j \omega}+\pi X(0) \delta(\omega) \\
& =\frac{1}{j \omega}\left(\frac{j \omega}{5+\frac{j \omega}{10}}\right)+0=\frac{1}{\left(5+\frac{j \omega}{10}\right)}
\end{aligned} \quad X(0)=0
$$

Now, area under $y(t), \quad \int_{-\infty}^{\infty} y(t) d t=Y(0)$

Thus,

$$
Y(0)=\frac{1}{5+0}=\frac{1}{5}
$$

T7 : Solution
(c)

Properties of distortionless system are:

- Magnitude should be constant w.r.t. frequency.
- Phase should depend linearly on frequency.

Only function given in option (c) follow the given conditions.

T8: Solution

(a)

The signal $x(t)=\left(2+e^{-3 t}\right) u(t)$ then final value i.e. $x(\infty)$ will be 2 .

Laplace Transform

2
 Detailed Explanation of
 Try Yourself Questions

T1 : Solution

(b)

Convolution in time domain is multiplication in s-domain.

$$
\therefore \quad L[h(t)]=L[f(t)] \times L[g(t)]=\frac{1}{s+3}
$$

T2 : Solution
(c)

$$
\begin{aligned}
r(t) \stackrel{\text { L.T. }}{\longleftrightarrow} \frac{1}{s^{2}} \\
r(t-a) \stackrel{\text { L.T. }}{\longleftrightarrow} e^{-a s} \times \frac{1}{s^{2}}=\frac{e^{-a s}}{s^{2}}
\end{aligned}
$$

T3: Solution
(c)

$$
\begin{aligned}
\operatorname{Lim}_{t \rightarrow \infty} i(t) & =\operatorname{Lim}_{s \rightarrow 0} s I(s) \\
& =\operatorname{Lim}_{s \rightarrow 0} s \cdot \frac{2}{s(1+s)}=2
\end{aligned}
$$

T4 : Solution

(b)

We can express the given function in terms of unit step function as follows:

$$
x_{1}(t)=u(t)-u(t-1)
$$

$x_{2}(t)=u(t-2)-u(t-3)$

Thus,

$$
\begin{aligned}
x(t) & =x_{1}(t)+x_{2}(t)+x_{3}(t)+\ldots \\
& =u(t)-u(t-1)+u(t-2)-u(t-3)+\ldots
\end{aligned}
$$

We know that

$$
\begin{gathered}
u(t) \stackrel{L}{\longleftrightarrow} \frac{1}{S} \\
u\left(t-t_{0}\right) \stackrel{L}{\longleftrightarrow} \frac{1}{S} e^{-s t_{0}}
\end{gathered}
$$

The Laplace transform of $x(t)$ is

$$
\begin{aligned}
X(s) & =\frac{1}{s}-\frac{1}{s} e^{-s}+\frac{1}{s} e^{-2 s}-\frac{1}{s} e^{-3 s}+\frac{1}{s} e^{-4 s}-\frac{1}{s} e^{-5 s}+\ldots \\
& =\frac{1}{s}\left[1+e^{-2 s}+e^{-4 s}+\ldots .\right]-\frac{1}{s}\left[e^{-s}+e^{-3 s}+e^{-5 s}+\ldots .\right] \\
& =\frac{1}{s}\left[\frac{1}{1-e^{-2 s}}\right]-\frac{1}{s}\left[\frac{e^{-s}}{1-e^{-2 s}}\right] \\
& =\frac{1}{s}\left[\frac{1-e^{-s}}{1-e^{-2 s}}\right] \\
& =\frac{1}{s}\left[\frac{1}{1+e^{-s}}\right]
\end{aligned}
$$

T5 : Solution

(d)

From the time integration property of Laplace transform

$$
\begin{gathered}
x(t) \stackrel{L}{\longleftrightarrow} X(s) \\
\int_{0}^{t} x(\tau) d \tau \stackrel{L}{\longleftrightarrow} \frac{1}{S} X(s) \\
\int_{0}^{t} x(\tau) d \tau \stackrel{L}{\longleftrightarrow} \frac{(s+1)}{S\left(s^{2}+4 s+5\right)}
\end{gathered}
$$

T6 : Solution
(d)

Given,

$$
H(s)=\frac{k\left(s^{2}+\omega_{0}^{2}\right)}{s^{2}+\left(\frac{\omega_{0}}{Q}\right) s+\omega_{0}^{2}}
$$

So value of $H(s)$ at $s \rightarrow \infty$ is k
and value of $H(s)$ at $s \rightarrow 0$ is k.
So the filter is a band stop filter or notch filter.
T7 : Solution
(c)

$$
\begin{aligned}
X(s) & =L[x(t)]=\frac{s}{s^{2}+1} \\
H(s) & =L[h(t)]=\frac{1}{s^{2}+1} \\
y(t) & =x(t)^{*} h(t) \\
Y(s) & =L\left[x(t)^{*} h(t)\right]=X(s) H(s)=\frac{s}{\left(s^{2}+1\right)^{2}}
\end{aligned}
$$

Using partial fractional,

$$
Y(s)=\frac{-j / 4}{(s-j)^{2}}+\frac{j / 4}{(s+j)^{2}}
$$

We know that $t e^{-a t} u(t) \longleftrightarrow \frac{1}{(s+a)^{2}}$
so, $\frac{1}{(s-j)^{2}} \stackrel{L^{-1}}{\longleftrightarrow} t e^{j t}$

$$
\frac{1}{(s+j)^{2}} \stackrel{L^{-1}}{\longleftrightarrow} t e^{-j t}
$$

so,

$$
y(t)=\frac{j}{4}\left[-t e^{j t}+t e^{-j t}\right]=\frac{j}{4} t\left[e^{-j t}-e^{j t}\right]=\frac{t}{2} \sin t, \quad t \geq 0
$$

Sampling Theorem and Discrete Time System

D Detailed Explanation of Try Yourself Questions

T1 : Solution

(c)

$$
E=\sum_{n=-\infty}^{\infty}|x[n]|^{2}=\sum_{n=-\infty}^{\infty} 1=\infty
$$

T2 : Solution

(c)

$$
\begin{aligned}
y[n] & =\sum_{n=-\infty}^{\infty} n^{2} \delta[n+2] \quad \sum_{n=-\infty}^{\infty} x[n] \delta\left[n-n_{0}\right]=x\left[n_{0}\right] \\
& =\left.n^{2}\right|_{n=-2} \\
& =(-2)^{2}=4
\end{aligned}
$$

T3: Solution
(d)
(A)

$$
\begin{aligned}
y[n] & =x\left[n^{2}\right] \\
x_{1}[n] \rightarrow y_{1}[n] & =x_{1}\left[n^{2}\right] \\
x_{2}[n] \rightarrow y_{2}[n] & =x_{2}\left[n^{2}\right] \\
a x_{1}[n]+b x_{2}[n] & \rightarrow a x_{1}\left[n^{2}\right]+b x_{2}\left[n^{2}\right] \\
& =a y_{1}[n]+b y_{2}[n]
\end{aligned}
$$

Hence the system is linear.
(B)

$$
y[n]=x^{2}[n-1]
$$

For a delayed input $x\left[n-n_{0}\right]$, output is

$$
y\left[n, n_{0}\right]=x^{2}\left[n-n_{0}-1\right]
$$

The delayed output

$$
y\left[n-n_{0}\right]=x^{2}\left[n-n_{0}-1\right]
$$

Since $\quad y\left[n, n_{0}\right]=y\left[n-n_{0}\right] \quad$ Hence the system is time-invariant.
(C)

$$
y[n]=x[n]+n
$$

$y[n]$ depends on present value of $x[n]$, so the system is causal.
(D)

$$
\begin{aligned}
y[n] & =x[3 n] \\
y[-1] & =x[-3] \\
y[1] & =x[3]
\end{aligned}
$$

System has memory, therefore it is a dynamic system.

T4 : Solution

(c)

Since $x[n]$ is even symmetric about mid point ($n=1$) and $h[n]$ is odd symmetric about mid point ($n=1$) so $y[n]$ will be odd symmetric about its mid point $n=2$.

$$
y[n]=x[n] * h[n]=\{2,1,0,-1,-2\}
$$

$y[n]$ is odd symmetric about $n=2$.

T5 : Solution

(a)

Causality:

$$
h[n]=0, n<0
$$

The system is causal.
Stability:

$$
\begin{array}{rlr}
\sum_{n=-\infty}^{\infty}|h[n]| & =2 \sum_{n=0}^{\infty}(0.4)^{n}-\sum_{n=0}^{\infty}(0.2)^{n} \\
& =2\left[\frac{1}{1-0.4}\right]-\frac{1}{(1-0.2)}<\infty \quad \text { The sytem is stable. }
\end{array}
$$

Z-Transform

2
 Detailed Explanation of
 Try Yourself Questions

T1 : Solution

(b)

Given that,

$$
\begin{aligned}
& x(n)=\sum_{k=0}^{\infty} \delta(n-k) \\
& x(n)=\delta(n)+\delta(n-1)+\delta(n-2)+\cdots \\
& x(n)=u(n) \\
& X(z)=\text { Z.T. } \cdot u(n)] \\
& X(z)=\frac{z}{z-1}
\end{aligned}
$$

T2 : Solution

(c)
z-transform of $x[n], \quad X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n}$

$$
\begin{aligned}
& =\sum_{n=-\infty}^{\infty} \alpha^{n} z^{-n} u[n]+\sum_{n=-\infty}^{\infty} \alpha^{-n} z^{-n} u[n] \\
& =\sum_{n=0}^{\infty}\left(\alpha z^{-1}\right)+\sum_{n=0}^{\infty}(\alpha z)^{-n}=\underbrace{\frac{1}{1-\alpha z^{-1}}}_{\mathrm{I}}+\underbrace{\frac{1}{1-(\alpha z)^{-1}}}_{\mathrm{II}}
\end{aligned}
$$

Series I converges, if $\alpha z^{-1}<1$ or $|z|>|\alpha|$
Series II converges, if $(\alpha z)^{-1}<1$ or $\alpha z>1$ or $|z|>\frac{1}{|\alpha|}$
So, ROC is interaction of both

$$
\operatorname{ROC}:|z|>\max \left(|\alpha|, \frac{1}{|\alpha|}\right)
$$

T3 : Solution

(b)

$$
\begin{array}{rlr}
X(z) & =\frac{z+1}{z(z-1)} \\
& =-\frac{1}{z}+\frac{2}{z-1}=-\frac{1}{z}+2 z^{-1}\left(\frac{z}{z-1}\right) \quad \text { By partial fraction }
\end{array}
$$

Taking inverse z-transform

$$
\begin{aligned}
& x[n]=-\delta[n-1]+2 u[n-1] \\
& x[0]=-0+0=0 \\
& x[1]=-1+2=1 \\
& x[2]=-0+2=2
\end{aligned}
$$

T4 : Solution

(c)

By taking z-transform of $x[n]$ and $h[n]$

$$
\begin{aligned}
& H(z)=1+2 z^{-1}-z^{-3}+z^{4} \\
& X(z)=1+3 z^{-1}-z^{-2}-2 z^{-3}
\end{aligned}
$$

From the convolution property of z-transform

$$
\text { Sequence is } \quad y[n]=\{1,5,5,-5,-6,4,1,-2\}
$$

$$
\begin{aligned}
& Y(z)=H(z) X(z) \\
& Y(z)=1+5 z^{-1}+5 z^{-2}-5 z^{3}-6 z^{-4}+4 z^{-5}+z^{-6}-2 z^{-7} \\
& y[n]=\{1,5,5,-5,-6,4,1,-2\} \\
& y[4]=-6
\end{aligned}
$$

T5 : Solution

(d)

Given that $x(n)$ is right sided and real, $X(z)$ has two poles, two zeros at origin and one pole at $e^{j \pi / 2}, X(1)=1$. Since $x(n)$ is real so poles of $X(z)$ should be in conjugate pairs so other pole will be at $e^{-j \pi / 2}$.
So, $\quad X(z)=\frac{k z^{2}}{\left(z-e^{-j \pi / 2}\right)\left(z-e^{+j \pi / 2}\right)}=\frac{k z^{2}}{z^{2}+1}$
Since,
$X(1)=1 \quad$ so, $k=2$
So,
$X(z)=\frac{2 z^{2}}{z^{2}+1}$ and $|z|>1$

T6 : Solution

(a)

We know that,
$\alpha^{n} u[n] \stackrel{z}{\longleftrightarrow} \frac{z}{z-\alpha}$

$$
\alpha^{n-10} u[n-10] \stackrel{z}{\longleftrightarrow} \frac{z^{-10} z}{z-\alpha}
$$

(time shifting property)

T7 : Solution
(b)

$$
\begin{aligned}
Y(z)-\frac{1}{3} z^{-1} Y(z) & =X(z) \\
Y(z)\left[1-\frac{1}{3} z^{-1}\right] & =X(z) \\
\frac{Y(z)}{X(z)} & =\frac{1}{1-\frac{1}{3} z^{-1}}
\end{aligned}
$$

where,

$$
X(z)=\frac{1}{1-\frac{1}{2} z^{-1}}
$$

$$
\begin{aligned}
\therefore \quad Y(z) & =\frac{1}{\left(1-\frac{1}{2} z^{-1}\right)\left(1-\frac{1}{3} z^{-1}\right)}=\frac{3}{1-\frac{1}{2} z^{-1}}-\frac{2}{1-\frac{1}{3} z^{-1}} \\
y[n] & =\left[3\left(\frac{1}{2}\right)^{n}-2\left(\frac{1}{3}\right)^{n}\right] u[n]
\end{aligned}
$$

T8: Solution

(a)

We know that convolution of $x[n]$ with unit step function $u[n]$ is given by
so,

$$
x[n]^{\star} u[n]=\sum_{k=-\infty}^{\infty} x[k]
$$

Taking z-transform on both sides

$$
\begin{aligned}
& Y(z)=X(z) \frac{z}{(z-1)}=X(z) \frac{1}{\left(1-z^{-1}\right)} \\
& H(z)=\frac{Y(z)}{X(z)}=\frac{1}{\left(1-z^{-1}\right)}
\end{aligned}
$$

Now, consider the inverse system of $H(z)$, let impulse response of the inverse system is given by $H_{1}(z)$, then we can write

$$
\begin{aligned}
H(z) H_{1}(z) & =1 \\
H_{1}(z) & =\frac{X(z)}{Y(z)}=1-z^{-1} \\
\left(1-z^{-1} Y(z)\right. & =X(z) \\
Y(z)-z^{-1} Y(z) & =X(z)
\end{aligned}
$$

Taking inverse z-transform

$$
y[n]-y[n-1]=x[n]
$$

DTFT, DTFS \& DFT

. Detailed Explanation
 of
 Try Yourself Questions

T1 : Solution

(c)

Since
(Frequency shifting property)
Thus

$$
e^{j \Omega_{0} n} x[n] \stackrel{\text { DTFT }}{\longleftrightarrow} X\left(e^{j\left(\Omega-\Omega_{0}\right)}\right)
$$

$\Omega_{0}=-\pi / 4$

$$
e^{-j \frac{\pi}{4} n} x[n] \stackrel{\text { DTFT }}{\longleftrightarrow} X\left(e^{j(\Omega+\pi / 4)}\right)
$$

The graph of $X\left(e^{j \Omega}\right)$ is shifting to left by $\frac{\pi}{4}$ units. So, DTFT of $e^{-j \frac{\pi n}{4}} x[n]$ is

T2 : Solution

(a)

N -point DfT is given as

$$
\begin{aligned}
& X_{D F T}[k]=\sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi n k}{N}}, k=0,1, \ldots N-1 \\
& X_{D F T}[k]=\sum_{n=0}^{3} x[n] e^{-j \frac{\pi n k}{2}}
\end{aligned}
$$

$$
\because N=4
$$

For $k=0$,

$$
\begin{aligned}
X_{D F T}[0] & =\sum_{n=0}^{3} x[n] \\
& =x[0]+x[1]+x[2]+x[3] \\
& =\cos 0+\cos \pi+\cos 2 \pi+\cos 3 \pi \\
& =1-1+1-1=0
\end{aligned}
$$

For $k=1$,

$$
\begin{aligned}
X_{D F T}[1] & =\sum_{n=0}^{3} x[n] e^{-j \frac{\pi n}{2}} \\
& =x[0] e^{0}+x[1] e^{-j \frac{\pi}{2}}+x[2] e^{-j \pi}+x[3] e^{-j \frac{3 \pi}{2}} \\
& =\cos 0+\cos \pi(-j)+\cos 2 \pi(-1)+\cos 3 \pi(j) \\
& =1+(-1)(-j)+1(-1)+(-1)(j) \\
& =1+j-1-j \\
& =0
\end{aligned}
$$

Similarly we can obtain $X_{D F T}[2]$ and $X_{D F T}[3]$ for $k=2$ and $k=3$ respectively,

$$
\begin{aligned}
& X_{D F \mid}[2]=1+1+1+1=4 \\
& X_{D F T}[3]=1-j-1+j=0 \\
& X_{D F T}[k]=\{0,0,4,0\}
\end{aligned}
$$

T3 : Solution

(c)

$$
\begin{aligned}
X\left(e^{j \Omega}\right) & =\sum_{n=-\infty}^{\infty} x[n] e^{-j \Omega n}=\sum_{n=-2}^{2} e^{-j \Omega n} \\
& =e^{j 2 \Omega}+e^{j \Omega}+1+e^{-j \Omega}+e^{-j 2 \Omega} \\
& =e^{-j 2 \Omega}\left(1+e^{j \Omega}+e^{i \Omega}+e^{j \Omega \Omega}+e^{j 4 \Omega}\right) \\
& =e^{-j 2 \Omega} \frac{\left(1-e^{j 5 \Omega}\right)}{1-e^{j \Omega}} \\
& =\frac{e^{-j 5 \pi / 2}-e^{j 5 \Omega / 2}}{e^{-j \pi / 2}-e^{j \Omega / 2}}=\frac{\sin 2.5 \Omega}{\sin 0.5 \Omega}
\end{aligned}
$$

T4: Solution
(b)

$$
\begin{aligned}
X\left(e^{j \Omega}\right) & =j 4 \sin 4 \Omega-1 \\
& =2\left(e^{j \Omega}-e^{-j 4 \Omega}\right)-1
\end{aligned}
$$

Taking inverse Fourier transform, we have

$$
x[n]=2 \delta[n+4]-2 \delta[n-4]-\delta[n]
$$

Since,

$$
\delta\left[n-n_{0}\right] \stackrel{\text { DTFT }}{\longleftrightarrow} e^{-j \Omega n_{0}}
$$

