GATE

mirk iliok 2025

Detailed Explanations of
Try Yourself Questions

Instrumentation Engineering
 Digital Electronics

Number Systems and Binary Codes

Detailed Explanation of
 Try Yourself Questions

T1. Sol.

11111
$-\quad 0011$
1100
1101

$(1101)_{2}=(13)_{10}$
Therefore, the decimal equivalent value $=-13$.
T2. (d)
Given that,

$$
(10)_{x} \times(10)_{x}=(100)_{x}
$$

$$
x \times x=x^{2}
$$

and

$$
(100)_{x} \times(100)_{x}=(10000)_{x}
$$

$$
x^{2} \times x^{2}=x^{4}
$$

so, above conditions are valid for all values of x.
T3. (c)
Converting both sides into decimal

$$
\begin{aligned}
& \qquad \begin{aligned}
\left(2^{4} \times 1+0+2^{2} \times w+2^{1} \times 1+2^{0} \times z\right) \times 15 & =2^{8} y+2^{6} \times 1+2^{4} \times 1+2^{3} \times 1+2^{0} \times 1 \\
(18+4 w+z) \times 15 & =256 y+64+16+8+1 \\
270+60 w+15 z & =256 y+89
\end{aligned} \\
& \text { Only } w=1, \quad z=1 \text { and } y=1 \text { satisfies. }
\end{aligned}
$$

T4. (a)

$$
\begin{array}{r}
99.999 \\
-25.639 \\
\hline 74.360
\end{array}
$$

Logic Gates

Detailed Explanation Try Yourself Questions

T1. (c)
Bulb is On when both switch S1 and S2 are in same state, either off or on.

S1	S2	Bulb
0	0	ON
0	1	OFF
1	0	OFF
1	1	ON

Above truth table derives EX-NOR operation.
T2. (a)
EXNOR gate on logic in called coincidence logic.
So,

$$
f=A B+A^{\prime} B^{\prime}
$$

T3. (b)
D will be ' 1 ' majority of input is 1 , so

$$
D=A \oplus B \oplus C
$$

Combinational Logic Circuits

Detailed Explanation of
 Try Yourself Questions

T1. (c)
Since the delay is of $1 \mu \mathrm{sec}$ the output will a square wave with time period of $2 \mu \mathrm{sec}$.
So, \quad frequency $=0.5 \mathrm{MHz}$
T2. (a)

For \begin{tabular}{|c|c|c|c|c|}

\hlineA_{2} \& A_{1} \& A_{0} \& | S_{0} |
| :---: |
| $\left(A_{1}\right)$ | \& | S_{1} |
| :---: |
| $\left(A_{2}\right)$ |

\hline 0 \& 0 \& 0 \& 0 \& 0

\hline
\end{tabular}

MUX is enabled and output is I_{0}
For

A_{2}	A_{1}	A_{0}	S_{0}	S_{1}
0	0	1	0	0

MUX is disable and output is '1'
Similarly, for

A_{2}	A_{1}	A_{0}	S_{0}	S_{1}	\bar{E} $\left(A_{0}\right)$	O / P
0	0	0	0	0	0	I_{0}
0	0	1	0	0	1	1
0	1	1	0	1	1	1
0	1	0	0	1	0	I_{1}
1	1	0	1	1	0	I_{3}
1	1	1	1	1	1	1
1	0	1	1	0	1	1
1	0	0	1	0	0	I_{2}

T3. (6)

When, $T=\operatorname{logic} 0$, the path followed by the circuit would be,
NOR gate \rightarrow MUX $1 \rightarrow$ MUX 2
$\Rightarrow 2 \mathrm{~ns} \rightarrow 1.5 \mathrm{~ns} \rightarrow 1.5 \mathrm{~ns}$
$\Rightarrow \quad 5 \mathrm{~ns}$
When, $T=$ logic 1, the path followed by the circuit would be,
NOR gate \rightarrow MUX $1 \rightarrow$ NOR gate \rightarrow MUX 2
$\Rightarrow 1 \mathrm{~ns} \rightarrow 1.5 \mathrm{~ns} \rightarrow 2 \mathrm{~ns} \rightarrow 1.5 \mathrm{~ns}$
$\Rightarrow 6 \mathrm{~ns}$
$\therefore \quad$ Maximum propagation delay is 6 ns

T4. (c)

T5. (b)
The number of AND gates in carry generator circuit in ' n ' bit adder $=\frac{n(n+1)}{2}$
If $n=4 \Rightarrow \frac{4(5)}{2}=10$.
The number of OR gates in carry generator circuit in ' n ' bit adder $=n$.
If $\mathrm{n}=4 \Rightarrow 4$
T6. (b)
So, the input to adder is y and 1's complement x since carry input in 1 .
So, output is complement of $x+1$, so output is $y-x$.
T7. (b)

P_{1}	P_{2}	a	b	c	d	e	f	g
0	0	1	1	1	1	1	1	0
0	1	1	0	1	1	0	1	1
1	0	1	1	0	1	1	0	1
1	1	1	0	0	1	1	1	1

$$
\begin{array}{ll}
a=1 \\
b=\bar{P}_{2} & \ldots 1(\mathrm{NOT}) \\
c=\bar{P}_{1} & \ldots 1(\mathrm{NOT}) \\
d=1=c+e & \\
e=P_{1}+\bar{P}_{2} & \ldots 1(\mathrm{OR}) \\
f=\bar{P}_{1}+P_{2} & \ldots 1(\mathrm{OR}) \\
\Rightarrow \quad & \ldots 1(\mathrm{OR}) \\
& \\
& g=P_{1}+P_{2}+P_{2} \\
d=1=c+e &
\end{array}
$$

T8. (d)
2 - NOT gates
3 - OR gates
T9. (b)
Two bit binary multiplier

Sequential Circuits

Detailed Explanation of
 Try Yourself Questions

T1. (76.92)
Total propagation delay
$=\left(t_{p d}+t_{\text {set-up }}\right)_{\max }=8 \mathrm{~ns}+5 \mathrm{~ns}=13 \mathrm{~ns}$
$\therefore \quad$ Frequency of operations
$=\frac{1000}{13} \mathrm{MHz}=76.92 \mathrm{MHz}$
T2. (c)
T3. (6)
JK Flip-flop 1 and 2 form a synchronous sequential circuits and they are synchronized with the output of $0^{\text {th }}$ JK Flip-flop.

J_{1}	K_{1}	J_{2}	K_{2}	Q_{2}	Q_{1}	Q_{0}
1	1	0	1	0	0	0
1	1	1	1	0	1	1
0	1	0	1	1	0	0
1	1	0	1	0	0	0

Number of cycles $=3$ i.e. equal to 6 clock cycles.
T4. (d)
$D=\bar{X} Z+Y \bar{Z}, D=\bar{K} Q+J \bar{Q}$
$Y=J, X=K, D=Q$ (for D flip-flop)

T5. (d)
Trick up/down $=C P \oplus Q$, 1 for up and 0 for down.
$C P=$ (clock pulse)
$Q=(\mathrm{O} / \mathrm{P})$
$0=-$ ve edge; $Q=1$
1 = +ve edge; $\bar{Q}=1$
$=1 \oplus 1=0$ (down counter)
Counting sequence
111
$1 \quad 1 \quad 0$
100
100
$0 \quad 1 \quad 1$ (preset state) so $\operatorname{Mod} 5$
T6. (b)
T7. Sol.

Clock	Q_{A}	Q_{B}	Q_{C}	Q_{A}^{\prime}	Q_{B}^{\prime}	Q_{C}^{\prime}	$Q_{A} \oplus Q_{A}^{\prime}$	$Q_{B} \oplus Q_{B}^{\prime}$	$Q_{C} \oplus Q_{C}^{\prime}$	Z
0	1	0	0	1	0	0	0	0	0	0
1	0	1	0	1	1	0	1	0	0	1
2	0	0	1	1	1	1	1	1	0	1
3	1	0	0	0	1	1	1	1	1	1
4	0	1	0	0	0	1	0	1	1	1
5	0	0	1	0	0	0	0	0	1	1
6	1	0	0	1	0	0	0	0	0	0

The output Z will again become zero after 6 clock cycles.
T8. (c)
The counter represents a Johnson counter. Thus, total number of states $=2 n$. Where $n=3$.
Therefore the MOD of the counter $=2 \times 3=6$

T9. (d)

In a 2^{8} Counter the range would be from 0-255.
Hence to go from 10101100 (172) to 00100111 (39), the counter has to go initially from 172 to 255 and then from 0 to 39.
Hence to go from 172 to 255, 255-172 = 83 Clock pulses would be required.
From 255 to 0, again 1 clock pulse would be required.
Then from 0 to 39, 39 clock pulses would be required.
Hence in total $83+1+39=123$ Clock pulses would be required.

2
 Detailed Explanation of
 Try Yourself Questions

T1. (8)

$$
\begin{aligned}
& A=\left(X_{1} \oplus X_{2}\right) \bar{X}_{3} \\
& B=\left[\left(X_{1} \oplus X_{2}\right) \bar{X}_{3} X_{0}\right] \cdot \bar{X}_{0}=0 \\
& Y=B+X_{3}=0+X_{3}=X_{3}
\end{aligned}
$$

Out of 16 possible combinations of $X_{3} X_{2} X_{1} X_{0}, X_{3}$ will be high for 8 combinations. So, Y will be high for 8 combinations.

T2. (b)

$$
V_{\mathrm{OH}}>V_{\mathrm{IH}}>V_{\mathrm{IL}}>V_{\mathrm{OL}} .
$$

T3. (b)
It is CMOS gate where 2 PMOS are parallel and in series with 2 NMOS (series combination of NMOS).
It is equivalent to NAND gate.
Series combination of NMOS equivalent to parallel combination of PMOS.
T4. (c)
Truth table:

X	Y	V_{0}
0	0	1
0	1	0
1	0	0
1	1	0

$$
V_{0}=\overline{X+Y}
$$

T5. (a)
Series combination of n-mos is equivalent to AND and parallel combination is equivalent to OR.
So, $Y=\overline{C \cdot(A+B)}=\bar{C}+\overline{(A+B)}=\bar{C}+\bar{A} \cdot \bar{B}$
T6. (c)

T7. (a)

T8. (c)
HTL \rightarrow High noise immunity
CMOS \rightarrow Highest fanout
$I^{2} L \rightarrow$ Lowest of product power and delay
ECL \rightarrow Highest speed of operation
T9. (a)
For TTL logic floating input $=1$

$$
\therefore \quad Y=(A B+1)^{\prime}=\overline{A B} \cdot 0=0
$$

T10. (a)

ECL is the fastest logic family.

ADC and DAC

Detailed Explanation

Try Yourself Questions

T1. (a)
Sequence of Johnson counter is

Q_{2}	Q_{1}	Q_{0}	D_{2}	D_{1}	D_{0}	V_{0}
0	0	0	0	0	0	0
1	0	0	1	0	0	4
1	1	0	1	1	0	6
1	1	1	1	1	1	7
0	1	1	0	1	1	3
0	0	1	0	0	1	1
0	0	0	0	0	0	0

T2. (a)
(i) Conversion time is the time taken for a new digital output to appear in response to a change in the input voltage.
(ii) Flash converter is the fastest converter. It uses no clock signal.
(iii) Type of N-bit ADC Max. conversion time

- Successive Nclock cycles approximation
- Counter ramp $2^{N}-1$ clock cycles

12

T3. (c)
Initial stage of the counter $=(111)_{2}=(7)_{10}$
So output will be equal to 7 V .
Next state of counter $=(110)_{2}=(6)_{10}$
So output should be $=6 \mathrm{~V}$
But output is 3 V that means LSB of counter is connected to MSB of DAC and MSB of counter is connected to LSB of DAC.
Similarly next state of counter $=(101)_{2}=(5)_{10}$
Input to DAC $=(101)_{2}=(5)_{10}$
So output $=5 \mathrm{~V}$
When counter goes to $(100)_{2}$ then input to $\operatorname{DAC}=(001)_{2}=(1)_{10}$
So output $=1 \mathrm{~V}$
So connections are not proper.
T4. (c)
No. of comparators in a flash ADC is equal to $2^{n}-1$ where $n=$ no. of bits.
$2^{4}-1=15$
T5. (a)
The reference voltage is 5 V .
The number of bits in ADC are 8.
So, the resolution will be $=\frac{5}{2^{8}-1}=\frac{5}{255}$
The applied input is 3.5 V .
The successive approximation ADC start working from the MSB so.

After one clock:

$S A R$ will toggle it's MSB from $0 \rightarrow 1$ so output of $S A R$ will be 10000000 .

After second clock:

SAR will toggle its $7^{\text {th }}$ bit from $0 \rightarrow 1$ but 11000000 will result in value greater than 3.5 so output of SAR after $2^{\text {nd }}$ clock will be 10000000.

After third clock:

SAR will toggle it's $6^{\text {th }}$ bit from $0 \rightarrow 1$ and output will be 10100000 .

Semiconductor Memories

Detailed Explanation of

1. (b)

x_{3}	x_{2}	x_{1}	x_{0}	y_{3}	y_{2}	y_{1}	y_{0}	
0	0	0	0	0	0	0	0	$\rightarrow 0$
0	0	0	1	0	0	0	1	$\rightarrow 1$
0	0	1	0	0	0	1	0	$\rightarrow 2$
0	0	1	1	0	0	1	1	$\rightarrow 3$
0	1	0	0	0	1	0	0	$\rightarrow 4$
0	1	0	1	0	1	0	1	$\rightarrow 5$
0	1	1	0	1	1	0	0	$\rightarrow 6$
0	1	1	1	1	1	0	1	$\rightarrow 7$
1	0	0	0	1	1	1	0	$\rightarrow 8$
1	0	0	1	1	1	1	1	$\rightarrow 9$

\therefore It is 8421 BCD to 2421 BCD .
T2. (b)

■■■■

