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T1 : Solution

(a)(a)(a)(a)(a)

Even part of x(t), [ ]1
( ) ( ) ( )

2e t t t= + −x x x

Signal xe(t) is obtained as follows:

t

x( )t

2

–3 0 3

1
t

x(– )t

2

–3 0 3

1

t

2

–3 0 3

3

x x( ) + (– )t t

t

1

–3 0 3

1.5

xe( )t

T2 : Solution

(c)(c)(c)(c)(c)
We can perform following sequence of transformation.

− →− → − − → − → + →  
2 1

time compression folding time shifting
1 (1 ) ( 1) ( )

2
t t t t t tt

t t tx x x x

Introduction1
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3Detailed Explanations of Try Yourself Questions : GATE 2025

Graphically it is obtained as

t

x(1 – /2)t

1

–2 0 42
Original signal

t

x(1 – )t

1

2–1 0 1
Time Compression

t

x(1 + )t

1

–2 10–1
Time Reflection

t

x( )t

1

2–1 0 1
Time Shifting

T3 : Solution

(a)(a)(a)(a)(a)

The expression of x(t) is ( ) ( 4 ) ( 4 1).
k

t t k t k
∞

= −∞
= δ − −δ − −∑x

So x(t) is a subtraction of two signals each periodic with period 4. So x(t) is periodic with period 4.

T4 : Solution

The signal is, x(t) = 3e–t u(t)

Now, energy of signal will be Ex =
∞

− =∫ 2

0

[3 ] 4.5te dt

T5 : Solution

(d)(d)(d)(d)(d)

y(t ) = 2 24 cos 200
6

t
π +  

= 2
1 cos2 200

6
4

2

t
 π + +    

= 8 8cos 400
3

t
π + +  

Thus the DC component is 8.
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4 Instrumentation Engineering • Signals and Systems

T6 : Solution

(b)(b)(b)(b)(b)
Cosine function is a periodic signal. As all periodic signals are power signals, therefore the given signal is
power signal.

T7 : Solution

(a)(a)(a)(a)(a)

3
( )cos

2
t

t dt
∞

−∞

 δ   ∫ =
3 0

(0) cos cos0 1
2

f × = = =  
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T1 : Solution

(a)(a)(a)(a)(a)
Given that Fourier series coefficient of x(t) is ak

So, x(t) F.S.→ ak

Now, real part of x(t) is 
( )+ ( )

2
t t∗x x

and if x(t) F.S.→ ak

then x∗(t) F.S.→ ka∗
−

So real part of x(t),
( ) + ( )

2
t t∗x x F.S.→

2
k ka a∗

−+

T2 : Solution

(d)(d)(d)(d)(d)

T3 : Solution

(b)(b)(b)(b)(b)

T4 : Solution

Power of signals is
2

nC
∞

−∞
∑ ⇒

2
2

2
nC

−
∑

So power is =
2

2 2 2 2 2

2
(2) (8) (8) (2) 136nC

−
= + + + =∑

Fourier Series2
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T1 : Solution

(b)(b)(b)(b)(b)
The Fourier transform is X(ω) = u(ω) – u(ω – 2), we know that
• If signal is real then X(ω) is conjugate symmetric.
• If signal is imaginary then X(ω) is conjugate anti-symmetric
The given X(ω) is neither conjugate symmetric nor conjugate anti-symmetric.
So x(t) is complex signal.

T2 : Solution

(c)(c)(c)(c)(c)
Fourier transform of x(t)

X(jω) = ( ) ( )cos( ) ( )sin( )j tt e dt t t dt j t t dt
∞ ∞ ∞

− ω

−∞ −∞ −∞

= ω − ω∫ ∫ ∫x x x

If x(t) is odd, then x(t) sin ωt is an even function and x(t) cos ωt is an odd function.

So, ( )cos( )t t dt
∞

−∞

ω∫ x = 0

and, X(jω) = ( )sin( )j t t dt
∞

−∞

ω∫ x

or, X(jω) =
0

2 ( )sin( )j t t dt
∞

− ω∫ x

T3 : Solution

(a)(a)(a)(a)(a)
Given X(jω) is real and odd, so x(t) is imaginary and odd.

Fourier Transform3
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7Detailed Explanations of Try Yourself Questions : GATE 2025

T4 : Solution

(a)(a)(a)(a)(a)

Fourier transform is G(ω) = 
2

2

21

9

ω +
ω +

So, G(ω) =
2

2 2

21

9 9

ω +
ω + ω +

 = 2

12
1

9
+

ω +

As we know that Fourier transform of 2 2

2
isa t a

e
a

−

+ ω

So g(t) = ( )( ) 2exp 3t tδ + −

T5 : Solution

(d)(d)(d)(d)(d)

If, ( ) ( )Ft X j←→ ωx

then,   ←→ ω ω( )
( ) ( )Fd t
j X j

dt
x

(Time differentiation property)

and, ←→ −ω ω
2

2
2

( )
( )Fd t

X j
dt
x

  
[ ]2

2 2
2

( 2)
( )F jd t

e X j
dt

− ω−
←→ −ω ω

x
(Time-shifting property)

T6 : Solution

(a)(a)(a)(a)(a)

We have, y(t) = ( )d
τ

−∞

τ τ∫ x

 
( )

( ) (0) ( )F X j
d X

j

τ

−∞

ωτ τ ←→ + π δ ω
ω∫ x (Time integration property)

So, Y(jω) =
( ) (0) ( )X j X
j

ω + π δ ω
ω

=
1 1

0
5 5

10 10

j
j jj

ω  + = ω ωω  + +      

X(0) = 0

Now, area under y(t), ( )y t dt
∞

−∞
∫ = Y(0)

Thus, Y(0) =
1 1

5 0 5
=

+
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8 Instrumentation Engineering • Signals and Systems

T7 : Solution

(c)(c)(c)(c)(c)
Properties of distortionless system are:
• Magnitude should be constant w.r.t. frequency.
• Phase should depend linearly on frequency.
Only function given in option (c) follow the given conditions.

T8 : Solution

(a)(a)(a)(a)(a)
The signal x(t) = (2 + e–3t) u(t) then final value i.e. x(∞) will be 2.
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T1 : Solution

(b)(b)(b)(b)(b)
Convolution in time domain is multiplication in s-domain.

∴ L[h(t)] = ( )[ ] ( )[ ] 1
3

L f t L g t
s

× =
+

T2 : Solution

(c)(c)(c)(c)(c)

L.T.
2

1
( )r t

s
←→

   
L.T.

2 2

1
( )

as
as e

r t a e
s s

−
−− ←→ × =

T3 : Solution

(c)(c)(c)(c)(c)

( )iLim
t

t
→∞

= ( )I
0

Lim
s

s s
→

= ( )0

2
Lim . 2

1s
s

s s→
=

+

T4 : Solution

(b)(b)(b)(b)(b)
We can express the given function in terms of unit step function as follows:

Laplace Transform4
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10 Instrumentation Engineering • Signals and Systems

1

0 1
t

x1( )t

1

2 3
t

0

x2( )t

x1(t) = u(t) – u(t – 1) x2(t) = u(t – 2) – u(t – 3)
Thus, x(t) = x1(t) + x2(t) + x3(t) + ...

= u(t) – u(t – 1) + u(t – 2) – u(t – 3) + ...

We know that
1

( ) Lu t
s

←→

0
0

1
( ) L stu t t e

s
−− ←→ (time-shifting)

The Laplace transform of x(t) is

X(s) = 2 3 4 51 1 1 1 1 1
....s s s s se e e e e

s s s s s s
− − − − −− + − + − +

= 2 4 3 51 1
1 .... ....s s s s se e e e e

s s
− − − − −   + + + − + + +   

= 2 2

1 1 1

1 1

s

s s

e
s se e

−

− −

   −   − −   

= 2

1 1

1

s

s

e
s e

−

−

 −
 

− 

=
1 1

1 ss e−
 
 + 

T5 : Solution

(d)(d)(d)(d)(d)
From the time integration property of Laplace transform

( ) ( )Lt X s←→x

0

1
( ) ( )

t
Ld X s

s
τ τ ←→∫ x Time integration Property

2
0

( 1)
( )

( 4 5)

t
L sd

s s s
+

τ τ ←→
+ +∫ x

T6 : Solution

(d)(d)(d)(d)(d)

Given, H(s) = + ω
ω + + ω  

2 2
0

2 20
0

( )k s

s s
Q

MADE E
ASY



© Copyright www.madeeasypublications.org

11Detailed Explanations of Try Yourself Questions : GATE 2025

So value of H(s) at s → ∞ is k
and value of H(s) at s → 0 is k.
So the filter is a band stop filter or notch filter.

T7 : Solution

(c)(c)(c)(c)(c)

X(s) = L[x(t)] = 2 1

s

s +

H(s) = L[h(t)] = 2

1

1s +
y(t) = x(t) * h(t)

Y(s) = 2 2
[ ( ) * ( )] ( ) ( )

( 1)

s
L t h t X s H s

s
= =

+
x

Using partial fractional, Y(s) = 2 2

/ 4 / 4

( ) ( )

j j

s j s j

−
+

− +

We know that 2

1
( )

( )
Latte u t

s a
− ←→

+

so,
1

2

1

( )
L jtte

s j

−
←→

−
1

2

1

( )
L jtte

s j

− −←→
+

so, y(t) = sin ,
4 4 2

jt jt jt jtj j t
te te t e e t− −   − + = − =    t ≥ 0
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T1 : Solution

(c)(c)(c)(c)(c)

E = [ ] 2
1

n n

n
∞ ∞

= −∞ = −∞
= = ∞∑ ∑x

T2 : Solution

(c)(c)(c)(c)(c)

y[n] = 2 [ 2]
n

n n
∞

= −∞
δ +∑ 0 0[ ] [ ] [ ]

n

n n n n
∞

= −∞
δ − =∑ x x

= 2
2n

n
= −

= (–2)2 = 4

T3 : Solution

(d)(d)(d)(d)(d)
(A) y[n] = x[n2]

x1[n] → y1[n] = x1[n
2]

x2[n] → y2[n] = x2[n
2]

ax1[n] + bx2[n] → ax1[n
2] + bx2[n

2]
= ay1[n] + by2[n] Hence the system is linear.

(B) y[n] = x2[n – 1]
For a delayed input x[n – n0], output is

y[n, n0] = x2[n – n0 – 1]
The delayed output

y[n – n0] = x2[n – n0 – 1]

Sampling Theorem and
Discrete Time System5
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13Detailed Explanations of Try Yourself Questions : GATE 2025

Since y[n, n0] = y[n – n0] Hence the system is time-invariant.
(C) y[n] = x[n] + n
y[n] depends on present value of x[n], so the system is causal.
(D) y[n] = x[3n]

y[–1] = x[–3]
y[1] = x[3]

System has memory, therefore it is a dynamic system.

T4 : Solution

(c)(c)(c)(c)(c)
Since x[n] is even symmetric about mid point (n = 1) and h[n] is odd symmetric about mid point (n = 1) so
y[n] will be odd symmetric about its mid point n = 2.

22

11

22

1

0

0

0

0

–2

–1

–2

–1x[ ]n
h n[ ]

[ ] [ ] * [ ] {2,1, 0, 1, 2}y n n h n
↑

= = − −x

y[n] is odd symmetric about n = 2.

T5 : Solution

(a)(a)(a)(a)(a)
Causality:Causality:Causality:Causality:Causality:

h[n] = 0, n < 0 The system is causal.
Stability:Stability:Stability:Stability:Stability:

[ ]
n

h n
∞

= −∞
∑ =

0 0

2 (0.4) (0.2)n n

n n

∞ ∞

= =
−∑ ∑

= 1 1
2

1 0.4 (1 0.2)
  − < ∞ − − 

The sytem is stable.
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T1 : Solution

(b)(b)(b)(b)(b)

Given that, x(n) =
0

( )
k

n k
∞

=
δ −∑

x(n) = δ(n) + δ(n – 1) + δ(n – 2) + ⋅ ⋅ ⋅
x(n) = u(n)

X(z) = [ ]Z.T. ( )u n

X(z) =
1

z
z −

T2 : Solution

(c)(c)(c)(c)(c)

z-transform of x[n], X(z) = [ ] n

n

n z
∞

−

= −∞
∑ x

= [ ] [ ]n n n n

n n

z u n z u n
∞ ∞

− − −

= −∞ = −∞
α + α∑ ∑

=
1

0 0

( ) ( ) n

n n

z z
∞ ∞

− −

= =
α + α∑ ∑  = 

I II

1 1

1 1

1 1 ( )z z− −+
− α − α��������� �����������

Series I converges, if αz–1 < 1 or |z| > |α|

Series II converges, if (αz)–1 < 1 or αz > 1 or 
1

z >
α

So, ROC is interaction of both

ROC : |z| >
 

α  α 

1max ,

Z-Transform6

MADE E
ASY



© Copyright www.madeeasypublications.org

15Detailed Explanations of Try Yourself Questions : GATE 2025

T3 : Solution

(b)(b)(b)(b)(b)

X(z) =
1

( 1)
z

z z
+
−

=
11 2 1

2
1 1

z
z

z z z z
−  − + = − +   − − By partial fraction

Taking inverse z-transform
x[n] = –δ[n – 1] + 2u[n – 1]
x[0] = –0 + 0 = 0
x[1] = –1 + 2 = 1
x[2] = –0 + 2 = 2

T4 : Solution

(c)(c)(c)(c)(c)
By taking z-transform of x[n] and h[n]

H(z) = 1 + 2z–1 – z–3 + z–4

X(z) = 1 + 3z–1 – z–2 – 2z–3

From the convolution property of z-transform
Y(z) = H(z) X(z)
Y(z) = 1 + 5z–1 + 5z–2 – 5z–3 – 6z–4 + 4z–5 + z–6 – 2z–7

Sequence is y[n] = {1, 5, 5, –5, –6, 4, 1, –2}
y[4] = –6

T5 : Solution

(d)(d)(d)(d)(d)
Given that x(n) is right sided and real, X(z) has two poles, two zeros at origin and one pole at e jπ/2, X(1) = 1.
Since x(n) is real so poles of X(z) should be in conjugate pairs so other pole will be at e–j π/2.

So, X(z) = j j

k z k z

z e z e z

2 2

/2 /2 2( ) ( ) 1− π + π =
− − +

Since, X(1) = 1 so, k = 2

So, X(z) =
z

z
z

2

2

2
and 1

1
>

+

T6 : Solution

(a)(a)(a)(a)(a)

We know that, [ ] Zn z
u n

z
α ←→

− α
10

10 [ 10] Zn z zu n
z

−
−α − ←→

− α
(time shifting property)
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T7 : Solution

(b)(b)(b)(b)(b)

11
( ) ( )

3
Y z z Y z−− = X(z)

11
( ) 1

3
Y z z − −  

= X(z)

( )
( )

Y z
X z =

1

1
1

1
3

z −−

where, X(z) =
1

1
1

1
2

z −−

∴ Y(z) =
1 1

1
1 1

1 1
2 3

z z− −   − −      

 = 
1 1

3 2
1 1

1 1
2 3

z z− −
−

− −

y[n] = 1 1
3 2 [ ]

2 3

n n

u n
    −         

T8 : Solution

(a)(a)(a)(a)(a)
We know that convolution of x[n] with unit step function u[n] is given by

x[n] * u[n] = [ ]
k

k
∞

= −∞
∑ x

so, y[n] = x[n] * u[n]
Taking z-transform on both sides

Y(z) = 1

1
( ) ( )

( 1) (1 )

z
X z X z

z z −=
− −

Transfer function, H(z) = 1

( ) 1
( ) (1 )

Y z
X z z −=

−
Now, consider the inverse system of H(z), let impulse response of the inverse system is given by H1(z),
then we can write

H(z)H1(z) = 1

H1(z) =
1( )

1
( )

X z z
Y z

−= −

(1 – z–1)Y(z) = X(z)
Y(z) – z–1Y(z) = X(z)

Taking inverse z-transform
y[n] – y[n – 1] = x[n]
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T1 : Solution

(c)(c)(c)(c)(c)

Since [ ] ( )DTFT jn X e Ω←→x

Thus 0 0( )[ ] ( )DTFTj n je n X eΩ Ω−Ω←→x (Frequency shifting property)

Ω0 = –π/4

 ( / 4)4 [ ] ( )
j n DTFT je n X e
π− Ω+π←→x

The graph of X(ejΩ) is shifting to left by 
4
π

 units. So, DTFT of 4 [ ]
n

j
e n

π−
x  is

1

0
Ωπ

2–

T2 : Solution

(a)(a)(a)(a)(a)
N-point DfT is given as

XDFT[k] =
21

0

[ ] , 0,1, ... 1
nkN j

N

n

n e k N
π− −

=
= −∑ x

XDFT[k] =
3

2

0

[ ]
nk

j

n

n e
π

−

=
∑ x ∵ N = 4

DTFT, DTFS & DFT7
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For k = 0, XDFT[0] =
3

0

[ ]
n

n
=
∑ x

= x[0] + x[1] + x[2] + x[3]
= cos 0 + cos π + cos 2π + cos 3π
= 1 – 1 + 1 – 1 = 0

For k = 1, XDFT[1] =
3

2

0

[ ]
n

j

n

n e
π

−

=
∑ x

= [ ]
3

0 2 2[0] 1 [2] [3]
j jje e e e
π π

− −− π+ + +x x x x
= cos 0 + cos π(–j) + cos 2π(–1) + cos 3π(j)
= 1  + (–1)(–j) + 1 (–1) + (–1)(j)
= 1 + j – 1 – j
= 0

Similarly we can obtain XDFT[2] and XDFT[3] for k = 2 and k = 3 respectively,
XDFT[2] = 1 + 1 +1 + 1 = 4
XDFT[3] = 1 –j – 1 + j = 0
XDFT[k] = {0, 0, 4, 0}

T3 : Solution

(c)(c)(c)(c)(c)

X(ejΩ) =
2

2

[ ] j n j n

n n

n e e
∞

− Ω − Ω

= −∞ = −
=∑ ∑x

= ej2Ω + ejΩ + 1 +  e–jΩ + e–j2Ω

= e–j2Ω (1 + ejΩ + ej2Ω + ej3Ω + ej4Ω)

=
5

2 (1 )

1

j
j

j

e
e

e

Ω
− Ω

Ω
−
−

(Summation of finite GP)

=
5 / 2 5 / 2

/ 2 / 2

sin2.5
sin0.5

j j

j j

e e

e e

− π Ω

− π Ω
− Ω=

Ω−

T4 : Solution

(b)(b)(b)(b)(b)
X(ejΩ) = j4 sin 4Ω – 1

= 2(ej4Ω – e–j4Ω) – 1
Taking inverse Fourier transform, we have

x[n] = 2δ[n + 4] – 2δ[n – 4] – δ[n]

Since, 0
0[ ] DTFT j nn n e− Ωδ − ←→
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