

WORKDOOK 2025

Detailed Explanations of Try Yourself Questions

Instrumentation Engineering

Communication

© Copyright: Subject matter to MADE EASY Publications, New Delhi. No part of this book may be reproduced or utilised in any form without the written permission.

Amplitude Modulation

Detailed Explanation of Try Yourself Questions

T1. Sol.

The signal $s(t) = A_{C}[1 + \mu \cos(\omega_{m}t)] \cos(\omega_{c}t)$ The signal can be represented as $s(t) = \operatorname{Re}\left[A_{C}e^{j\omega_{c}t} + \frac{A_{C}\mu}{2}(e^{j(\omega_{c}+\omega_{m})t} + e^{j(\omega_{c}-\omega_{m})t})\right]$ $s(t)|_{\operatorname{complex}} = \left[A_{C}e^{j\omega_{c}t} + \frac{A_{C}\mu}{2}(e^{j(\omega_{c}+\omega_{m})t} + e^{j(\omega_{c}-\omega_{m})t})\right]$ $s(t)|_{c} = \left[s(t)_{c}e^{-j\omega_{c}t}\right]$ (where $e^{j(t)}$ the correction of $e^{j(t)}$ the correction of $e^{j(t)}$

(where, $s(t)|_{c}$ = the complex signal s(t) and $s(t)|_{ce}$ = the complex low pass equal of the signal s(t))

$$s(t)|_{ce} = A_C + \frac{A_C \mu}{2} [\cos \omega_m + j \sin \omega_m t] + \frac{A_C \mu}{2} [\cos \omega_m - j \sin \omega_m t]$$

Putting the conditions given in the questions we get:

$$S(t)|_{ce} = 1 + \frac{1}{8} [\cos \omega_m + j \sin \omega_m t] + \frac{1}{4} [\cos \omega_m - j \sin \omega_m t]$$
$$S(t)|_{ce} = 1 + \frac{3}{8} \cos \omega_m t - j \frac{1}{8} \sin(\omega_m t)$$
$$A \text{ envelop} = \left[\left(1 + \frac{3}{8} \cos(\omega_m t) \right)^2 + \left(\frac{1}{8} \sin(\omega_m t) \right)^2 \right]^{\frac{1}{2}}$$

T2. Sol.

...

Expression for AM signal

$$V_{AM}(t) = A_C \cos \omega_c t + A_C m_a \cos(\omega_c + \omega_m)t + A_C m_a \cos(\omega_c - \omega_m)t$$

$$P_C = 100 = \frac{A_C^2}{2}$$

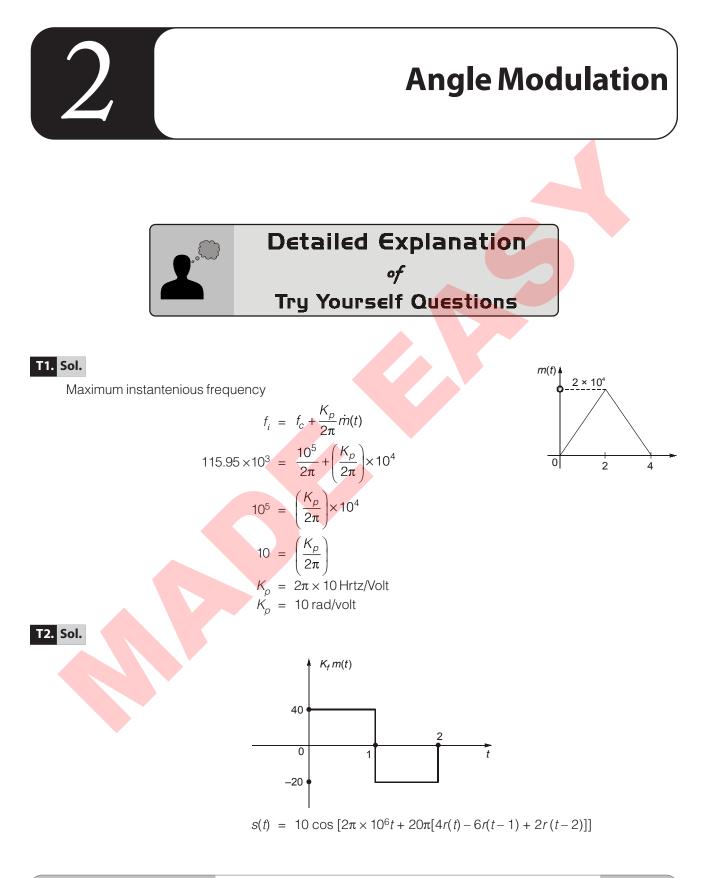
$$A_C = 14.14 \text{ V}$$

www.madeeasypublications.org

Publications

Publications

 $\eta = \frac{m_a^2}{2 + m_a^2} = 40\%$ Also $0.8 + 0.4 m_a^2 = m_a^2$ $m_a = 1.154$ $B = A_C m_a/2 = 8.16$ or *:*.. T3. Sol. Þ $25 \, k\Omega$ $RC \leq \frac{1}{\omega_n} \frac{\sqrt{1-\mu^2}}{\mu}$ $C \leq \frac{1}{R\omega_n} \frac{\sqrt{1-\mu^2}}{\mu}$ $C \leq \frac{1}{10^4 \times 2\pi \times 25 \times 10^3} \cdot \frac{\sqrt{1 - (0.5)^2}}{0.5}$ $C \leq 1.1 \,\mathrm{nF}$ Т4. (с) $x(t) = m(t) + \cos \omega_c t$ $y(t) = 4(m(t) + \cos\omega_c t) + 10\left[m^2(t) + \cos^2\omega_c t + 2m(t)\cos\omega_c t\right]$ $= 4m(t) + 10m^{2}(t) + 4\cos\omega_{c}t + \frac{10}{2} + \frac{10}{2}\cos 2\omega_{c}t + 20m(t)\cos\omega_{c}t$ after passing through filter $y(t) = 4\cos\omega_c t + 20m(t)\cos\omega_c t$ $= 4[1 + 5 m(t)] \cos \omega_c t$ $\mu = 5 \times M$ $0.8 = 5 \times M$ $M = \frac{0.8}{5} = 0.16$



Publications

Standard FM expression is given by:

$$s(t) = A_c \cos \left[2\pi fct + 2\pi k_f \int m(t)dt \right]$$

$$2\pi k_f \int m(t)dt = 20\pi \left(4r(t) - 6r(t-1) + 2r(t-2)\right)$$

$$k_f m(t) = 10[4 \ u(t) - 6u \ (t-1) + 2r \ (t-2)]$$

$$\Delta f = \max \left| k_f m(t) \right| = 40 \text{ Hz}$$

T3. Sol.

Maximum frequency deviation

$$\Delta f_{\max} = \frac{K_p}{2\pi} \left| \frac{d}{dt} m(t) \right|_{\max} = \frac{K_p}{2\pi} 2t e^{-t^2}$$
$$= \frac{8000}{2\pi} \cdot 2 \cdot \frac{1}{\sqrt{2}} \cdot e^{-1/2}$$
$$= 3.43 \text{ kHz}$$

$$\left(\because \max 2 + e^{-t^2} \text{ is at } t = \frac{1}{\sqrt{2}} \right)$$

T4. Sol.

Compairing the equation with the standard equation.

:..

$$s(t) = A \cos[\omega_{c}t + k_{p}m(t)]$$

$$k_{p}m(t) = 0.1 \sin(10^{3}\pi t)$$

$$m(t) = \frac{0.1}{k_{p}}\sin(10^{3}\pi t)$$

$$= 0.01 \sin(10^{3}\pi t)$$

Similarly

$$s(t) = A\cos\left[\omega_{c}t + K_{f}\int m(t)dt\right]$$

$$\int m(t) dt = 0.1 \sin(10^3 \pi t)$$

$$\int m(t) dt = \frac{0.1}{10\pi} \sin(10^3 \pi t) = \frac{0.1 \times 10^3 \pi}{10\pi} \cos(10^3 \pi t) = 10 \cos(10^3 \pi t)$$

T5. Sol.

 $A_m = 5 \text{ V}, f_m = 100 \text{ Hz} \} \Delta f = k_f A_m = 1 \text{ kHz}$ $A_m = 10 \text{ V}, f_m = 50 \text{ Hz} \} \Delta f = 2 \text{ kHz}$ To get $\Delta f = 30 \text{ kHz}$ frequency multiplication factor should be 15.

T6. (a)

$$BW = 2[\beta + 1]f_m$$

$$\beta = k_p A_m = 5$$

$$A_m \text{ is doubled} \Rightarrow \beta = 10 ; f_m = \frac{1}{2} \text{ kHz}$$

$$BW = 2[10 + 1] \cdot \frac{1}{2} = 11 \text{ kHz}$$

T7. Sol.

$$\beta_{f} = \frac{k_{f} \max \{m(t)\}}{f_{m}} = \frac{100 \text{ k} \times 1}{1 \text{ k}} = 100$$

$$BW_{f} = 2 (100 + 1) 1 \text{ k} = 202 \text{ kHz.}$$

$$\beta_{p} = k_{p} \max \{m(t)\}$$

$$= 10 \times 1 = 10$$

$$BW_{p} = 2 (10 + 1) 1 \text{ k} = 22 \text{ kHz}$$

Bandwidth required for channel

T8. Sol.

The phase modulated signal can be given by,

$$s(t) = A_c \cos[2\pi f_c t + k_p m(t)] = A_c \cos[\theta(t)]$$

The instantaneous frequency of the modulated signal,

$$f_i = \frac{1}{2\pi} \frac{d\theta(t)}{dt} = f_c + \frac{k_p}{2\pi} \frac{dm(t)}{dt}$$

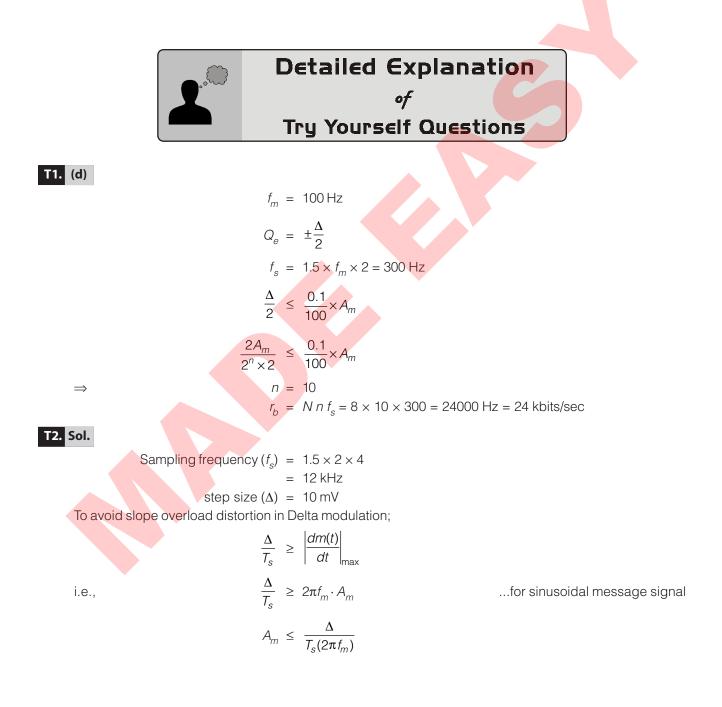
Given that,

$$m(t) = 100 \operatorname{sinc}(1000t) \, \mathrm{V} = 100 \frac{\operatorname{sin}(1000\pi t)}{1000\pi t}$$

$$\frac{dm(t)}{dt} = 100 \left[\frac{1000\pi \cos(1000\,\pi t)}{1000\,\pi t} - \frac{\sin(1000\,\pi t)}{1000\,\pi t^2} \right]$$

At
$$t = 1 \text{ ms}$$
,
So,
 $f_i = f_c + \frac{1}{2\pi}(-10^5 k_p) = 100 - \frac{100 \times 2}{2\pi} \text{ kHz}$
 $= 100 - \frac{100}{\pi} \text{ kHz} = 68.17 \text{ kHz}$

Sampling and Pulse Code Modulation



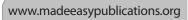
$$(A_m)_{\text{max}} = \frac{\Delta}{T_s(2\pi f_m)} = \frac{\Delta \cdot f_s}{2\pi f_m}$$
$$= \frac{10 \times 10^{-3} \times 12 \times 10^3}{2\pi \times 10^3} = 19.09 \times 10^{-3} \approx 19.1 \text{ mV}$$

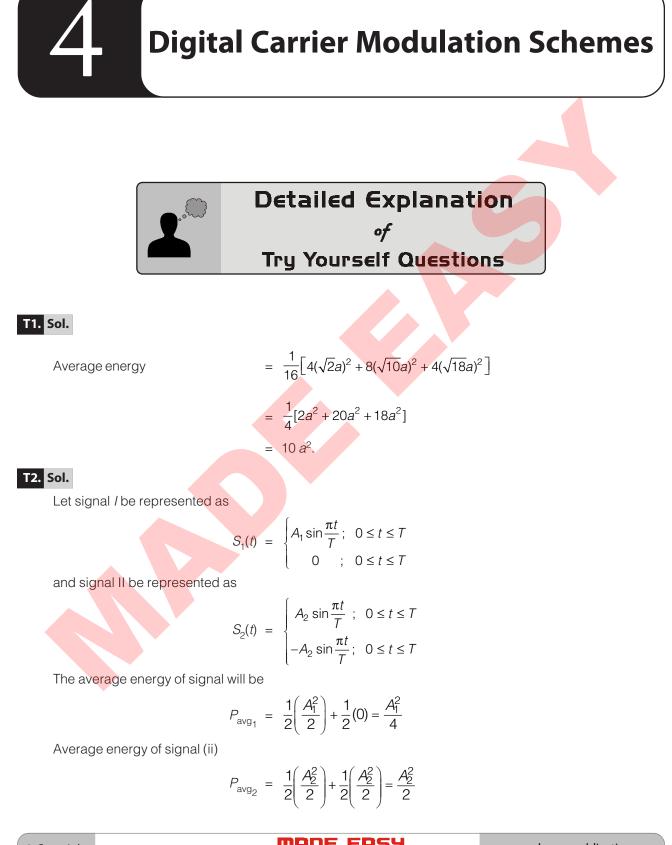
T3. (c)

To prevent slope overload

$$\delta f_{s} \geq \max \left| \frac{dm(t)}{dt} \right|$$
$$\delta \times 200 \times 10^{3} \geq 2\pi A_{m} f_{m}$$
$$2 \times \pi \times (10 \times 10^{3})$$

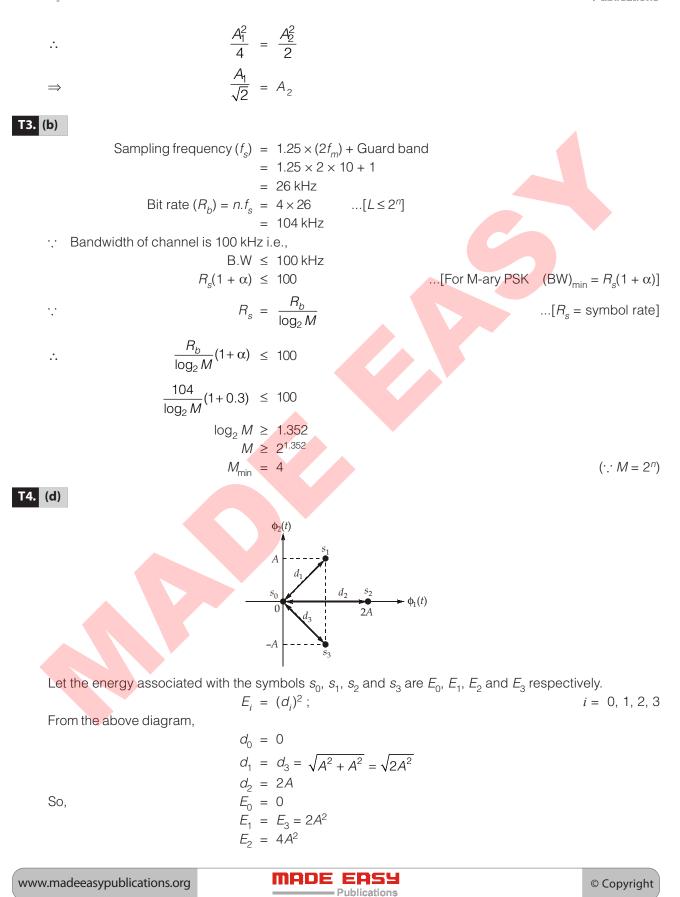
$$\delta \geq \frac{2 \times \pi \times (10 \times 10^3) \times \frac{1}{2}}{200 \times 10^3}$$
$$\delta \geq 0.157 \text{ Volts}$$





© Copyright

Publications



The average symbol energy of the modulation scheme can be given as,

 $E_s = \sum_{i=0}^{3} E_i P(s_i)$; $P(s_i) = \text{probability of occurrence of the symbol } s_i$ $= 0(0.3) + 2A^2(0.2) + 4A^2(0.4) + 2A^2(0.1)$ $= (0.4 + 1.6 + 0.2)A^2$ $= 2.2 A^2$

