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Mathematical Models
and Block Diagram1

T1. (b)

Drawing SFG of the above

–1

–1
G s( )

–1

1
s

C s( )R s( )
G s( )

Here, P1 = 
2( )G s
s

 ; L2 = –G(s) ; L1 = –G2(s) ; L3 = ( )G s
s

−

( )
( )

C s
R s

=

2

2

( )

( )1 ( ) ( )

G s
s
G sG s G s

s
 − − − −  

=
2

2
( )

( ) ( ) ( )
G s

s sG s G s sG s+ + +

Put G(s) = s,
( )
( )

C s
R s

=
2 2

3 2 3 2 22 2

s s s
s s s s s s s s s

= =
+ + + + + + +

T2. Sol.

RR

ei eoC C

I
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3Detailed Explanations of Try Yourself Questions : GATE 2025

Eo(s) =
1

( )s
sC
I ...(i)

I(s) =

1
( )

1 11 1

1 1

E s sC

RR
sC sCsC sCR

R
sC sC

×
     + ++ ×        +

  + +    

i

(Using current division rule)

=
( ) ( )1
1 12 ( 2)

2

E s E s
sCRR R R sCR

sC sCR
sCR

× =
+  + + + +  +

+

i i

E0(s) =

1
( )

(1 ) ( 2)

E s
sC

RSC SCR SCR
SC

×

+ + +
i

0( )
( )

E s
E si

= 2 2 2 2 2

1 1

3 1 3 1S C R SCR S T ST
=

+ + + +

T3. (b)

Vi

R

1/Cs V0

0V
Vi

=
1/ 1

1 1
Cs

RCsR
Cs

=
++
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Time Response Analysis2

T1. Sol.

G(s) =
( )

K
s s p+

Now, the closed loop system

T(s) = 2

K
s sp K+ +

∴ Comparing it with standard equation

K = 2
nω

2ξωn = p

ts =
4

nξω
⇒ ξωn = 1
∴ p = 2

now,
21e

−πξ

− ξ
= 0.1

ξ = 0.537

∴ ωn =
2
p
ξ

 = 1.69

∴ K = 2 2.85nω =

T2. Sol.

Taking Laplace transform we get

X(s) =
2

1 1 1
.12

( 2)( 6 5) s ss s
 − ++ +  
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5Detailed Explanations of Try Yourself Questions : GATE 2025

X(s) =
12 1 1

.12
( 5)( 1) ( 2)s s s s s

 − + + + 
Now, using final value theorem

lim ( )
t

t
→∞
x =

0
lim ( )
s

sX s
→

∴ X(s) =
0

12 12
lim

( 5)( 1) ( 5)( 1)( 3)s

s
s s s s s→

 − + + + + + 

=
12

2.4
5

=

T3. Sol.

To find the impulse response let us difference the response.
c′(t) = 12 e–10t – 12e–60t

tanking inverse laplace transform we get

C′(s) =
600

( 10)( 60)s s+ +

C′(s) = 2

600

70 600s s+ +
∴ c′(s) is the impulse response thus comparing it with the standard equation.

2ξ ωn = 70

ωn = 600

∴ ξ = 1.428 ≈ 1.43

T4. Sol.

Since real port of the given second order equation is at –0.602 thus they can be considered as dominant
poles.

Thus tp =
d

π
ω

ωd = 21nω − ξ

ωn = 2.829 1.6819=
and 2ξ ωn = 1.204

ξ =
1.204

0.3579
2 1.6819

=
×

∴ ωd = 21.6819 1− ξ

ωd = 1.577
∴ tp = 1.999 ≈ 2
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Stability3

T1. (d)

T2. (b)

With negative feedback, the system stability will increase. In open loop system.

C(s)G s( )R(s)

The gain of the system is G(s).
Where as in closed loop system

C(s)G s( )R(s) +–

H s( )

The closed loop gain of the systems 
( ) ( )

1 ( ) ( )
G s H s

G s H s+
 hence it is divided by 1 + G(s) H(s), in closed loop

system with negative feedback gain decreases.

T3. (d)

The correct sequence of steps needed to improve system stability is to use negative feedback,
reduce gain and insert deviation action.

T4. Sol.

1 + G(s) = 0

⇒ 2
1 1 2 1 21 ( )s s s K τ + τ + τ + τ τ +  = 0

3 2 2
2 1 1 2 11 ( )s s s Kτ τ + τ τ + τ + τ + = 0
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7Detailed Explanations of Try Yourself Questions : GATE 2025

Using R-H criteria
3 2

2 11
2

1 1 2

2 2
1 1 2 1 21

1 1 2

0

( )

( )

( )

s

s K

K
s

s K

τ τ τ

τ τ + τ

 τ τ + τ − τ τ 
τ τ + τ

⇒ K > 0 ; τ1 > 0 ; τ2 > 0

Also,
1 1 2 2

1 2

( )
( )

Kτ τ + τ − τ
τ + τ > 0

K τ2 τ1 < τ1(τ1 + τ2)

⇒ K < 1

2
1

 τ+ τ 

1

2

0 1K
 τ

< < + τ 
;  [τ1 > 0 and τ2 > 0 and this is the only possible case.]

T5. Sol.

s

K

s
2 s

2

1
+ 1s

2
s

+++–R s( ) C s( )

+–
K s

s
 + 2

2

1
+ 1s 

s2 C s( )
R s( )

( + 1) (  + 2 )

(  + 1) ( ) + 2  + 

s K s

s s s K2 s2R s( )
C s( )

s s s K

s s s K

2

2
 (  + 1) (2  + )

(  + 1)  + 2  + 
c s( )R s( )

( )
( )

C s
R s =

2

2
( 1)(2 )
( 1) 2

s s s K
s s s K

+ +
+ + +
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8 Instrumentation Engineering • Control Systems & Process Control

at K = 2

( )
( )

C s
R s

=
2 2

2
( 1)

( 2)( 1)
s s

s s
+

+ +

Thus poles at 2j±  and one at –1.
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Root Locus Technique4

T1. Sol.

Characteristic equation is given as
1 + G(s) H(s) = 0

On comparing this characteristic equation with the equation given in problem, we have

G(s) H(s) = ( 1) ( 2)
K

s s s+ +

P = Number of open loop poles = 3 = number of branches on root locus

Z = 0 = Number of branches terminating at zeros.

-2 -1 0
X X X

Angle of Asymptotes:Angle of Asymptotes:Angle of Asymptotes:Angle of Asymptotes:Angle of Asymptotes: The P – Z branches terminating at infinity will go along certain straight lines.

Number of asymptotes = P – Z

= 3 – 0 = 3

θ =
180 (2 1)q

P Z
° +

−
q = 0. 1, 2 ...

θ1 =
180 (2 0 1)

60
3

× × + = °

θ2 =
180 (2 1 1)

180
3

° × +
= °

θ3 =
180 (2 2 1)

300
3

° × + = °
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10 Instrumentation Engineering • Control Systems & Process Control

Centroid:Centroid:Centroid:Centroid:Centroid: It is the interpection point of the asymptotes on the real axis. It may or may not be a part of root
locus.

Centroid =
Real part of open loop poles Real part of open loop zeros

P Z
Σ − Σ

−

=
0 1 2

1
3

− − = −

Centroid → (–1, 0)

Break-away or break-in points:Break-away or break-in points:Break-away or break-in points:Break-away or break-in points:Break-away or break-in points: These are those points on whose multiple roots of the characteristic
equation occur.

XXX
–2 –1.5 –1

–0.422

0

s(s2 + 3s + 2) + K = 0

K = –(s3 + 3s2 + 2s)

dK
ds

= –(3s2 + 6s + 2) = 0

s = –0.422, –1.577

Now verify the valid break-away point

K = 0.234 (valid) at s = –0.422

K = negative (not valid) at s = –1.577

T2. Sol.

OLTF =
2( 4 8)

K
s s s+ +

Poles are at s1 = 0

and s2, 3 =
4 16 32 2 2

2
j− ± − = − ±

There are 3 poles and no zero with root loci, all terminating at infinity.

φ =
(2 1)180q

P Z
+ °

−
 = 60°, 180°, 300°  for q = 0, 1, 2 (angle of

asymptotes)

Centroid =
0 2 2 2 2 4

1.33
3 3

j j− + − − −= = −
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11Detailed Explanations of Try Yourself Questions : GATE 2025

2
1

( 4 8)

K
s s s

+
+ +

= 0

⇒ K = –s(s2 + 4s + 8) = –(s3 + 4s2 + 8s)

for break away points,
dK
ds

= 0

⇒
dK
ds

= –(3s2 + 8s + 8)

s1, 2 =
8 64 4 8 3

2 3
± − × ×

−
×

=
8 64 96 1.33 0.943

6
j± −− = − ±

As 
dK
ds

 is imaginary, there is no breakaway point from the real axis.

Imaginary axis crossing:Imaginary axis crossing:Imaginary axis crossing:Imaginary axis crossing:Imaginary axis crossing:
Characteristic equation = s(s2 + 4s + 8) + K

= s3 + 4s2 + 8s + K = 0

s
3

s
2

s
1

s
0

1

4

K

8

K

32 – 
4

K

From Routh-Hurwitz Criteria:From Routh-Hurwitz Criteria:From Routh-Hurwitz Criteria:From Routh-Hurwitz Criteria:From Routh-Hurwitz Criteria:
For K = 32, the system is marginally stable and beyond K = 32 the system becomes unstable.
Hence, 4s2 + K = 4s2 + 32

s = 2 2j j= ω

ω = 2 2 2.83=
The root locus cuts the imaginary axis at ±j2.83.

135°
φ1

P1

90°

φ2

P3-2 + 2 j

–2 – 2j
P2

φ1 = 1 2
180 tan 135

2
−  ° − = °  
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φ2 = 90°
Σ φp = φ1 + φ2 = 135° + 90° = 225°

φ = Σφ2 – Σφp = 0 – 225° = –225°
Angle of departure,

φD = 180 + φ = 180 – 225° = –45°
Root locus of the given system:Root locus of the given system:Root locus of the given system:Root locus of the given system:Root locus of the given system:

+ 2.83j

45°

+ 2 .3j

60°

–1.33–2

– 2.3j

–2 + 2j

–2 – 2j

– 2.83j

T3. Sol.

G(s) H(s) = ( 1) ( 4)
K

s s s+ +
Step-1Step-1Step-1Step-1Step-1 Number of open loop poles ;

P = 3

Number of open loop zeros ; Z = 0

Number of branches terminating at infinity

= P – Z = 3

Step-2Step-2Step-2Step-2Step-2  Angle of asymptotes

θ =
(2 1)180q

P Z
+ °

−
where q = 0, 1, 2

θ1 =
180

60
3

° = °

θ2 =
3 180

180
3

× ° = °

θ3 =
5 180

300
3

× ° = °

Step-3Step-3Step-3Step-3Step-3 Centroid =
 real part of open loop poles  real part of open loop zeros

P Z
Σ − Σ

−

=
( 1 4) (0) 5

3 0 3
− − − = −

−
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Step-4Step-4Step-4Step-4Step-4  Break away point

K + s(s2 + 5s + 4) = 0

K = –s3 – 5s2 – 4s

dK
ds

= –3s2 – 10s – 4 = 0

3s2 + 10s + 4 = 0

⇒ s1, s2 = –0.4648, –2.8685

Valid break-away point will be –0.4648

(i)(i)(i)(i)(i)  Routh array table

3

2

1

0

1 4

5

20
0

5

1

s

s K
K

s

s

−

For system to be stable

20 – K > 0 ⇒ K < 20

For system to be marginally stable.

K = 20

A(s) = 5s2 + 20 = 0

⇒ s = ±2j

– 2j

– 2.886j

θ
l3l2

l1

–4 –1

–0.46

0

j 2

j2.886

5
3

(ii)(ii)(ii)(ii)(ii) To find K,

θ = cos–1 ξ = cos–1(0.34) = 70.123°

K = l1 l2 l3

Gain margin (GM) = K(Marginal stability)
K(desired)
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T4. Sol.

–3 –2 –1

x

x

–1

–1

–j

+j

φd = 180 – (φp – φz)

= 1 1
180 180 tan 90 225

2
−  ° − + + ° − °    

= 108.4°

T5. Sol.

Given that

G(s) = ( 2) ( 1)
K

s s+ −

Using root locus method, the break point can be

–2 –0.5

Im

Re

obtain as
⇒ 1 + G(s) = 0

1
( 2) ( 1)

K
s s

+
+ − = 0

or K = –(s + 2) (s – 1)

dK
ds

= –2s – 1 = 0

or s = –0.5
To have, both the poles at the same directions

0.5( ) sG s = = 1

K = 2.25
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Frequency Response Analysis5

T1. Sol.

Given, G(s) =
(1 0.5 ) (1 )

1 (1 ) 1
8 36

K s as
s ss bs

+ +
   + + +      

(1 + as) is addition of zero to the transfer function whose contribution in slope = +20 dB/decade or
–6 dB/octave.
(1 + bs) is addition of pole to the transfer function whose contribution in slope = –20 dB/decade or –6 dB/
octave
Observing the change in the slope at different corner frequencies, we conclude that

a =
1 1

rad/s and = rad/s
4 24

b

From ω = 0.01 rad/s to ω = 8 rad/s,
slope = –20 dB/decade

Let the vertical length in dB be y

∴ –20 =
0

log8 log0.01
y −

  −

or, –20 =
log8 2

y
+

or, y = 58 dB
Applying y = mx + C at ω = 0.01 rad/s,
we have: 58 = –20 log 0.01 + C
or, C = 58 – 40 = 18
Now, C = 20 log K

or, log K =
18

0.9
20

=

MADE E
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∴ K = log–1 (0.9) = (10)0.9 = 7.94

∴
a

bK
=

1
4

1
7.94

24

 
  

  ×  

=
24

0.755
4 7.94

=
×

∴
a

bK
= 0.755

T2. Sol.

OLTF = 2

1
( )

( 2)
G s

s
=

+

For unity feedback system,
H(s) = 1

∴ CLTF =
2

2

1
( ) ( 2)

11 ( ) ( ) 1
( 2)

G s s
G s H s

s

+=
+ +

+

= 2

1

4 5s s+ +
∴ Close loop poles will be the roots of s2 + 4s + 5 = 0
i.e. s = –2 + j and –2 – j

T3. (b)

1
( 1)s s +

G s H s( ) ( )

After adding pole at origin

2

1

( 1)s s +

G s H s( ) ( )

So, nyquist plot of a system will rotate by 90° in clockwise direction.
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T4. Sol.

For gain margin we have to find

G(s)H(s) =
0.75

(1 )(1 0.5 )s s s+ +
Phase over freqeuncy

–180° = –90° – tan–1(ω) – tan–1 (0.5 – ω)
–90° = tan–1 (ω) + tan–1 (0.5 ω)

2

1.5

1 0.5

ω
− ω

= tan (90°)

0.5 ω2 = 1

ω = 2

∴ ( ) ( )G j H jω ω =
2 2

0.75

1 1 0.25ω + ω + ω
 = 

0.75 1
42 1 2 1 0.5

=
+ +

∴ Gain margin =
1

20log
( ) ( )G j H jω ω

= 20 log 4 = 12 dB

T5. Sol.

–90° – tan–1 (2ω) – tan–1 (3ω) = –180°
tan–1 (2ω) + tan–1 (3ω) = 90°

2

5

1 6

ω
− ω

= tan (90°)

∴ 1 – 6 ω2 = 0

ω =
1 0.41
6

=

T6. Sol.

The Bode plot is of type zero system
thus steady state error

ess =
1

1 pK+

Where Kp = propational error constant
Kp = 40 db

or Kp = 100

∴ ess =
1 1

1 100 101
=

+
 = 0.009
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Controllers and Compensators6

T1. Sol.

The given compensator represents phase lead compensator having maximum phase

φ = 1 1sin
1

− − α 
 + α 

Here, α = 2

1 2

(1/ 2)
0.333

1 (1/ 2)
R

R R
Ω= =

+ + Ω

∴ φ = 1 1 11 0.333 0.667sin sin sin (0.5) 30
1 0.333 1.33

− − −−   = = = °   +   

T2. (a)

The effect of addition of a zero to a transfer function is providing a phase lead.

T3. Sol.

G(s) =
1

4

1
25

s

s

 +  
 +  

Comparing it with the standard transfer function of phase lead compensator

G(s) =
(1 )

(1 )
Ts
Ts

α +
+ α

T =
1

,
4

αT = 
1

25

Now, frequency ωm occurs at =
1 1
T T

⋅
α

 = 25 4×  = 10 rad/sec.
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T4. Sol.

100

K Sd

C s( )R s( ) +

– –

+

G sd ( )

1
(4  + 1)s s

Converting the blocked portion into simplified form as

Gd(s) =
2

1
1(4 1)

4 (1 )1
(4 1)

d d

s s
sK s s K

s s

+ =
+ ++

+

Now,

100
C s( )R s( ) +

–

1
4 + (1 + )s s K2

d

Now, simplifying the above block diagram as

G(s) =
2

2

100
4 (1 )

100
1

4 (1 )

d

d

s s K

s s K

+ +

+
+ +

= 2

100

4 (1 ) 100ds s K+ + +

=
2

25
(1 )

25
4

ds K
s

+
+ +

Comparing it with standard equation as
ωn = 5 rad/sec.

2ξωn =
1

4
dK+ 

  
Given ξ = 0.5

5 =
1

4
dK+

⇒ Kd = 19
MADE E
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State Space Analysis7

T1. (b)

T2. Sol.

Given ( )tx� = Ax(t), x(0) = x0

Taking the Laplace transform
sX(s) – x(0) = AX(s)

[sI – A] X(s) = x(0)
X(s) = [sI – A]–1 x(0)
x(t) = L–1[sI – A]–1 x(0) ...(i)

Conditions given are

For x0 = 1
, ( )

1

t

t

e
t

e

−

−

  
=   − −    

x

For x0 =
2

2

0
, ( )

1 2

t t

t t

e e
t

e e

− −

− −

 − 
=   

− +    
x

Using the linearity property in equation (i)
K1 x1(t) = L–1[sI – A]–1 x1(0) K1

K2 x2(t) = L–1[sI – A]–1 x2(0) K2

Using the linearity property as
K1 x1(t) + K2 x2(t) = L–1[sI – A]–1

[K1x1(0) + K2x2(0)] ...(ii)
Also X3(s) = [sI – A]–1 x3(0)

So, 1 2
1 0

1 1
K K

   
+   −   

=
3

5
 
 
 
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1 2

1 2

0K K
K K

+ 
 − + 

=
3

5
 
 
 

⇒ K1 = 3
K2 = 8

So, from equation (ii), we get x(t)
x(t) = K1 x1(t) + K2 x2(t)

=
2

2
3 8

2

t t t

t t t

e e e

e e e

− − −

− − −

   −
+   

− − +      

=
2

2

11 8

11 16

t t

t t

e e

e e

− −

− −

 −
 
− +  

T3. Sol.

Given  1

2

 
 
 

x
x
�
�

= 1

2

0 1
0 0

  
  

   

x
x

A =
0 1

0 0
 
 
 

[sI – A] =
0 0 1 1

0 0 0 0

s s
s s

−     
− =     

     
[sI – A] = s2

φ(t) = L–1[sI – A]–1

= 2

11
0

s
ss

 
 
 

=
2

1

1 1
1

0 11
0

ts s

s

−

 
   
  =     
  

L

T4. (b)

1

2

3

 
 
 
  

x
x
x

�
�
�

=====
1

2

3

1 1 0 0
0 1 0 4
0 0 2 0

u
−     

    − +    
    −    

x
x
x

y = [ ]
1

2

3

1 1 1
 
 
 
  

x
x
x
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A =

1 1 0
0 1 0 ,
0 0 2

− 
 − 
 − 

 B = 

0
4 ,
0

 
 
 
  

 C = [ ]1 1 1

Check for controllability:
Qc = [B : AB : A2B]

=

0 4 8
4 4 4
0 0 0

− 
 − 
  

For controllable

Qc ≠ 0

Here, Qc = 4(0) = 0 ∴ Uncontrollable.

Check for observability:
Qo = [CT : AT CT : A2T CT]

=

1 1 1
1 0 1
1 2 4

− 
 − 
 − 

For observable
Qo ≠ 0

Here Qo = 1 ∴ Observable.

T5. Sol.

Characterstic equation = 1( )s A −−I

=
12 1

3 5s

−− 
 + 

= s(s + 5) + 3
= s2 + 5s + 3
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Process Control8

T1. Sol.

The open loop transfer function for the primary loop is given by

G(s)primary = 2
1 8

( 1) ( 2) ( 4)
K

s s s
⋅

+ + +
Phase cross-over frequency for primary loop is given by

1 1 1tan tan tan
2 4
pc pc

pc
− − −ω ω

− ω − − = –180°

1 1 1tan tan tan
2 4
pc pc

pc
− − −ω ω

ω + + = 180°

1 1
2

2 4tan tan
1

8

pc pc

pc
pc

− −

 ω ω
+ 

 ω +
 ω

− 
 

= 180°

1 1
2

6
tan tan

8
pc

pc
pc

− −
 ω

ω +  
− ω  

= 180°

2
1

2

2

6

8
tan

6
1

8

pc
pc

pc

pc

pc

−

 ω
ω + 

− ω 
 ω − − ω 

= 180°

2

6

8
pc

pc
pc

ω
ω +

− ω
= 0

2
61

8 pc
+

− ω
= 0

ωpc = 14
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We know that magnitude = 1, at ωpc (By polar plot)

M = 2 2 2 2

1 1 8

1 4 16
K

+ ω ω + ω +

1 = 2 2 2 2

1 1 8

1 4 16pc pc pc

K
+ ω ω + ω +

1 = 2
1 1 8
15 18 30

K  = 28
8100
K

K2 =
90

11.25
8

=

The open loop transfer function for the secondary loop is given by

Gsecondary = 1
1

1
K

s +
Cross-over frequency for secondary loop

–tan–1 ωpc = –180°
ωpc = 0

Since there is no cross-over frequency for the secondary loop, so we can use any value of gain K1 for
secondary loop.
∴ Upper limit of K1 = ∞

Upper limit of K2 = 11.25

T2. Sol.

[ ] 1
( ) ( ) ( ) ( )

( 1)ffD s G s Y s D s
s s

 − + + 
= Y(s)

D(s) Gff(s) + (s2 + s) D(s) = (s2 + s + 1) Y(s)

( )
( )

Y s
D s

=
2

2

( )
( )

1
FFG s s s

H s
s s

+ +=
+ +

∵ Gff(s) = 1 + s [P-D controller]

∴ H(s) =
2

2
( 2 1)
( 1)
s s
s s

+ +
+ +

2( )H j ω =ω =
5 5

9 4 13
=

+

T3. Sol.

Using the value of Ku and Pu, Ziegler and Nichols recommended the following settings for feedback controllers

(min) (min)

/ 2 – –
-1 /2.2 /1.2 –

-1- /1.7 / 2 / 8

C D

u

u u

u u u

K

P K
P K P

P D K P P

τ τI

Then, the Ziegeer-Nichols setting for the proportional controller is

2
uK

=
10

5
2

=
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T4. Sol.

Open loop transfer function is given by

G(s) =
1 1

( 2) ( 10) ( 2) ( 10)
p

p
K s KK

K
s s s s s s

+  + =    + + + +   
II

Ch: equation is given by
1 + G(s) = 0

s(s + 2) (s + 10) + Kps + KI = 0
s3 + 12s2 + (20 + Kp) s + KI = 0

By R-H critieria
3

2

1

0

1 20

12

12(20 )
0

12

p

p

s K

s K
K K

s

s K

+

+ −
I

I

I

For stable system, 0K >I

12(20 + Kp) ≥ 0
240 + 20Kp – KI ≥ 0

1240 + 20 Kp ≥ KI

Kp ≥
240

20
K −I
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