GATE

morixioik 2025

Detailed Explanations of
Try Yourself Questions

Instrumentation Engineering

Measurements

Error Analysis

Detailed Explanation of
 Try Yourself Questions

T1. Sol.

Probable error,

$$
\delta I=\sqrt{\left(\frac{\partial I}{\partial I_{1}}\right)^{2} \delta I_{1}^{2}+\left(\frac{\partial I}{\partial I_{2}}\right)^{2} \delta I_{2}^{2}}
$$

Here,

$$
I=I_{1}+I_{2}
$$

So,

$$
\begin{aligned}
\frac{\partial I}{\partial I_{1}} & =\frac{\partial I}{\partial I_{2}}=1 \\
\delta I & =\sqrt{(1)^{2}(1)^{2}+(1)^{2}(2)^{2}}=2.24 \mathrm{~A} \\
I & =300 \pm 2.24 \mathrm{~A}
\end{aligned}
$$

therefore,

Indicating Meters

T1. (d)
Average value of rectangular current wave $=\sqrt{\frac{1}{2 T}\left[\left(12^{2} \times T\right)+\left(5^{2} \times T\right)\right]} \simeq 9.2$
Average volts $=9.2 \times 10=92 \mathrm{~V}$
The MI meter will read 92 V .

Instrument Transformers

2^{3}
 Detailed Explanation of
 Try Yourself Questions

T1. (c)

$$
\text { Phase angle error for CT is }=\frac{180}{\pi}\left(\frac{I_{m} \cos \delta-\mathrm{I}_{\mathrm{e}} \sin \delta}{\mathrm{~K}_{\mathrm{t}} \mathrm{I}_{\mathrm{s}}}\right) \text { degree }
$$

Here,

$$
\begin{aligned}
& \qquad \begin{aligned}
K_{t} & =\frac{1000}{5}=200, I_{s}=5 \mathrm{~A} \\
I_{m} & =11 \mathrm{~A} \\
I_{e} & =6.5 \mathrm{~A} \\
\delta & =30^{\circ}
\end{aligned} \\
& \text { So, phase angle error }
\end{aligned}=\frac{180}{\pi}\left(\frac{11 \cos 30^{\circ}-6.5 \sin 30^{\circ}}{200 \times 5}\right)=0.359^{\circ} \quad \text {. }
$$

T2. (b)
Secondary circuit phase angle, $\quad \delta=\tan ^{-1}\left(\frac{1}{1.5}\right)=33.69^{\circ}$
or,

$$
\begin{aligned}
\cos \delta & =\cos 33.39^{\circ}=0.835 \\
\sin \delta & =\sin 33.69^{\circ}=0.555
\end{aligned}
$$

Turn ratio,

$$
K_{t}=\frac{N_{s}}{N_{p}}=\frac{300}{1}=300
$$

Magnetizing current,

$$
I_{m}=\frac{\text { Magnetising mmf }}{N_{p}}=\frac{100}{1}=90 \mathrm{~A}
$$

Secondary circuit burden impedance $=\sqrt{(1.5)^{2}+(1.0)^{2}}=1.8 \Omega$
Secondary induced voltage,

$$
E_{s}=5 \times 1.8=9 \mathrm{~V}
$$

Primary induced voltage, $\quad E_{p}=\frac{E_{s}}{300}=\frac{9 \mathrm{~V}}{300}$
Loss component,

$$
I_{w}=\frac{\text { iron loss }}{E_{p}}=\frac{1.2}{(9 / 300)}=40 \mathrm{~A}
$$

Phase angle,

$$
\begin{aligned}
\theta & =\frac{180}{\pi}\left(\frac{I_{m} \cos \delta-I_{W} \sin \delta}{K_{t} I_{S}}\right) \\
& =\frac{180}{\pi}\left(\frac{100 \times 0.835-40 \times 0.555}{300 \times 5}\right)=2.34^{\circ}
\end{aligned}
$$

Measurement of R, L and C/Bridges

Detailed Explanation of
 Try Yourself Questions

T1. Sol.

$$
\begin{aligned}
R_{3} & =5 \Omega, \\
C & =1 \mathrm{mF}, \\
R_{1} & =160 \Omega, \\
R_{2} & =20 \Omega
\end{aligned}
$$

By using balance equation,
$R=\frac{R_{2} R_{1}}{R_{3}}$
$L=R_{2} R_{1} C$
and

$$
\text { quality factor }=Q=\frac{\omega L}{R}
$$

So,

$$
\begin{aligned}
& R=\frac{20 \times 160}{5}=640 \Omega \\
& L=20 \times 160 \times 1 \times 10^{-3}=3.2 \mathrm{H} \\
& Q=\frac{2 \pi \times 50 \times 3.2}{640}=1.57
\end{aligned}
$$

T2. (b)
At balance,
as,

$$
\begin{aligned}
Z_{1} Z_{4} & =Z_{2} Z_{3} \\
\frac{10 \times 10^{3} \times X_{C}}{10 \times 10^{3}+X_{C}} \times Z & =500 \times 10^{3} \\
X_{C} & =\frac{1}{j \omega C}=\frac{1}{j \times 100 \pi \times 100 \times 10^{-9}}=-j \frac{10^{5}}{\pi}
\end{aligned}
$$

$$
\begin{aligned}
\therefore & \frac{-j 10^{4} \times 10^{5}}{\pi\left(10^{4}-\frac{j \times 10^{5}}{\pi}\right)} \times 2 & =5 \times 10^{5} \\
\Rightarrow & \frac{-j 10^{3}}{1000 \pi-j 10^{4}}(R+j X) & =5 \\
\Rightarrow & -j R+X & =5 \pi-j 5 \times 10 \\
\Rightarrow & R & =50 \Omega \\
\text { and } & L & =\frac{5}{2 \times 50}=50 \mathrm{mH}
\end{aligned}
$$

CRO, Q-meter

Detailed Explanation of

Try Yourself Questions

T1. Sol.
Using the equation,

$$
\begin{aligned}
& V_{p-p}=\left(\frac{\text { volts }}{\text { div }}\right) \times\left(\frac{\text { no. of div }}{1}\right) \\
& V_{p-p}=0.5 \mathrm{~V} \times 3=1.5 \mathrm{~V}
\end{aligned}
$$

T2. Sol.
The period of the signal is calculate using the equation

$$
\begin{aligned}
& T=\left(\frac{\text { time }}{\text { div }}\right) \times\left(\frac{\text { no. of div }}{\text { cycle }}\right) \\
& T=2 \mu \mathrm{~s} \times 4=8 \mu \mathrm{~s} \\
& f=\frac{1}{T}=\frac{1}{8 \mu \mathrm{~s}}=125 \mathrm{kHz}
\end{aligned}
$$

Hence, frequency is

ㅁ■ㅁ

