

WORKDOOK 2025

Detailed Explanations of Try Yourself Questions

Instrumentation Engineering Digital Electronics

© Copyright: Subject matter to MADE EASY Publications, New Delhi. No part of this book may be reproduced or utilised in any form without the written permission.

Number Systems and Binary Codes

ight

T1. Sol.

	1	1	1	1	1
_	1	0	0	1	1
		1	1	0	0
				+	1
		1	1	0	1

 $(1101)_2 = (13)_{10}$

Therefore, the decimal equivalent value = -13.

T2. (d)

Given that,

 $(10)_x \times (10)_x = (100)_x$ $x \times x = x^2$

and

 $(100)_x \times (100)_x = (10000)_x$ $x^2 \times x^2 = x^4$

so, above conditions are valid for all values of x.

T3. (c)

Converting both sides into decimal $(2^4 \times 1 + 0 + 2^2 \times w + 2^1 \times 1 + 2^0 \times z) \times 15 = 2^8y + 2^6 \times 1 + 2^4 \times 1 + 2^3 \times 1 + 2^0 \times 1$ $(18 + 4w + z) \times 15 = 256y + 64 + 16 + 8 + 1$ 270 + 60w + 15z = 256y + 89Only w = 1, z = 1 and y = 1 satisfies.

	9	9		9	9	9
-	2	5	•	6	3	9
	7	4		3	6	0

www.madeeasypublications.org	Publications	© Copyrig

Logic Gates

Detailed Explanation of Try Yourself Questions

T1. (c)

Bulb is On when both switch S1 and S2 are in same state, either off or on.

S1	S2	Bulb
0	0	ON
0	1	OFF
1	0	OFF
1	1	ON

Above truth table derives EX-NOR operation.

T2. (a)

EXNOR gate on logic in called coincidence logic. So, f = AB + A'B'

T3. (b)

D will be '1' majority of input is 1, so

 $D = A \oplus B \oplus C$

© Copyright

Combinational Logic Circuits

Detailed Explanation of Try Yourself Questions

T1. (c)

Since the delay is of 1 μ sec the output will a square wave with time period of 2 μ sec.

frequency = 0.5 MHz

T2. (a)

So,

For	A ₂	A ₁	A ₀	S ₀ (A ₁)	S ₁ (A ₂)
	0	0	0	0	0

MUX is enabled and output is I_0

MUX is disable and output is '1' Similarly, for

A ₂	A_1	A ₀	S ₀	S_1	$\overline{E}_{(A_0)}$	O/P
0	0	0	0	0	0	I ₀
0	0	1	0	0	1	1
0	1	1	0	1	1	1
0	1	0	0	1	0	I ₁
1	1	0	1	1	0	I ₃
1	1	1	1	1	1	1
1	0	1	1	0	1	1
1	0	0	1	0	0	I ₂

T3. (6)

When, T = logic 0, the path followed by the circuit would be, NOR gate \rightarrow MUX 1 \rightarrow MUX 2 \Rightarrow 2 ns \rightarrow 1.5 ns \rightarrow 1.5 ns

 \Rightarrow 5 ns

When, T = logic 1, the path followed by the circuit would be,

NOR gate \rightarrow MUX 1 \rightarrow NOR gate \rightarrow MUX 2

- \Rightarrow 1 ns \rightarrow 1.5 ns \rightarrow 2 ns \rightarrow 1.5 ns
- 6 ns \Rightarrow
- : Maximum propagation delay is 6 ns

T5. (b)

n(n + 1)The number of AND gates in carry generator circuit in 'n' bit adder =

If
$$n = 4 \implies \frac{4(5)}{2} = 10$$
.

The number of OR gates in carry generator circuit in 'n' bit adder = n. If $n = 4 \implies 4$

T6. (b)

So, the input to adder is y and 1's complement x since carry input in 1.

So, output is complement of x + 1, so output is y - x.

T7. (b)

P_1	P_2	а	b	С	d	е	f	g
0	0	1	1	1	1	1	1	0
0	1	1	0	1	1	0	1	1
1	0	1	1	0	1	1	0	1
1	1	1	0	0	1	1	1	1

	a=1	
	$b = \overline{P}_2$	1 (NOT)
	$c = \overline{P}_1$	1 (NOT)
	d = 1 = c + e	
	$e = P_1 + \overline{P}_2$	1 (OR)
*	$f = \overline{P}_1 + P_2$	1 (OR)
	$g = P_1 + P_2$	1 (OR)
\Rightarrow	$g = P_1 + P_2$	
	d = 1 = c + e	

T8. (d)

- 2 NOT gates
- 3 OR gates

T9. (b)

Two bit binary multiplier

Sequential Circuits

Detailed Explanation

of Try Yourself Questions

T1. (76.92)

Total propagation delay

- $= (t_{pd} + t_{set-up})_{max} = 8ns + 5 ns = 13 ns$
- ... Frequency of operations
- $=\frac{1000}{13}$ MHz = 76.92 MHz

T2. (c)

T3. (6)

JK Flip-flop 1 and 2 form a synchronous sequential circuits and they are synchronized with the output of 0th JK Flip-flop.

J_1	K_1	J_2	<i>K</i> ₂	Q_2	Q ₁	Q	
1	1	0	1	0	0	0	T
1	1	1	1	0	1	1 -	$\zeta_{\tau}^{\prime_1}$
0	1	0	1	1	0	0	<′₂
1	Ţ	0	1	0	0	0	\mathcal{T}_{3}
	J ₁ 1 1 0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccc} J_1 & K_1 & J_2 \\ \hline 1 & 1 & 0 \\ \hline 1 & 1 & 1 \\ 0 & 1 & 0 \\ \hline 1 & 1 & 0 \\ \hline 1 & 1 & 0 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 1 0 1 0 1 1 1 1 0 1 1 1 1 0 0 1 0 1 1	1 1 0 1 0 0 1 1 1 1 0 1 1 1 1 1 0 1 0 1 0 1 1 0	1 1 0 1 0 0 0 1 1 1 1 0 1 1 0 1 0 1 1 0 0

Number of cycles = 3 i.e. equal to 6 clock cycles.

T4. (d)

 $D = \overline{X}Z + Y\overline{Z}, D = \overline{K}Q + J\overline{Q}$ Y = J, X = K, D = Q (for D flip-flop)

T5. (d)

Trick up/down = $CP \oplus Q$, 1 for up and 0 for down.

CP = (clock pulse)Q = (O/P)0 = -ve edge; Q = 1

1 = +ve edge; $\overline{Q} = 1$

 $= 1 \oplus 1 = 0$ (down counter)

Counting sequence

1	1	1
1	1	0
1	0	1
1	0	0
0	1	1 (preset state) so Mod

T6. (b)

Clock	Q _A	Q_B	Q_{c}	Q'_A	Q_B'	Q_C'	$Q_{\mathcal{A}} \oplus Q'_{\mathcal{A}}$	$Q_B \oplus Q'_B$	$Q_C \oplus Q'_C$	Ζ
0	1	0	0	1	0	0	0	0	0	0
1	0	1	0	1	1	0	1	0	0	1
2	0	0	1	1	1	1	1	1	0	1
3	1	0	0	0	1	1	1	1	1	1
4	0	1	0	0	0	1	0	1	1	1
5	0	0	1	0	0	0	0	0	1	1
6	1	0	0	1	0	0	0	0	0	0

5

The output Z will again become zero after 6 clock cycles.

T8. (c)

The counter represents a Johnson counter. Thus, total number of states = 2n. Where n = 3. Therefore the MOD of the counter = $2 \times 3 = 6$

T9. (d)

In a 2⁸ Counter the range would be from 0-255.

Hence to go from 10101100 (172) to 00100111 (39), the counter has to go initially from 172 to 255 and then from 0 to 39.

Hence to go from 172 to 255, 255 - 172 = 83 Clock pulses would be required.

From 255 to 0, again 1 clock pulse would be required.

Then from 0 to 39, 39 clock pulses would be required.

Hence in total 83 + 1 + 39 = 123 Clock pulses would be required.

Integrated-Circuit Logic Families

Detailed Explanation of Try Yourself Questions

T1. (8)

Out of 16 possible combinations of $X_3 X_2 X_1 X_0$, X_3 will be high for 8 combinations. So, Y will be high for 8 combinations.

T2. (b)

 $V_{\rm OH} > V_{\rm IH} > V_{\rm IL} > V_{\rm OL}$

T3. (b)

It is CMOS gate where 2 PMOS are parallel and in series with 2 NMOS (series combination of NMOS). It is equivalent to NAND gate.

Series combination of NMOS equivalent to parallel combination of PMOS.

T4. (c)

Truth table:

Ī	Х	Y	V_0
	0	0	1
	0	1	0
	1	0	0
	1	1	0

 $V_0 = \overline{X+Y}$

T5. (a)

Series combination of n-mos is equivalent to AND and parallel combination is equivalent to OR. So, $Y = \overline{C \cdot (A+B)} = \overline{C} + \overline{(A+B)} = \overline{C} + \overline{A} \cdot \overline{B}$

T6. (c)

T7. (a)

T8. (c)

HTL \rightarrow High noise immunity

 $CMOS \rightarrow Highest fanout$

 $I^2L \rightarrow$ Lowest of product power and delay

 $ECL \rightarrow Highest speed of operation$

T9. (a)

For TTL logic floating input = 1

$$Y = (AB + 1)' = \overline{AB}.0 = 0$$

T10. <mark>(a)</mark>

:..

ECL is the fastest logic family.

ADC and DAC

Detailed Explanation of Try Yourself Questions

T1. (a)

Sequence of Johnson counter is

Q_2	Q_1	$Q_{_{0}}$	D_2	D_1	D_{0}	V_{0}
0	0	0	0	0	0	0
1	0	0	1	0	0	4
1	1	0	1	1	0	6
1	1	1	1	1	1	7
0	1	1	0	1	1	3
0	0	1	0	0	1	1
0	0	0	0	0	0	0

T2. (a)

- (i) Conversion time is the time taken for a new digital output to appear in response to a change in the input voltage.
- (ii) Flash converter is the fastest converter. It uses no clock signal.

(iii) Type of *N*-bit ADC Max. conversion time

- Successive N clock cycles
 approximation
- Counter ramp $2^N 1$ clock cycles

T3. (c)

Initial stage of the counter = $(111)_2 = (7)_{10}$ So output will be equal to 7 V. Next state of counter = $(110)_2 = (6)_{10}$ So output should be = 6 V But output is 3 V that means LSB of counter is connected to MSB of DAC and MSB of counter is connected to LSB of DAC. Similarly next state of counter = $(101)_2 = (5)_{10}$ Input to DAC = $(101)_2 = (5)_{10}$ So output = 5 V When counter goes to $(100)_2$ then input to DAC = $(001)_2 = (1)_{10}$

So connections are not proper.

T4. (c)

No. of comparators in a flash ADC is equal to $2^n - 1$ where n = no. of bits. $2^4 - 1 = 15$

T5. (a)

The reference voltage is 5 V.

The number of bits in ADC are 8.

So, the resolution will be = $\frac{5}{2^8 - 1} = \frac{5}{255}$

The applied input is 3.5 V.

The successive approximation ADC start working from the MSB so.

After one clock:

SAR will toggle it's MSB from $0 \rightarrow 1$ so output of SAR will be 1000 0000.

After second clock:

SAR will toggle its 7th bit from $0 \rightarrow 1$ but 1100 0000 will result in value greater than 3.5 so output of SAR after 2nd clock will be 1000 0000.

After third clock:

SAR will toggle it's 6th bit from $0 \rightarrow 1$ and output will be 10100000.

