GATE

mork

Detailed Explanations of
Try Yourself Questions

Instrumentation Engineering

Control Systems and Process Control

Mathematical Models and Block Diagram

D Detailed Explanation
 of
 Try Yourself Questions

T1. (b)
Drawing SFG of the above

Here, $P_{1}=\frac{G^{2}(s)}{s} ; L_{2}=-G(s) ; L_{1}=-G^{2}(s) ; L_{3}=-\frac{G(s)}{s}$

$$
\begin{aligned}
\frac{C(s)}{R(s)} & =\frac{\frac{G^{2}(s)}{s}}{1-\left(-G^{2}(s)-\frac{G(s)}{s}-G(s)\right)} \\
& =\frac{G^{2}(s)}{s+s G^{2}(s)+G(s)+s G(s)}
\end{aligned}
$$

Put $G(s)=s$,

$$
\frac{C(s)}{R(s)}=\frac{s^{2}}{s+s^{3}+s+s^{2}}=\frac{s^{2}}{s^{3}+s^{2}+2 s}=\frac{s}{s^{2}+s+2}
$$

T2. Sol.

$$
\begin{aligned}
E_{0}(s) & =\frac{1}{s C} I(s) \\
I(s) & =\frac{E_{i}(s)}{\left[R+\frac{\left(R+\frac{1}{s C}\right) \times \frac{1}{s C}}{\left(R+\frac{1}{s C}+\frac{1}{s C}\right)}\right]} \times \frac{\frac{1}{s C}}{\left(R+\frac{1}{s C}+\frac{1}{s C}\right)} \\
& =\frac{E_{i}(s)}{\frac{R+\frac{1}{s C}}{s C R+2}+R} \times \frac{1}{s C R+2}=\frac{E_{i}(s)}{\left(R+\frac{1}{s C}\right)+R(s C R+2)} \\
E_{0}(s) & =\frac{(\text { Using current division rule) }}{\frac{(1+R S C)+S C R(S C R+2)}{S C}} \\
\frac{E_{0}(s)}{E_{i}(s)} & =\frac{1}{S^{2} C^{2} R^{2}+3 S C R+1}=\frac{1}{S^{2} T^{2}+3 S T+1}
\end{aligned}
$$

T3. (b)

$$
\frac{V_{0}}{V_{i}}=\frac{1 / C s}{R+\frac{1}{C s}}=\frac{1}{R C s+1}
$$

2
 \section*{Time Response Analysis}
 Detailed Explanation of
 Try Yourself Questions

T1. Sol.

$$
G(s)=\frac{K}{s(s+p)}
$$

Now, the closed loop system

$$
T(s)=\frac{K}{s^{2}+s p+K}
$$

\therefore Comparing it with standard equation

$$
\begin{array}{lrl}
& K & =\omega_{n}^{2} \\
& 2 \xi \omega_{n} & =p \\
\Rightarrow & t_{s} & =\frac{4}{\xi \omega_{n}} \\
\therefore & \xi \omega_{n} & =1 \\
\text { now, } & p & =2 \\
& e^{\frac{-\pi \xi}{\sqrt{1-\xi^{2}}}}= & 0.1 \\
\therefore & \xi & =0.537 \\
\therefore & \omega_{n} & =\frac{p}{2 \xi}=1.69 \\
\therefore & K & =\omega_{n}^{2}=2.85
\end{array}
$$

T2. Sol.
Taking Laplace transform we get

$$
X(s)=\frac{1}{\left(s^{2}+6 s+5\right)} \cdot 12\left[\frac{1}{s}-\frac{1}{(s+2)}\right]
$$

$$
X(s)=\frac{12}{s(s+5)(s+1)} \cdot 12\left[\frac{1}{s}-\frac{1}{(s+2)}\right]
$$

Now, using final value theorem

$$
\begin{aligned}
\lim _{t \rightarrow \infty} x(t) & =\lim _{s \rightarrow 0} s X(s) \\
X(s) & =\lim _{s \rightarrow 0}\left[\frac{12}{(s+5)(s+1)}-\frac{12 s}{(s+5)(s+1)(s+3)}\right] \\
& =\frac{12}{5}=2.4
\end{aligned}
$$

T3. Sol.

To find the impulse response let us difference the response.

$$
c^{\prime}(t)=12 e^{-10 t}-12 e^{-60 t}
$$

tanking inverse laplace transform we get

$$
\begin{aligned}
& C^{\prime}(s)=\frac{600}{(s+10)(s+60)} \\
& C^{\prime}(s)=\frac{600}{s^{2}+70 s+600}
\end{aligned}
$$

$\therefore c^{\prime}(s)$ is the impulse response thus comparing it with the standard equation.

$$
\begin{aligned}
2 \xi \omega_{n} & =70 \\
\omega_{n} & =\sqrt{600} \\
\therefore \quad \xi & =1.428 \approx 1.43
\end{aligned}
$$

T4. Sol.

Since real port of the given second order equation is at -0.602 thus they can be considered as dominant poles.

Thus

$$
\omega_{d}=\omega_{n} \sqrt{1-\xi^{2}}
$$

$$
\omega_{n}=\sqrt{2.829}=1.6819
$$

and

$$
t_{p}=\frac{\pi}{\omega_{d}}
$$

$$
2 \xi \omega_{n}=1.204
$$

$$
\begin{aligned}
& \xi & =\frac{1.204}{2 \times 1.6819}=0.3579 \\
\therefore & \omega_{d} & =1.6819 \sqrt{1-\xi^{2}} \\
\therefore & \omega_{d} & =1.577 \\
\therefore & t_{p} & =1.999 \approx 2
\end{aligned}
$$

Stability

(0)
 Detailed Explanation of
 Try Yourself Questions

T1. (d)

T2. (b)
With negative feedback, the system stability will increase. In open loop system.

The gain of the system is $G(s)$.
Where as in closed loop system

The closed loop gain of the systems $\frac{G(s) H(s)}{1+G(s) H(s)}$ hence it is divided by $1+G(s) H(s)$, in closed loop system with negative feedback gain decreases.

T3. (d)
The correct sequence of steps needed to improve system stability is to use negative feedback, reduce gain and insert deviation action.

T4. Sol.

$$
\begin{array}{r}
1+G(s)=0 \\
\Rightarrow \quad s \tau_{1}\left[1+s\left(\tau_{1}+\tau_{2}\right)+s^{2} \tau_{1} \tau_{2}\right]+K=0 \\
s^{3} \tau_{1}^{2} \tau_{2}+s^{2} \tau_{1}\left(\tau_{1}+\tau_{2}\right)+s \tau_{1}+K=0
\end{array}
$$

Using R-H criteria

$$
\text { Also, } \quad \frac{\tau_{1}\left(\tau_{1}+\tau_{2}\right)-K \tau_{2}}{\left(\tau_{1}+\tau_{2}\right)}>0
$$

$$
\begin{aligned}
& \mathrm{K} \tau_{2} \tau_{1}
\end{aligned}<\tau_{1}\left(\tau_{1}+\tau_{2}\right), ~\left(1+\frac{\tau_{1}}{\tau_{2}}\right)
$$

$0<K<\left(1+\frac{\tau_{1}}{\tau_{2}}\right) ;\left[\tau_{1}>0\right.$ and $\tau_{2}>0$ and this is the only possible case. $]$
T5. Sol.

$$
\frac{C(s)}{R(s)}=\frac{s^{2}(s+1)(2 s+K)}{s^{2}(s+1)+2 s+K}
$$

$$
\begin{aligned}
& s^{3} \quad \tau_{1}^{2} \tau_{2} \quad \tau_{1} \\
& s^{2} \quad \tau_{1}\left(\tau_{1}+\tau_{2}\right) \quad K \\
& s^{1} \frac{\left[\tau_{1}^{2}\left(\tau_{1}+\tau_{2}\right)-K \tau_{1}^{2} \tau_{2}\right]}{\tau_{1}\left(\tau_{1}+\tau_{2}\right)} \\
& s^{0} \quad K \\
& \Rightarrow \quad \mathrm{~K}>0 ; \tau_{1}>0 ; \tau_{2}>0
\end{aligned}
$$

at

$$
\begin{aligned}
K & =2 \\
\frac{C(s)}{R(s)} & =\frac{s^{2}(s+1)^{2}}{\left(s^{2}+2\right)(s+1)}
\end{aligned}
$$

Thus poles at $\pm j \sqrt{2}$ and one at -1 .

Root Locus Technique

T1. Sol.
Characteristic equation is given as

$$
1+G(s) H(s)=0
$$

On comparing this characteristic equation with the equation given in problem, we have

$$
G(s) H(s)=\frac{K}{s(s+1)(s+2)}
$$

$P=$ Number of open loop poles $=3=$ number of branches on root locus
$Z=0=$ Number of branches terminating at zeros.

Angle of Asymptotes: The $P-Z$ branches terminating at infinity will go along certain straight lines.
Number of asymptotes $=P-Z$

$$
\begin{aligned}
& =3-0=3 \\
\theta & =\frac{180^{\circ}(2 q+1)}{P-Z} \\
\theta_{1} & =\frac{180 \times(2 \times 0+1)}{3}=60^{\circ} \\
\theta_{2} & =\frac{180^{\circ}(2 \times 1+1)}{3}=180^{\circ} \\
\theta_{3} & =\frac{180^{\circ}(2 \times 2+1)}{3}=300^{\circ}
\end{aligned}
$$

Centroid: It is the interpection point of the asymptotes on the real axis. It may or may not be a part of root locus.

$$
\begin{aligned}
\text { Centroid } & =\frac{\Sigma \text { Real part of open loop poles }-\Sigma \text { Real part of open loop zeros }}{P-Z} \\
& =\frac{0-1-2}{3}=-1
\end{aligned}
$$

Centroid $\rightarrow(-1,0)$
Break-away or break-in points: These are those points on whose multiple roots of the characteristic equation occur.

$$
\begin{aligned}
s\left(s^{2}+3 s+2\right)+K & =0 \\
K & =-\left(s^{3}+3 s^{2}+2 s\right) \\
\frac{d K}{d s} & =-\left(3 s^{2}+6 s+2\right)=0 \\
s & =-0.422,-1.577
\end{aligned}
$$

Now verify the valid break-away point

$$
\begin{aligned}
& K=0.234 \text { (valid) at } s=-0.422 \\
& K=\text { negative (not valid) at } s=-1.577
\end{aligned}
$$

T2. Sol.

Poles are at

$$
\begin{aligned}
\text { OLTF } & =\frac{K}{s\left(s^{2}+4 s+8\right)} \\
s_{1} & =0 \\
s_{2,3} & =\frac{-4 \pm \sqrt{16-32}}{2}=-2 \pm j 2
\end{aligned}
$$

There are 3 poles and no zero with root loci, all terminating at infinity.

$$
\phi=\frac{(2 q+1) 180^{\circ}}{P-Z}=60^{\circ}, 180^{\circ}, 300^{\circ} \text { for } q=0,1,2 \text { (angle of }
$$

asymptotes)

$$
\text { Centroid }=\frac{0-2+j 2-2-j 2}{3}=\frac{-4}{3}=-1.33
$$

As $\frac{d K}{d s}$ is imaginary, there is no breakaway point from the real axis.
Imaginary axis crossing:
Characteristic equation $=s\left(s^{2}+4 s+8\right)+K$

$$
=s^{3}+4 s^{2}+8 s+K=0
$$

s^{3}	1	8
s^{2}	4	K
s^{1}	$\frac{32-K}{4}$	
s^{0}	K	

From Routh-Hurwitz Criteria:

For $K=32$, the system is marginally stable and beyond $K=32$ the system becomes unstable.
Hence,

$$
4 s^{2}+K=4 s^{2}+32
$$

$$
s=j 2 \sqrt{2}=j \omega
$$

$$
\omega=2 \sqrt{2}=2.83
$$

The root locus cuts the imaginary axis at $\pm j 2.83$.

$$
\begin{aligned}
& 1+\frac{K}{s\left(s^{2}+4 s+8\right)}=0 \\
& \Rightarrow \quad K=-s\left(s^{2}+4 s+8\right)=-\left(s^{3}+4 s^{2}+8 s\right) \\
& \text { for break away points, } \\
& \frac{d K}{d s}=0 \\
& \Rightarrow \quad \frac{d K}{d s}=-\left(3 s^{2}+8 s+8\right) \\
& s_{1,2}=-\frac{8 \pm \sqrt{64-4 \times 8 \times 3}}{2 \times 3} \\
& =-\frac{8 \pm \sqrt{64-96}}{6}=-1.33 \pm j 0.943
\end{aligned}
$$

$$
\begin{aligned}
\phi_{2} & =90^{\circ} \\
\Sigma \phi_{p} & =\phi_{1}+\phi_{2}=135^{\circ}+90^{\circ}=225^{\circ} \\
\phi & =\Sigma \phi_{2}-\Sigma \phi_{p}=0-225^{\circ}=-225^{\circ}
\end{aligned}
$$

Angle of departure,

$$
\phi_{D}=180+\phi=180-225^{\circ}=-45^{\circ}
$$

Root locus of the given system:

T3. Sol.

$$
G(s) H(s)=\frac{K}{s(s+1)(s+4)}
$$

Step-1 Number of open loop poles

$$
P=3
$$

Number of open loop zeros; $Z=0$
Number of branches terminating at infinity

$$
=P-Z=3
$$

Step-2 Angle of asymptotes

$$
\begin{aligned}
\theta & =\frac{(2 q+1) 180^{\circ}}{P-Z} \text { where } q=0,1,2 \\
\theta_{1} & =\frac{180^{\circ}}{3}=60^{\circ} \\
\theta_{2} & =\frac{3 \times 180^{\circ}}{3}=180^{\circ} \\
\theta_{3} & =\frac{5 \times 180^{\circ}}{3}=300^{\circ}
\end{aligned}
$$

Step-3 Centroid $=\frac{\Sigma \text { real part of open loop poles }-\Sigma \text { real part of open loop zeros }}{P-Z}$

$$
=\frac{(-1-4)-(0)}{3-0}=-\frac{5}{3}
$$

Step-4 Break away point

$$
\begin{aligned}
K+s\left(s^{2}+5 s+4\right) & =0 \\
K & =-s^{3}-5 s^{2}-4 s \\
\frac{d K}{d s} & =-3 s^{2}-10 s-4=0 \\
3 s^{2}+10 s+4 & =0 \\
s_{1}, s_{2} & =-0.4648,-2.8685
\end{aligned}
$$

Valid break-away point will be -0.4648
(i) Routh array table

s^{3}	1	4
s^{2}	5	K
s^{1}	$\frac{20-K}{5}$	0
s^{0}	1	

For system to be stable

$$
20-K>0 \Rightarrow K<20
$$

For system to be marginally stable.

$$
\begin{aligned}
K & =20 \\
\Rightarrow \quad A(s) & =5 s^{2}+20=0 \\
\Rightarrow \quad s & = \pm 2 j
\end{aligned}
$$

(ii) To find K,

$$
\begin{aligned}
\theta & =\cos ^{-1} \xi=\cos ^{-1}(0.34)=70.123^{\circ} \\
K & =l_{1} l_{2} l_{3} \\
\text { Gain margin }(G M) & =\frac{\mathrm{K}(\text { Marginal stability })}{\mathrm{K}(\text { desired })}
\end{aligned}
$$

T4. Sol.

$$
\begin{aligned}
\phi_{d} & =180-\left(\phi_{p}-\phi_{z}\right) \\
& =180^{\circ}-\left(180+\tan ^{-1}\left(\frac{1}{2}\right)+90^{\circ}-225^{\circ}\right) \\
& =108.4^{\circ}
\end{aligned}
$$

T5. Sol.

Given that

$$
G(s)=\frac{K}{(s+2)(s-1)}
$$

Using root locus method, the break point can be

$$
\begin{aligned}
& \Rightarrow \\
& \text { or } \\
& 1+\frac{K}{(s+2)(s-1)}=0 \\
& K=-(s+2)(s-1) \\
& \frac{d K}{d s}=-2 s-1=0 \\
& s=-0.5 \\
& \text { or }
\end{aligned}
$$

> obtain as

To have, both the poles at the same directions

$$
\begin{aligned}
|G(s)|_{s=0.5} & =1 \\
K & =2.25
\end{aligned}
$$

Frequency Response Analysis

Detailed Explanation
 of
 Try Yourself Questions

T1. Sol.

Given,

$$
G(s)=\frac{K(1+0.5 s)(1+a s)}{s\left(1+\frac{s}{8}\right)(1+b s)\left(1+\frac{s}{36}\right)}
$$

$(1+a s)$ is addition of zero to the transfer function whose contribution in slope $=+20 \mathrm{~dB} / \mathrm{decade}$ or $-6 \mathrm{~dB} /$ octave.
$(1+b s)$ is addition of pole to the transfer function whose contribution in slope $=-20 \mathrm{~dB} /$ decade or $-6 \mathrm{~dB} /$ octave
Observing the change in the slope at different corner frequencies, we conclude that

From
$a=\frac{1}{4} \mathrm{rad} / \mathrm{s}$ and $b=\frac{1}{24} \mathrm{rad} / \mathrm{s}$
$\omega=0.01 \mathrm{rad} / \mathrm{s}$ to $\omega=8 \mathrm{rad} / \mathrm{s}$,

$$
\text { slope }=-20 \mathrm{~dB} / \text { decade }
$$

Let the vertical length in dB be y
\therefore
or,
or,
Applying
we have:
or,
Now,
or,

$$
-20=\left(\frac{0-y}{\log 8-\log 0.01}\right)
$$

$$
-20=\frac{y}{\log 8+2}
$$

$y=58 \mathrm{~dB}$
$y=m x+C$ at $\omega=0.01 \mathrm{rad} / \mathrm{s}$,
$58=-20 \log 0.01+C$
$C=58-40=18$
$C=20 \log K$
$\log K=\frac{18}{20}=0.9$

$$
\begin{array}{rlrl}
\therefore & K & =\log ^{-1}(0.9)=(10)^{0.9}=7.94 \\
\therefore & \frac{a}{b K} & =\frac{\left(\frac{1}{4}\right)}{\left(\frac{1}{24}\right) \times 7.94} \\
& =\frac{24}{4 \times 7.94}=0.755 \\
\therefore \quad & \frac{a}{b K} & =0.755
\end{array}
$$

T2. Sol.

$$
\text { OLTF }=G(s)=\frac{1}{(s+2)^{2}}
$$

For unity feedback system,

$$
\begin{aligned}
H(s) & =1 \\
\therefore \quad \text { CLTF } & =\frac{G(s)}{1+G(s) H(s)}=\frac{\frac{1}{(s+2)^{2}}}{1+\frac{1}{(s+2)^{2}}} \\
& =\frac{1}{s^{2}+4 s+5}
\end{aligned}
$$

\therefore Close loop poles will be the roots of $s^{2}+4 s+5=0$
i.e.

$$
s=-2+j \text { and }-2-j
$$

T3. (b)

After adding pole at origin

So, nyquist plot of a system will rotate by 90° in clockwise direction.

T4. Sol.

For gain margin we have to find

$$
G(s) H(s)=\frac{0.75}{s(1+s)(1+0.5 s)}
$$

Phase over freqeuncy

$$
\begin{aligned}
-180^{\circ} & =-90^{\circ}-\tan ^{-1}(\omega)-\tan ^{-1}(0.5-\omega) \\
-90^{\circ} & =\tan ^{-1}(\omega)+\tan ^{-1}(0.5 \omega) \\
\frac{1.5 \omega}{1-0.5 \omega^{2}} & =\tan \left(90^{\circ}\right) \\
0.5 \omega^{2} & =1 \\
\omega & =\sqrt{2} \\
\therefore \quad \therefore \quad|G(j \omega) H(j \omega)| & =\frac{0.75}{\omega \sqrt{1+\omega^{2}} \sqrt{1+0.25 \omega^{2}}}=\frac{0.75}{\sqrt{2} \sqrt{1+2} \sqrt{1+0.5}}=\frac{1}{4} \\
\therefore \quad \text { Gain margin } & =20 \log \frac{1}{|G(j \omega) H(j \omega)|} \\
& =20 \log 4=12 \mathrm{~dB}
\end{aligned}
$$

T5. Sol.

$$
\begin{aligned}
-90^{\circ}-\tan ^{-1}(2 \omega)-\tan ^{-1}(3 \omega) & =-180^{\circ} \\
\tan ^{-1}(2 \omega)+\tan ^{-1}(3 \omega) & =90^{\circ}
\end{aligned}
$$

$$
\frac{5 \omega}{1-6 \omega^{2}}=\tan \left(90^{\circ}\right)
$$

$$
\therefore \quad 1-6 \omega^{2}=0
$$

$$
\omega=\frac{1}{\sqrt{6}}=0.41
$$

T6. Sol.

The Bode plot is of type zero system
thus steady state error

Where

$$
e_{s s}=\frac{1}{1+K_{p}}
$$

$K_{p}=$ propational error constant
$K_{p}=40 \mathrm{db}$
or
$K_{p}=100$
$\therefore \quad e_{s s}=\frac{1}{1+100}=\frac{1}{101}=0.009$

Controllers and Compensators

Detailed Explanation
 of
 Try Yourself Questions

T1. Sol.
The given compensator represents phase lead compensator having maximum phase

Here,

$$
\phi=\sin ^{-1}\left(\frac{1-\alpha}{1+\alpha}\right)
$$

$\alpha=\frac{R_{2}}{R_{1}+R_{2}}=\frac{(1 / 2) \Omega}{1+(1 / 2) \Omega}=0.333$
\therefore

$$
\phi=\sin ^{-1}\left(\frac{1-0.333}{1+0.333}\right)=\sin ^{-1}\left(\frac{0.667}{1.33}\right)=\sin ^{-1}(0.5)=30^{\circ}
$$

T2. (a)
The effect of addition of a zero to a transfer function is providing a phase lead.
T3. Sol.

$$
G(s)=\frac{\left(1+\frac{s}{4}\right)}{\left(1+\frac{s}{25}\right)}
$$

Comparing it with the standard transfer function of phase lead compensator

$$
\begin{aligned}
G(s) & =\frac{\alpha(1+T s)}{(1+\alpha T s)} \\
T & =\frac{1}{4}, \quad \alpha T=\frac{1}{25} \\
& =\sqrt{\frac{1}{\alpha T} \cdot \frac{1}{T}}=\sqrt{25 \times 4}=10 \mathrm{rad} / \mathrm{sec} .
\end{aligned}
$$

Now, frequency ω_{m} occurs at

T4. Sol.

Converting the blocked portion into simplified form as

Now,

$$
G_{d}(s)=\frac{\frac{1}{s(4 s+1)}}{1+\frac{s K_{d}}{s(4 s+1)}}=\frac{1}{4 s^{2}+s\left(1+K_{d}\right)}
$$

Now, simplifying the above block diagram as

$$
\begin{aligned}
G(s) & =\frac{\frac{100}{4 s^{2}+s\left(1+K_{d}\right)}}{1+\frac{100}{4 s^{2}+s\left(1+K_{d}\right)}} \\
& =\frac{100}{4 s^{2}+s\left(1+K_{d}\right)+100} \\
& =\frac{25}{s^{2}+\frac{s\left(1+K_{d}\right)}{4}+25}
\end{aligned}
$$

Comparing it with standard equation as

$$
\omega_{n}=5 \mathrm{rad} / \mathrm{sec} .
$$

$$
\Rightarrow \quad K_{d}=19
$$

$$
\begin{aligned}
2 \xi \omega_{n} & =\left(\frac{1+K_{d}}{4}\right) \quad \text { Given } \xi=0.5 \\
5 & =\frac{1+K_{d}}{4} \\
K_{d} & =19
\end{aligned}
$$

State Space Analysis

Detailed Explanation of

Try Yourself Questions

T1. (b)
T2. Sol.
Given

$$
\dot{x}(t)=A x(t), \quad x(0)=x_{0}
$$

Taking the Laplace transform

$$
\begin{align*}
s X(s)-x(0) & =A X(s) \\
{[s I-A] X(s) } & =x(0) \\
X(s) & =[s I-A]^{-1} x(0) \\
x(t) & =\mathcal{L}^{-1}[s I-A]^{-1} x(0) \tag{i}
\end{align*}
$$

Conditions given are

For

$$
x_{0}=\left[\begin{array}{r}
1 \\
-1
\end{array}\right], x(t)=\left[\begin{array}{c}
e^{-t} \\
-e^{-t}
\end{array}\right]
$$

For

$$
x_{0}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], x(t)=\left[\begin{array}{l}
e^{-t}-e^{-2 t} \\
-e^{-t}+2 e^{-2 t}
\end{array}\right]
$$

Using the linearity property in equation (i)

$$
\begin{aligned}
& K_{1} x_{1}(t)=\mathcal{L}^{-1}[s I-A]^{-1} x_{1}(0) K_{1} \\
& K_{2} x_{2}(t)=\mathcal{L}^{-1}[s I-A]^{-1} x_{2}(0) K_{2}
\end{aligned}
$$

Using the linearity property as

$$
\begin{align*}
K_{1} x_{1}(t)+K_{2} x_{2}(t) & =\mathcal{L}^{-1}[s I-A]^{-1} \\
{\left[K_{1} x_{1}(0)+K_{2} x_{2}(0)\right] } & \tag{ii}\\
X_{3}(s) & =[s I-A]^{-1} x_{3}(0)
\end{align*}
$$

Also

$$
K_{1}\left[\begin{array}{r}
1 \\
-1
\end{array}\right]+K_{2}\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
3 \\
5
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{l}
K_{1}+O K_{2} \\
-K_{1}+K_{2}
\end{array}\right]=\left[\begin{array}{l}
3 \\
5
\end{array}\right]} \\
& \Rightarrow \quad K_{1}=3 \\
& K_{2}=8 \\
& \text { So, from equation (ii), we get } x(t) \\
& x(t)=K_{1} x_{1}(t)+K_{2} x_{2}(t) \\
& =3\left[\begin{array}{r}
e^{-t} \\
-e^{-t}
\end{array}\right]+8\left[\begin{array}{r}
e^{-t}-e^{-2 t} \\
-e^{-t}+2 e^{-2 t}
\end{array}\right] \\
& =\left[\begin{array}{l}
11 e^{-t}-8 e^{-2 t} \\
-11 e^{-t}+16 e^{-2 t}
\end{array}\right]
\end{aligned}
$$

T3. Sol.

Given

$$
\begin{aligned}
{\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right] } & =\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \\
A & =\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \\
{[s I-A] } & =\left[\begin{array}{ll}
s & 0 \\
0 & s
\end{array}\right]-\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
s & -1 \\
0 & s
\end{array}\right] \\
{[s I-A] } & =s^{2} \\
\phi(t) & =\mathcal{L}^{-1}[s I-A]^{-1} \\
& =\frac{1}{s^{2}}\left[\begin{array}{ll}
s & 1 \\
0 & s
\end{array}\right] \\
& =\mathcal{L}^{-1}\left[\begin{array}{ll}
\frac{1}{s} & \frac{1}{s^{2}} \\
0 & \frac{1}{s}
\end{array}\right]=\left[\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right]
\end{aligned}
$$

T4. (b)

$$
\begin{aligned}
{\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right] } & =\left[\begin{array}{rrr}
-1 & 1 & 0 \\
0 & -1 & 0 \\
0 & 0 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{l}
0 \\
4 \\
0
\end{array}\right] u \\
y & =\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
\end{aligned}
$$

$$
A=\left[\begin{array}{rrr}
-1 & 1 & 0 \\
0 & -1 & 0 \\
0 & 0 & -2
\end{array}\right], B=\left[\begin{array}{l}
0 \\
4 \\
0
\end{array}\right], C=\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]
$$

Check for controllability:

$$
\begin{aligned}
Q_{C} & =\left[B: A B: A^{2} B\right] \\
& =\left[\begin{array}{rrr}
0 & 4 & -8 \\
4 & -4 & 4 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

For controllable

$$
\left|Q_{c}\right| \neq 0
$$

Here,

$$
\left|Q_{c}\right|=4(0)=0 \therefore \text { Uncontrollable. }
$$

Check for observability:

$$
\begin{aligned}
Q_{0} & =\left[C^{T}: A^{\top} C^{\top}: A^{2 T} C^{T}\right] \\
& =\left[\begin{array}{rrr}
1 & -1 & 1 \\
1 & 0 & -1 \\
1 & -2 & 4
\end{array}\right]
\end{aligned}
$$

For observable

Here

$$
\begin{aligned}
& \left|Q_{0}\right| \neq 0 \\
& \left|Q_{0}\right|=1 \quad \therefore \text { Observable. }
\end{aligned}
$$

T5. Sol.

$$
\begin{aligned}
\text { Characterstic equation } & =\left|(s I-A)^{-1}\right| \\
& =\left[\begin{array}{cc}
2 & -1 \\
3 & s+5
\end{array}\right]^{-1} \\
& =s(s+5)+3 \\
& =s^{2}+5 s+3
\end{aligned}
$$

[

Process Control

Detailed Explanation of
 Try Yourself Questions

T1. Sol.
The open loop transfer function for the primary loop is given by

$$
G(s)_{\text {primary }}=K_{2} \frac{1}{(s+1)} \cdot \frac{8}{(s+2)(s+4)}
$$

Phase cross-over frequency for primary loop is given by

$$
\begin{aligned}
-\tan ^{-1} \omega_{p c}-\tan ^{-1} \frac{\omega_{p c}}{2}-\tan ^{-1} \frac{\omega_{p c}}{4} & =-180^{\circ} \\
\tan ^{-1} \omega_{p c}+\tan ^{-1} \frac{\omega_{p c}}{2}+\tan ^{-1} \frac{\omega_{p c}}{4} & =180^{\circ} \\
\tan ^{-1} \omega_{p c}+\tan ^{-1}\left[\frac{\frac{\omega_{p c}}{2}+\frac{\omega_{p c}}{4}}{1-\frac{\omega_{p c}^{2}}{8}}\right] & =180^{\circ}
\end{aligned}
$$

$$
\tan ^{-1} \omega_{p c}+\tan ^{-1}\left[\frac{6 \omega_{p c}}{8-\omega_{p c}^{2}}\right]=180^{\circ}
$$

$$
\tan ^{-1}\left[\frac{\omega_{p c}+\frac{6 \omega_{p c}}{8-\omega_{p c}^{2}}}{1-\frac{6 \omega_{p c}^{2}}{8-\omega_{p c}^{2}}}\right]=180^{\circ}
$$

$$
\omega_{p c}+\frac{6 \omega_{p c}}{8-\omega_{p c}^{2}}=0
$$

$$
1+\frac{6}{8-\omega_{p c}^{2}}=0
$$

$$
\omega_{p c}=\sqrt{14}
$$

We know that magnitude $=1$, at $\omega_{p c} \quad($ By polar plot $)$

$$
\begin{aligned}
M & =K_{2} \frac{1}{\sqrt{1+\omega^{2}}} \frac{1}{\sqrt{\omega^{2}+4}} \frac{8}{\sqrt{\omega^{2}+16}} \\
1 & =K_{2} \frac{1}{\sqrt{1+\omega_{p C}^{2}}} \frac{1}{\sqrt{\omega_{p C}^{2}+4}} \frac{8}{\sqrt{\omega_{p C}^{2}+16}} \\
1 & =K_{2} \frac{1}{\sqrt{15}} \frac{1}{\sqrt{18}} \frac{8}{\sqrt{30}}=\frac{8 K_{2}}{\sqrt{8100}} \\
K_{2} & =\frac{90}{8}=11.25
\end{aligned}
$$

The open loop transfer function for the secondary loop is given by

$$
\mathrm{G}_{\text {secondary }}=K_{1} \frac{1}{s+1}
$$

Cross-over frequency for secondary loop

$$
\begin{aligned}
-\tan ^{-1} \omega_{p c} & =-180^{\circ} \\
\omega_{p c} & =0
\end{aligned}
$$

Since there is no cross-over frequency for the secondary loop, so we can use any value of gain K_{1} for secondary loop.

$$
\begin{array}{ll}
\therefore & \text { Upper limit of } K_{1}=\infty \\
& \text { Upper limit of } K_{2}=11.25
\end{array}
$$

T2. Sol.

$$
\begin{aligned}
{\left[D(s) G_{f f}(s)-Y(s)\right]\left[\frac{1}{s(s+1)}\right]+D(s) } & =Y(s) \\
D(s) G_{f f}(s)+\left(s^{2}+s\right) D(s) & =\left(s^{2}+s+1\right) Y(s) \\
\frac{Y(s)}{D(s)} & =H(s)=\frac{G_{F F}(s)+s^{2}+s}{s^{2}+s+1} \\
\because \quad G_{f f}(s) & =1+s[P-D \text { controller }] \\
\therefore \quad H(s) & =\frac{\left(s^{2}+2 s+1\right)}{\left(s^{2}+s+1\right)} \\
\therefore \quad|H(j \omega)|_{\omega=2} & =\frac{5}{\sqrt{9+4}}=\frac{5}{\sqrt{13}}
\end{aligned}
$$

T3. Sol.

Using the value of K_{u} and P_{u}, Ziegler and Nichols recommended the following settings for feedback controllers

	K_{C}	$\tau_{I(\text { min })}$	$\tau_{D(\text { min })}$
P	$K_{u} / 2$	-	-
$P-1$	$K_{u} / 2.2$	$P_{u} / 1.2$	-
$P-1-D$	$K_{u} / 1.7$	$P_{u} / 2$	$P_{u} / 8$

Then, the Ziegeer-Nichols setting for the proportional controller is

$$
\frac{K_{u}}{2}=\frac{10}{2}=5
$$

T4. Sol.

Open loop transfer function is given by

$$
G(s)=\left[K_{p}+\frac{K_{I}}{s}\right] \frac{1}{(s+2)(s+10)}=\left[\frac{K_{p} s+K_{I}}{s}\right] \frac{1}{(s+2)(s+10)}
$$

Ch: equation is given by

$$
\begin{array}{r}
1+G(s)=0 \\
s(s+2)(s+10)+K_{p} s+K_{I}=0 \\
s^{3}+12 s^{2}+\left(20+K_{p}\right) s+K_{I}=0
\end{array}
$$

By R-H critieria

s^{3}	1	$20+K_{p}$
s^{2}	12	K_{I}
s^{1}	$\frac{12\left(20+K_{p}\right)-K_{I}}{12}$	0
s^{0}	K_{I}	

For stable system,

$$
\begin{aligned}
K_{I} & >0 \\
12\left(20+K_{p}\right) & \geq 0 \\
240+20 K_{p}-K_{I} & \geq 0 \\
1240+20 K_{p} & \geq K_{I} \\
K_{p} & \geq \frac{K_{I}-240}{20}
\end{aligned}
$$

■■!

