

WORKDOOK 2025

Detailed Explanations of Try Yourself Questions

Instrumentation Engineering Electrical Circuits

© Copyright: Subject matter to MADE EASY Publications, New Delhi. No part of this book may be reproduced or utilised in any form without the written permission.

Basics Detailed Explanation of Try Yourself Questions T1. (b) Writing node equation at the top center node $\frac{V_1 - 0}{2 + 3} + \frac{(V_1 - 1)}{1} + \frac{V_1 - \alpha V_x}{5} = 0$ $\frac{V_1}{5} + \frac{V_1 - 1}{1} + \frac{V_1 - \alpha V_x}{5} = 0$...(i) $V_x = \left(\frac{2}{2+3}\right)V_1 = \frac{2}{5}V_1$ (Voltage Division) Since $V_1 = (5/2) V_x$ into equation (1), we get Now, by substituting $\frac{1}{5}\left(\frac{5}{2}V_x\right) + \left(\frac{5}{2}V_x - 1\right) + \frac{1}{5}\left(\frac{5}{2}V_x - V_x\right) = 0$ $3\Omega \bigotimes (V_1 - 1) \bigotimes 1\Omega$ $\frac{V_x}{2} + \frac{5}{2}V_x + \frac{V_x}{2} = 1$ $\frac{7}{2}V_x - \alpha + \frac{V_x}{5} = 1$ $35 V_x - 2 \alpha V_x = 10$ $V_x = \frac{10}{(35 - 2\alpha)}$

T2. Sol.

Total resistance across current source,

$$R_{eq} = 2 + \frac{4 \times 4}{4 + 4} = 4 \Omega$$

Power delivered by current source, $P = I^2 R_{eq} = 2^2 \times 4 = 16 \text{ W}$

T4. (b)

4

KCL at node V_1 ,

$$i + 49i = \frac{V_1}{25}$$

$$50i = \frac{V_1}{25}$$

$$i = \frac{10 - V_1}{100K}$$

...(ii)

From equation (i) and (ii),

$$50 \times \frac{10 - V_1}{100 \text{K}} = \frac{V_1}{25}$$
$$\frac{1}{2 \text{K}} (10 - V_1) = \frac{V_1}{25}$$

$$\Rightarrow \qquad 10 - V_1 = \frac{(2K) \cdot V_1}{25}$$
$$10 = 81 V_1$$

$$\Rightarrow$$

 \Rightarrow

and

$$\frac{10 - \frac{10}{81}}{(100 \text{ K})}$$

 V_1

 $V_1 = \frac{10}{81}$ volts

$$V_2 = 10 - 1 \text{K} \times \frac{\left(10 - \frac{10}{81}\right)}{100 \text{ K}} \times 49$$

= 5.16 volts

T6. (a)

Transform current source to voltage source, Applying KCL, at node V_1 ,

$$\frac{V_1 + 8}{8} + \frac{V_1 - 14}{8} + \frac{V_1 - 1}{4} = 0$$

$$V_1 = 2 V$$

$$i = \frac{V_1 - 1}{4} = \frac{1}{4} A$$

$$V_0 = \frac{1}{4} \times 4 = 1 V$$

Curre

then,

MADE EASY Instrumentation Engineering • Electrical Circuits 8 Publications T2. (b) V 1Ω ~~~ łŀ 1 F 5 V 10 sin*t* $X_C = \frac{1}{\omega C} = \frac{1}{1 \times 1}$ $X_C = 1 \Omega$... using superposition principle, (i) For 5 V source $V_{C1} = 5 V$ In steady-state, 1Ω ₩₩ *i*1 Ω **⊢** 5 V (ii) For 10 sint source: 1Ω ₩₩ -j1 Ω \sim 10 sin*t* $V_{C2} = \frac{10}{\sqrt{2} \times \sqrt{2}} \times 1 = 5 \text{ V}$ $V_C = \sqrt{V_{C1}^2 + V_{C2}^2} = \sqrt{5^2 + (5)^2} = \sqrt{50} = 7.07 \text{ V}$ Now, T3. (c) $I = 4.24 \sin(500t + 45^\circ)$ P = 180 W, p.f. = 0.8 lagPower dissipated in resistor = $P = I_{or}^2 \times R$... $180 = \left(\frac{4.24}{\sqrt{2}}\right)^2 \times R$ $R = 20.02 \simeq 20 \Omega$

www.madeeasypublications.org

T4. (a) I_z 3Ω \$5Ω Ζ –j4 Ω $V = 50 \angle 30^{\circ}$ $I = 27.9 \angle 57.8^{\circ}$ $Z_{eq} = \frac{V}{I} = \frac{50\angle 30^{\circ}}{27.9\angle 57.8^{\circ}} = 1.8\angle -27.8 \Omega$ $= 1.8 / -27.8^{\circ} O$ $\frac{1}{Z_{eq}} = \frac{1}{Z} + \frac{1}{5} + \frac{1}{3 - i4}$... $\frac{1}{1.8\angle 27.8} = \frac{1}{Z} + \frac{1}{5} + \frac{3+j4}{25}$ $\frac{1}{Z} = \frac{1}{1.8\angle -27.8} - \frac{1}{5} - \frac{3+j4}{25}$ $Z = 5\angle -30^{\circ} \Omega$ T5. Sol. 10 V 2 V – t(s) 6 10 4 8 -4 V Rms value = $\left[\frac{1}{T}\int_{0}^{T}f^{2}(t)d(t)\right]^{1/2} = \left[\frac{1}{10}\int_{0}^{10}f^{2}(t)\cdot d(t)\right]^{1/2}$ $= \left[\frac{1}{10}\left\{\int_{0}^{2}100 \, dt + \int_{0}^{4}16 \, dt + \int_{0}^{6}4 \, dt + \int_{0}^{8}0 + \int_{0}^{10}100 \, dt\right\}\right]^{1/2}$ $= \left[\frac{1}{10} \{100 \times 2 + 16 \times 2 + 4 \times 2 + 100 \times 2\}\right]^{1/2}$ $=\left[\frac{1}{10}(440)\right]^{1/2} = \sqrt{44} = 6.633$ unit

T6. (c)

Given redundant network can be reduced as,

MADE EASY Instrumentation Engineering • Electrical Circuits 12 Publications T2. (c) 10 Ω S 20 Ω 🍣 1/2 F - V = 20 V40 ∨ -Suppose at time t = 0, the voltage 'V' = 20 V The circuit can be reduced as I_1 I_2 V = 20 V10 Ω **20** Ω **2** S.C. 40 V

at $t = 0^+$;

 \therefore

and

∴ Current flowing across capacitor at $t = 0^+$;

$$C\frac{dV}{dt}\Big|_{t=0^+} = -I_2 \text{ or } \left|\frac{dV}{dt}\right|_{\text{at }t=0^+} = 2 \text{ V/s}$$

 $I = \frac{20}{20} = 1 \text{ A}$

 $I_1 = \frac{40 - 20}{10} = 2 \text{ A}$

T3. Sol.

From given data,

$$i(0^+) = \frac{\Psi(0^+)}{L} = \frac{10}{1} = 10 \text{ A}$$

at $t = \infty$;

www.madeeasypublications.org

$$i(t) = [i(0^{+}) - i(\infty)] e^{-Rt/L} + i(\infty)$$

$$i(t) = \left[10 - \frac{10}{6}\right] e^{-\frac{3t}{1}} + \frac{10}{6} = [1.67 + (8.333) e^{-3t}]A.$$

T4. (c)

 \therefore At at t < 0; the circuit is behaving as shown in figure,

13

14 Instrumentation Engineering • Electrical Circuits

$$i(0^{-}) = \frac{12}{R_{eq}} = \frac{12}{4} = 3 \text{ A}$$

 $i(0^{+}) = i(0^{-}) = 3 \text{ A}$

At $t = \infty$; Transform Δ to Y;

MADE EASY

- Publications

T7. (d)

The series connected capacitors can be replaced with an equivalent capacitor as shown

T2. (a)

$$Z_S = \frac{R(j\omega L)}{R + j\omega L}$$

To seperate peal and imaginary,

$$Z_{S} = \frac{R(j\omega L)}{R + j\omega L} \times \frac{R - j\omega L}{R - j\omega L} = \frac{R\omega^{2}L^{2}}{R^{2} + \omega^{2}L^{2}} + j\frac{R^{2}\omega L}{R^{2} + \omega^{2}L^{2}}$$

From maximum power theorems,

$$Z_L = Z_S^*$$

$$R_1 - j \frac{1}{\omega C} = \frac{R\omega^2 L^2}{R^2 + \omega^2 L^2} - j \frac{R^2 \omega L}{R^2 + \omega^2 L^2}$$

Compare real and imaginary part on both sides

$$R_{1} = \frac{R\omega^{2}L^{2}}{R^{2} + \omega^{2}L^{2}}$$
$$C = \frac{R^{2} + \omega^{2}L^{2}}{R^{2}\omega^{2}L}$$

T3. Sol.

18

Case-1: To find (Z_{th})

From maximum power theorem,

20

 $I_{2} = 0$ $Z_{11} = \frac{V_{1}}{I_{1}} = \frac{20}{10} = 2 \Omega$ $Z_{21} = \frac{V_{2}}{I_{1}} = \frac{5}{10} = 0.5 \Omega$ For a reciprocal network, $Z_{12} = Z_{21} = 0.5$ $\therefore \text{ For the given second network,}$ $I_{SC} = I_{1}, \quad I_{2} = 6 A$ $\vdots \qquad I_{SC} = I_{1}, \quad I_{2} = 6 A$ $\vdots \qquad I_{SC} = I_{1} = \frac{V_{1}/I_{2}}{V_{1}/I_{1}} = \frac{0.5}{2} = \frac{1}{4}$ $\vdots \qquad I_{SC} = I_{1} = \frac{6}{4} = 1.5 A$

T6. (c)

Combining the parallel resistance and adding the parallel connected current sources.

21

Source transformation of 6 A source

Publications

we need to get;

Publications

© Copyright

MADE EASY

DE EASY Publications	Detailed Explanations of Try Yourself Questions : GATE 2025
We find,	$Z_{11} = 6s$
By KVL for Loop 2,	$Z_{12} = 2s$ $V_2(s) = 2s I_1(s) + 3s I_2(s)$
We find,	$V_{2} = Z_{21}I_{1} + Z_{22}I_{2}$ $Z_{21} = 2s$ $Z_{22} = 3s$
	$\begin{bmatrix} Z \end{bmatrix} = \begin{bmatrix} 6s & 2s \\ 2s & 3s \end{bmatrix}$
(c)	
From circuit,	
and ∵	$V_{1} = 100 \angle 0^{\circ}$ $V_{2} = -10 I_{2}$ $V_{1} = 40 I_{1} + j20 I_{2}$ (i)
From equation (ii),	$V_2 = j30 I_1 + 50 I_2 \qquad \dots (ii)$ -10I_2 = j30 I_1 + 50 I_2
	$-60I_2 = j30I_1; I_2 = -\frac{j}{2} \times I_1$
From equation (i),	$100 = 40I_1 + j20 \times \left(-\frac{j}{2}\right)I_1$
\Rightarrow	$100 = 50 I_1$ $I_1 = 2\angle 0^\circ A$
then,	$I_2 = -\frac{j}{2} \times 2 \text{ A} = 1 \angle -90^{\circ} \text{ A}$
	· · · · · ·

www.madeeasypublications.org

 $\frac{1}{\omega C} \times (R^2 + \omega^2 L^2) = \omega L \left(R^2 + \frac{1}{\omega^2 C^2} \right)$ $\frac{1}{\omega^2 L C} [R^2 + \omega^2 L^2] = R^2 + \frac{1}{\omega^2 C^2}$ $\frac{R^2}{\omega^2 L C} + \frac{L}{C} = R^2 + \frac{1}{\omega^2 C^2}$ $R^2 \left[1 - \frac{1}{\omega^2 L C} \right] = \frac{L}{C} - \frac{1}{\omega^2 C^2}$ $R^2 = \frac{\left(\frac{L}{C} - \frac{1}{\omega^2 C^2} \right)}{\left(1 - \frac{1}{\omega^2 L C} \right)}$ $R = \sqrt{\frac{\frac{L}{C} - \frac{1}{\omega^2 L C}}{1 - \frac{1}{\omega^2 L C}}}$ L = 4 H, C = 1 F $R = \sqrt{\frac{4 - \frac{1}{\omega^2}}{1 - \frac{1}{4\omega^2}}} = 2 \Omega$

or,

T2. (a)

Voltage across 'R' is maximum.

When V_c and V_L are in phase opposition i.e. at resonance. \therefore At resonance: Total impedance, $Z = R = 0.5 \Omega$

$$I = \frac{10/\sqrt{2}}{0.5} = \frac{20}{\sqrt{2}} = 10\sqrt{2} = 14.142 \text{ A}$$

Current,

30

www.madeeasypublications.org

Publications

© Copyright

 $\therefore \omega_0$ (resonant frequency) = $\frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{4 \times 1}} = 0.5$ rad/sec. $G_{eq} = \frac{2}{4 + \frac{1}{(0.5 \times 1)^2}} + \frac{2}{4 + (0.5 \times 4)^2}$ $=\frac{2}{4+4}+\frac{2}{4+4}=0.5$ \circlearrowright $P = \frac{20^2}{2} \times 0.5 = 100 \text{ W}$ $R_1 = R_2 = R = 2 \Omega$ $L = 1 \text{ H}; \quad C = 1 \text{ F}$ (ii) 2Ω 1 H W 000 $\omega_0 = \frac{1}{\sqrt{1 \times 1}} = 1 \text{ rad/sec.}$ 2Ω 1 F ~~~ ╢ $G_{eq} = \frac{2}{(2)^2 + (1 \times 1)^2} + \frac{2}{(2)^2 + (\frac{1}{1 \times 1})^2}$ 20 cosωt $=\frac{2+2}{4+1}=\frac{4}{5}$ $P = \frac{(20)^2 \times 4}{2 \times 5} = 160 \text{ W}$

www.madeeasypublications.org

Comparing real parts on both sides of the equation,

$$\frac{400}{n^2} = 100 \implies n = 2$$

Comparing imaginary parts,

$$\frac{\omega L}{n^2} = 160 \times 10^3$$
$$L = \frac{160 \times 10^3}{10^5} \times 4 = 6.4 \text{ H}$$

 \Rightarrow

