## GATE

## morixioik 2025



Detailed Explanations of<br>Try Yourself Questions

## Instrumentation Engineering <br> Analog Electronics



## Testing of BJT in Different Operating Regions

## Detailed Explanation <br> of <br> Try Yourself Questions

T1. (0.902)

$I_{B}=\frac{2-0.7}{12}=0.10833 \mathrm{~mA}$

$$
I_{C(\mathrm{sat})}=\frac{5-0.2}{4.8}=1 \mathrm{~mA}
$$

$$
I_{B} \geq I_{B(\text { min })}
$$

$$
=\frac{I_{C(\mathrm{sat})}}{\beta}
$$

$$
I_{B} \geq \frac{1 \mathrm{~mA}}{\beta}
$$

$$
\beta \geq \frac{1}{0.10833} \text { and } \beta_{\min }=9.23
$$

$$
\alpha_{\min }=\frac{\beta_{\min }}{1+\beta_{\min }}=0.902
$$

T2. (c)
In active region
$-5-0.7-4.3 I_{E}=-10$
$I_{E}=\frac{10-5.7}{4.3}=\frac{4.3}{4.3}=1 \mathrm{~mA}$
$I_{C}=I_{E}=I^{\prime}+0.5 \mathrm{~mA}=1 \mathrm{~mA}$
$\Rightarrow \quad I^{\prime}=0.5 \mathrm{~mA}$


In saturation region $\Rightarrow$
$V_{C}-0.7-4.3 \times 1=-10$ $V_{C}=-5 \mathrm{~V}$ $q=C V_{C}=-5 \times 10^{-6} \times 5 \mathrm{~V}$

$$
=-25 \times 10^{-6}
$$

and $q=$ it

$$
\begin{aligned}
I^{\prime}(0-t) & =-25 \times 10^{-6} \\
t & =\frac{25 \times 10^{-6}}{0.5 \times 10^{-3}}=50 \mathrm{~m} \mathrm{sec}
\end{aligned}
$$

## BJT Biasing



T1. Sol.


$$
\begin{aligned}
& I_{1}=\frac{12}{6+4+2} \mathrm{~mA} \\
& I_{1}=1 \mathrm{~mA}
\end{aligned}
$$

Applying KVL in loop $L$
$I_{1} \times 2 \mathrm{k} \Omega-I \times 3 \mathrm{k} \Omega=V_{B E}$

$$
2-I \times 3 k=0.5
$$

$$
-I \times 3 \mathrm{k}=-1.5
$$

$$
I=\frac{-1.5}{-3} \times 10^{-3}=0.5 \mathrm{~mA}
$$

## BJT Current Mirrors

## D. Detailed Explanation <br> of <br> Try Yourself Questions

T1. (a)

$$
I_{\text {ref }}=\frac{9-0.7}{30 \times 10^{3}}=0.277 \mathrm{~mA}
$$

at node 'a' $\quad I_{\text {ref }}=I_{C}+3 I_{B}$ ( $I_{B 3}$ is assumed negligible)

$$
\begin{aligned}
& =I_{C}\left(1+\frac{3}{\beta}\right) \\
I_{C} & =I_{\text {ref }}\left(\frac{\beta}{3+\beta}\right) \\
& =0.277 \times 10^{-3}\left(\frac{125}{128}\right) \\
I_{C_{1}} & =0.27 \mathrm{~mA}
\end{aligned}
$$

T2. (c)


Using current mirror concept,
For large ' $\beta$ ',

$$
I=I_{\mathrm{ref}}
$$

so,

$$
\begin{aligned}
I_{y} & =(0.25+0.25+0.25) \mathrm{mA} \\
I_{x} & =(0.25+0.25) \mathrm{mA} \\
I_{x}+I_{y} & =(0.25) 5 \mathrm{~mA} \\
& =1.25 \mathrm{~mA}
\end{aligned}
$$

## Small Signal Analysis of BJT Amplifiers

## Detailed Explanation of <br> Try Yourself Questions

T1. (d)

$$
r_{\pi}=\beta r_{e}=\frac{\beta}{g_{\mathrm{m}}}=\frac{100}{2 \mathrm{mS}}=50 \mathrm{k} \Omega
$$



$$
V_{\pi}=-v_{i} \times \frac{r_{\pi}}{r_{\pi}+270}
$$

$$
=\frac{-50 \mathrm{k}}{50 \mathrm{k}+270} v_{i}=-0.994 v_{i}
$$

$$
v_{\text {Th }}+r_{o} g_{m} v_{\pi}-v_{\pi}=0
$$

$$
V_{\mathrm{Th}}=-r_{o} g_{m} v_{\pi}-v_{\pi}
$$

$$
=-\left(1+g_{m} r_{0}\right)\left(-0.994 v_{i}\right)
$$

$$
=-(1+2 \mathrm{mS} \times 250 \mathrm{k} \Omega) \times 0.994 v_{i}
$$

$$
V_{T h}=497.9 v_{i}
$$

T2. (d)


DC circuit

$I_{B}=\frac{12-0.7}{(1+\beta) 3.9 k+220 k}$
$=0.0163 \mathrm{~mA}$
$I_{E}=(1+\beta) I_{B}=1.97 \mathrm{~mA}$
$r_{e}=\frac{V_{T}}{I_{E}}=\frac{26 \mathrm{mV}}{1.97 \mathrm{~mA}}=13.15 \Omega$


$$
\begin{aligned}
V_{\mathrm{o}} & =-(220 \mathrm{k} \| 3.9 \mathrm{k}) \beta I_{B} \\
A_{v} & =\frac{-R_{C} \| R_{L}}{r_{e}}=\frac{-3.83 \mathrm{k}}{13.15} \\
& =-291.41
\end{aligned}
$$

$$
Z_{i}=\frac{V_{i}}{I_{i}}=\frac{220 \mathrm{k}}{1-\mathrm{A}_{v}} \| \beta r e
$$

$$
=0.752 \mathrm{k}| | 1.578 \mathrm{k}
$$

$$
=0.509 \mathrm{k} \Omega=509.4 \Omega
$$

T3. (b)

$$
\begin{aligned}
& A_{I}=\frac{-h_{t e}}{1+h_{o e} R_{L}}=\frac{-50}{1+\frac{1}{40} \times 10} \\
& \Rightarrow \quad A_{I}=\frac{-50}{1.25} \\
& A_{v}=\frac{A_{I} \cdot Z_{L}}{Z_{\text {in }}}=\frac{A_{I} R_{L}}{h_{i e}} \\
& A_{v}=\frac{-50}{1.25} \times \frac{10}{1} \\
& \Rightarrow \quad A_{v}=-400
\end{aligned}
$$

T4. (c)

$$
\begin{aligned}
& R_{E}=0.5 \mathrm{k} \Omega \quad ; \quad \beta=100 \\
& R_{C}=5 \mathrm{k} \Omega
\end{aligned}
$$

The voltage gain

$$
=A_{v}=\frac{g_{m} R_{C}}{1+g_{m} R_{E}}\left(\because R_{E} \gg \frac{1}{g_{m}}\right)
$$

Thus, $\left|A_{v}\right| \simeq \frac{R_{C}}{R_{E}} \simeq \frac{5}{0.5} \simeq 10$
T5. (b)

$$
g_{m}=\frac{I_{c}}{V_{T}}=\frac{100 \mu \mathrm{~A}}{25 \times 10^{-3} \mathrm{~V}}=4 \mathrm{~mA} / \mathrm{V}
$$

Input resistance

$$
\begin{array}{ll}
\Rightarrow \quad r_{\pi}=\frac{\beta}{g_{m}}=\frac{100}{4 \times 10^{-3}} \\
R_{i}=r_{\pi}=25 \mathrm{k} \Omega
\end{array}
$$

T6. (c)

$$
h_{o e} \times R_{L}<0.1
$$

$\Rightarrow$ Approximate analysis can be used

$$
\begin{aligned}
& A_{I} \approx-h_{f e}=-30 \\
& A_{V} \approx \frac{-h_{f e} R_{L}}{h_{i e}}=\frac{-30 \times 2.5}{1}=75 \\
& A_{P}=A_{V} \times A_{I}=2250
\end{aligned}
$$

# Testing of MOSFET in Different Operating Regions 

## Detailed Explanation

of
Try Yourself Questions

T1. (d)

$$
\text { Given: } \begin{aligned}
V_{T h} & =0.4 \mathrm{~V} \\
V_{G S} & =V_{G}-V_{S}=0.5-1.5 \\
& =-1 \mathrm{~V} \\
\text { If } V_{G S}<V_{T h} \text { in } & \mathrm{PMOS}, M_{1} \text { will be } \mathrm{ON} \\
V_{D S} & =V_{D}-V_{S}=0-1.5=-1.5 \mathrm{~V} \\
V_{G S}-V_{t} & =-1-0.4 \\
& =-1.4 \mathrm{~V} \\
\text { If } V_{D S} \leq V_{G S}- & V_{t}, M_{1} \text { is in current saturation. }
\end{aligned}
$$

T2. (b)
Given: $\quad V_{\text {Th }}=0.4 \mathrm{~V}$
$V_{G S}=V_{G}-V_{S}$

$$
=0-0.9=-0.9 \mathrm{~V}
$$

If $V_{G S}<V_{\text {Th }}$ PMOS $M_{2}$ will be ON.
$V_{D S}=V_{D}-V_{S}=0.9-0.9=0$
If $V_{D S}=0 \vee$ or $\mathrm{mV}, M_{2}$ will be in ohmic.

## MOSFET Biasing

## . Detailed Explanation <br> Try Yourself Questions

T1. (a)
If $V_{D}=V_{G} \therefore$ we conclude that each MOSFET is in saturation.

$I_{D}=k_{n 1}\left(V_{G S}-V_{T}\right)^{2}$
MOSFET $M_{1}$

$$
\begin{aligned}
I_{D} & =k_{n 1}\left(V_{G S 1}-V_{T}\right)^{2} \\
V_{G S 1} & =10-5=5 \mathrm{~V}
\end{aligned}
$$

$$
0.5 \mathrm{~mA}=36 \mu \times \frac{1}{2} \cdot\left(\frac{W}{L}\right) \times(5-1)^{2}
$$

$$
\left(\frac{W}{L}\right)_{1}=1.73
$$

MOSFET $M_{2}$

$$
\begin{aligned}
I_{D} & =k_{n 2}\left(V_{G S 2}-V_{T}\right)^{2} \\
0.5 \mathrm{~mA} & =36 \mu \times \frac{1}{2}\left(\frac{W}{L}\right)_{2}(3-1)^{2} \\
\left(\frac{W}{L}\right)_{2} & =6.94
\end{aligned}
$$

MOSFET $M_{3}$

$$
\begin{aligned}
I_{D} & =k_{n 3}\left(V_{G S 3}-V_{T}\right)^{2} \\
0.5 \mathrm{~mA} & =36 \mu \times \frac{1}{2}\left(\frac{W}{L}\right)_{3}(2-1)^{2} \\
\left(\frac{W}{L}\right)_{3} & =27.8
\end{aligned}
$$

T2. (a)
To calculate the value of $V_{\mathrm{DS}}$, we require the voltage of both drain and source terminal.
Now, assuming the transistor to be in saturation region, the value of $V_{\mathrm{GS}}$ can be calculated as

$$
I_{D}=\frac{\mu_{n} C_{o x} W}{2 L}\left(V_{G S}-V_{T}\right)^{2}
$$

$$
1 \times 10^{-3}=0.5 \times 10^{-3} \times\left(V_{\mathrm{GS}}-V_{T}\right)^{2}
$$

$$
\sqrt{2}+1.2=V_{G S}
$$

$$
V_{G S}=1.414+1.2
$$

$$
V_{G S}=2.614 \mathrm{~V}
$$

Now, $\quad V_{G S}=V_{G}-V_{S}$
$\because \quad V_{G}=0$
Thus $\quad V_{S}=-2.614 \mathrm{~V}$
And $\quad V_{D}=5 \mathrm{~V}$
Thus, $\quad V_{D S}=V_{D}-V_{S}=5-(-2.614)$

$$
V_{D S}=7.614 \mathrm{~V}
$$

$V_{D S}>V_{G S}-V_{T}$, so our assumption is correct.

## Small Signal Analysis of MOSFET Amplifiers

## Detailed Explanation

of

## Try Yourself Questions

T1. (b)
It is common drain amplifier.

$$
\begin{aligned}
A_{V}=\frac{g_{m} R_{s}}{1+g_{m} R_{s}} & =\frac{g_{m} 4 \mathrm{k} \Omega}{1+g_{m} 4 \mathrm{k} \Omega}=0.95 \\
g_{m} & =4.75 \mathrm{~m} \vartheta \\
g_{m} & =2 k_{n}\left(V_{G S}-V_{T}\right) \\
& =2 k_{n}\left(\sqrt{\frac{I_{D}}{k_{n}}}+V_{T}-V_{T}\right) \\
g_{m} & =2 \sqrt{I_{D} k_{n}} \\
g_{m} & =2 \sqrt{I_{D} \times \frac{1}{2} \mu_{n} C_{o x}\left(\frac{W}{L}\right)} \\
\frac{W}{L} & =47
\end{aligned}
$$

T2.
(c)

$$
\begin{aligned}
g_{m} & =2 \sqrt{k_{n} I_{D}} \\
& =2 \sqrt{10 \times 10^{-3} \times 10 \times 10^{-3}} \\
g_{m} & =20 \mathrm{~mA} / \mathrm{V}
\end{aligned}
$$

now, drawing the $T$ equivalent model, we have

$i=-\frac{V_{\mathrm{sig}}}{\frac{1}{g_{m}}+R_{\mathrm{sig}}}$

$$
\begin{aligned}
& \text { and } \quad V_{\text {out }}=\frac{\left(R_{D} \| R_{L}\right) \cdot V_{\text {sig }}}{\frac{1}{g_{m}}+R_{\text {sig }}} \\
& V_{\text {out }}=\frac{g_{m}\left(R_{D} \| R_{L}\right)}{1+g_{m} R_{\text {sig }}} \cdot V_{\text {sig }} \\
& \therefore \quad V_{\text {out }}=\frac{20 \times 10^{-3}\left(2 \times 10^{3} \| 2 \times 10^{3}\right) \times 1 \times 10^{-3}}{1+20 \times 10^{-3} \times 50} \\
& V_{\text {out }}=10 \mathrm{mV} \\
& \text { or } \\
& g_{m}=2\left[\frac{\mu_{n} C_{o x} W}{2 L}\right]\left(V_{G S}-V_{T N}\right) \\
& g_{m}=2 \sqrt{\frac{\mu_{n} C_{0 X} W}{2 L} \times I_{D Q}} \\
& =2 \sqrt{1 \times 10^{-3} \times 0.5 \times 10^{-3}} \\
& =1.414 \mathrm{~mA} / \mathrm{V}
\end{aligned}
$$

T3. (b)

Thus, considering small signal model, we get,


Thus,

$$
\begin{aligned}
& V_{0}=-g_{m} V_{g s} R_{D} \\
& V_{\text {in }}=V_{g s}+\left(g_{m} V_{g s}\right) R_{S} \\
& V_{\text {in }}=V_{g s}\left(1+g_{m} R_{S}\right) \\
& A_{v}=\frac{V_{0}}{V_{\text {in }}}=\frac{-g_{m} R_{D}}{1+g_{m} R_{S}} \\
& A_{v}=\frac{-(1.414)(7)}{1+(1.414)(0.5)}=-5.80
\end{aligned}
$$

## T4. (b)

By drawing the small signal equivalent circuit by deactivating all the D.C. supplies, we get,


Now, from the figure,

$$
R_{\mathrm{in}}=\frac{-V_{g s}}{I_{i}}
$$

and

$$
\therefore \quad R_{\text {in }}=\frac{-V_{g s}}{-g_{m} V_{g s}}=\frac{1}{g_{m}}
$$

## T5. (a)

By drawing the small signal equivalent circuit, we get

the above circuit can be redrawn as


Substituting $V=-V_{g_{2}}$
now, $\quad V_{\text {in }}=V_{g s_{1}}+V$
and $\quad g_{m_{1}} V_{g s_{1}}=g_{m_{2}} \cdot V$
$\left(\because\right.$ from KCL at node $S_{1}$ )
thus $\quad V_{\text {out }}=-\left[g_{m_{1}} V_{g s_{1}} R\right]$

$$
\begin{align*}
V_{\text {out }} & =-g_{m_{1}} R\left(V_{\text {in }}-V\right) \quad \text { (from (i)) }  \tag{iii}\\
& =-g_{m_{1}} R V_{\text {in }}+g_{m_{1}} V R
\end{align*}
$$

now, $\quad V=\frac{g_{m_{1}} V_{g s_{1}}}{g_{m_{2}}}$ (from equation (ii))
$V_{\text {out }}=-g_{m_{1}} R V_{\text {in }}+\frac{g_{m_{1}} R V_{g s_{1}}}{g_{m_{2}}} \cdot g_{m_{1}}$
now from (3), we get

$$
V_{\text {out }}=-g_{m_{1}} R V_{\text {in }}-\frac{g_{m_{1}}}{g_{m_{2}}} V_{\text {out }}
$$

$$
\begin{aligned}
\left(1+\frac{g_{m_{1}}}{g_{m_{2}}}\right) V_{\text {out }} & =-g_{m_{1}} R V_{\text {in }} \\
V_{\text {out }} & =\frac{-g_{m_{1}} R}{1+\frac{g_{m_{1}}}{g_{m_{2}}}} V_{\text {in }} \\
\frac{V_{\text {out }}}{V_{\text {in }}} & =\frac{-R}{\frac{1}{g_{m_{1}}}+\frac{1}{g_{m_{2}}}}
\end{aligned}
$$

Hence, option (a) is correct.

## Multistage Amplifiers



T1. (b)
The input resistance will be


$$
\begin{aligned}
R^{\prime} & =r_{\pi}+\left(\beta_{2}+1\right) R_{E} \\
& =1 \mathrm{k}+(101)(1 \mathrm{k})=102 \mathrm{k} \Omega \\
R_{\text {in }} & =r_{\pi}+\left(\beta_{1}+1\right) R^{\prime} \\
& =1 \mathrm{k}+(51)(102 \mathrm{k})=5.203 \mathrm{M} \Omega
\end{aligned}
$$

## Detailed Explanation of <br> Try Yourself Questions

T1. (b)
Output of op-amp 1


It is connected to schmitt trigger (inverting mode) $\rightarrow$ clockwise.
But inverting amplifier + inverting schmitt trigger
$\rightarrow$ anticlockwise.


T2. (b)

$$
R_{i f}=\frac{R_{i}}{1+A \beta}=\frac{R_{i}}{A \beta} \quad A \beta \gg 1
$$


voltage shunt


$$
\begin{aligned}
\beta & =\frac{V_{f}}{V_{0}}=-1 \\
\beta & =\frac{I_{f}}{V_{0}}=-\frac{1}{10 \mathrm{k}} \\
|\beta| & =\frac{1}{10 \mathrm{k}} \\
R_{i f} & =\frac{R_{i}}{A \beta}=\frac{10 \mathrm{k}}{10^{5} \times \frac{1}{10 \mathrm{k}}}
\end{aligned}
$$

$$
=\frac{10 \times 10 \times 10^{6}}{10^{5}}
$$

$$
R_{i f}=1 \mathrm{k} \Omega
$$

## T3. (0.5)

Applying the concept of virtual ground, we get,

$$
V_{o}=-\frac{R_{2}}{R_{1}} \cdot V_{\text {in }}
$$

[ $\because$ non-inverting amplifier]

$$
\begin{aligned}
& \therefore \quad V_{0}=-\frac{31 \mathrm{k} \Omega}{1 \mathrm{k} \Omega} \times 1 \mathrm{~V} \\
& V_{o}=-31 \mathrm{~V}<-15 \mathrm{~V}
\end{aligned}
$$

which is not possible
Hence, the output voltage of the op-amp is equal to -15 V .


Now applying KCL of node ' $A$ ', we get,

$$
\begin{aligned}
\frac{V_{A}-(-15)}{31 \mathrm{k} \Omega}+\frac{V_{A}-1}{1 \mathrm{k} \Omega} & =0 \\
\frac{V_{A}}{31 \mathrm{k} \Omega}+\frac{V_{A}}{1 \mathrm{k} \Omega} & =\frac{-15}{31 \mathrm{k} \Omega}+\frac{1}{1 \mathrm{k} \Omega} \\
V_{A}\left[\frac{1}{31}+\frac{1}{1}\right] & =-\frac{15}{31}+1 \\
V_{A} & =0.5 \mathrm{~V}
\end{aligned}
$$

T4. (b)


From the circuit,

$$
\begin{aligned}
& V_{E}=i_{O} R_{L} \\
& V_{E}=V_{A} \text { (Virtual short concept) } \\
& i_{1}=i_{2}=i_{3}
\end{aligned}
$$

If we apply KVL between node $B$ and $C$,

$$
\begin{aligned}
\therefore \quad & V_{B}=V_{C}(\text { Virtual short concept }) \\
& i_{1}=i_{2}=i_{3}=\frac{V_{\text {in }}}{20 \mathrm{k} \Omega}
\end{aligned}
$$

$$
\begin{array}{rlrl} 
& & V_{C}-V_{D} & =i_{3} \times 10 \mathrm{k} \Omega=\frac{V_{\text {in }}}{2} \\
\text { and } & V_{A}-V_{B} & =i_{1} \times 10 \mathrm{k} \Omega=\frac{V_{\text {in }}}{2} \\
& \therefore & V_{B} & =V_{C} \\
\Rightarrow & V_{D}-V_{E} & =-V_{\text {in }} \\
& \because & & i_{o}
\end{array}=\frac{-v_{\text {in }}}{R_{f}}
$$

T5. (b)
From the given figure


## T6. (15)



Node A:

$$
\frac{V_{A}-V_{1}}{1 \mathrm{~K}}+\frac{V_{A}-V_{3}}{1 \mathrm{~K}}+\ldots . . \frac{V_{A}-V_{N-1}}{1 \mathrm{~K}}+\frac{V_{A}}{1 \mathrm{~K}}=0
$$

$$
\begin{aligned}
V_{A}\left(\frac{N}{2}+1\right) & =V_{1}+V_{3}+\ldots+V_{N-1} \\
V_{B} & =V_{A} \quad \because \text { Virtual short }
\end{aligned}
$$

Node B:

$$
\begin{aligned}
& \frac{V_{A}-V_{2}}{10 \mathrm{~K}}+\frac{V_{A}-V_{4}}{10 \mathrm{~K}}+\ldots+\frac{V_{A}-V_{N}}{10 \mathrm{~K}}+\frac{V_{A}-V_{0}}{10 \mathrm{~K}}=0 \\
& \begin{array}{r}
V_{0}=V_{A}\left(\frac{N}{2}+1\right)-\left(V_{2}+V_{4}+V_{6}+\ldots+V_{N}\right) \\
=\left(\frac{N}{2}+1\right) \cdot \frac{\left(V_{1}+V_{3}+\ldots+V_{N-1}\right)}{\left(\frac{N}{2}+1\right)}-\left(V_{2}+V_{4}+\ldots+V_{N}\right) \\
\\
=V_{1}-V_{2}+V_{3}-V_{4}+\ldots \\
=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4} \ldots \\
=\Sigma \frac{1}{N}=\infty
\end{array}
\end{aligned}
$$

$\Rightarrow$ Output of op-amp goes to saturation

$$
V_{0}=V_{\text {sat }}=V_{C C}=15 \mathrm{~V}
$$

77. (0.798)

Initially switch is closed and $V_{B}=10 \mathrm{~V}$

$$
\begin{array}{ll}
\Rightarrow & V_{01}=-10 \mathrm{~V} \\
\Rightarrow & V_{0}=-V_{2}=-5 \mathrm{~V} \\
\Rightarrow & V_{A}=\frac{V_{0}}{4 \mathrm{k}+1 \mathrm{k}} \times 1 \mathrm{k}=-1 \mathrm{~V}
\end{array}
$$



At $t=0$;
The switch is opened and as $t \rightarrow \infty, V_{B}$ approaches-10 V.
Let at $t=T_{1}$,
$V_{B}$ exceeds $V_{A}(-1 \mathrm{~V})$ so that $V_{01}$ changes from -10 V to 10 V
$\Rightarrow V_{0}$ charges from -5 V to 5 V

$$
\begin{aligned}
V_{B} & =V_{f}+\left(V_{i}-V_{f}\right) e^{-t / \tau} \\
& =-10+[10-(-10)] e^{-t / R C}
\end{aligned}
$$

At $t=T_{1} \quad V_{B}=-1$

$$
-1 V=-10+20 e^{-T 1 / R C}
$$

$\Rightarrow \quad T_{1}=R C \ln \frac{20}{9}$
$=10 \times 10^{3} \times 100 \times 10^{-6} \times 0.798$
$=0.798 \mathrm{sec}$

## T8. (44.4)

- In the given circuit,

Feedback factor, $\beta=\frac{R_{1}}{R_{1}+R_{2}}=\frac{1}{80}$


- $A_{o f}=\frac{A_{o}}{1+A_{o} \beta} \simeq 80$
- $f_{C}^{\prime}=f_{C}\left(1+A_{o} \beta\right)=8\left(1+\frac{10^{5}}{80}\right) \mathrm{Hz}=10,008 \mathrm{~Hz}$
- Gain at $f=15 \mathrm{kHz}=15000 \mathrm{~Hz}$ is,

$$
\begin{aligned}
& A_{f}=\frac{A_{o f}}{\sqrt{1+\left(\frac{f}{f_{c}^{\prime}}\right)^{2}}} \\
& =\frac{80}{\sqrt{\left(1+\left(\frac{15000}{10008}\right)^{2}\right)}} \simeq 44.4
\end{aligned}
$$

## T9. (c)

For $t>0$,


$$
I=\frac{1 \mathrm{~V}}{1 \mathrm{k} \Omega}=1 \mathrm{~mA}
$$

The capacitor charges with constant current I and both $V_{1}$ and $V_{2}$ will increase till $V_{2}$ reaches 2.5 V . Thereafter, $V_{2}=2.5 \mathrm{~V}$ and $V_{1}$ increases with time.

$$
\begin{array}{r}
\text { When } v_{\text {out }}(t)=-10 \mathrm{~V}, \\
V_{1}=7.5 \mathrm{~V}
\end{array}
$$

So,

$$
\begin{aligned}
\frac{1}{1 \mu \mathrm{~F}} \int_{0}^{t}(1 \mathrm{~mA}) d t & =7.5 \mathrm{~V} \\
10^{3} t & =7.5 \\
t & =7.5 \mathrm{msec}
\end{aligned}
$$

# Negative Feedback Amplifiers \& Oscillators 

## Detailed Explanation <br>  <br> of <br> Try Yourself Questions

T1. (a)
The overall forward gain is 1000 and close loop gain is 100 . Thus, $\beta=0.009$.
Now, when gain of each stage increase by $10 \%$ then overall forward gain will be 1331 and using the previous value of $\beta$ the close loop will be 102.55.
$\Rightarrow$ Close loop Voltage gain increase by $2.55 \%$.
T2. (b)
The feedback element is $R_{f}$ it samples voltage and mix current so shunt-shunt feedback.

T3. (a)
The output can be $\pm 12 \mathrm{~V}$ only, when output is 12 V then


So, $\quad V_{p}=6 \mathrm{~V}$
when output is -12 V then


So,

$$
V_{p}=-10 \mathrm{~V}
$$

T4. (d)
Since their are 3 capacitors the maximum phase shift that can be provided will be $270^{\circ}$ but due to the presence of the RC circuit the phase shift is equal to $60^{\circ}$ for the individual RC circuit, making the phase shift of the feedback network equal to $180^{\circ}$. Thus the amplifier should be an inverting amplifier so that it can be a positive feedback circuit and because the amplifier is a practical amplifier thus $|A \beta|>1$ for the circuit to work.

## Detailed Explanation

Try Yourself Questions

| T1. | (c) |
| :--- | :--- |
|  |  |
|  | $\because$ |
|  | $\therefore$ |
|  | $(\beta+1)=\frac{I_{C E O}}{I_{C B O}}=\frac{0.6 \times 10^{-3}}{3 \times 10^{-6}}=200$ |

## T2. (d)

$\because \quad I_{B}=0$
then only emitter to collector current will flow

$$
\begin{aligned}
\therefore \quad I_{\text {CEO }} & =(\beta+1) I_{\text {CBO }} \\
& =101 \times 15 \times 10^{-6} \\
& =1515 \mu \mathrm{~A}=1.515 \mathrm{~mA}
\end{aligned}
$$

T3. (c)

(Active)

(Saturation)

## T4. (c)

If base length > length of diffusion then the carriers will not enter the collector.

T5. Sol.

$$
I_{C}=\beta I_{C}+(\beta+1) I_{C O}
$$

Now,

$$
\begin{aligned}
& \text { Now, } \quad \beta+1=\frac{I_{C E O}}{I_{C B O}}=\frac{0.6 \times 10^{-3}}{3 \times 10^{-6}}=200 \\
& \therefore \quad \beta=199 \\
& \therefore I_{C}=199(10 \mu \mathrm{~A})+(1+199) \times 3 \times 10^{-6} \\
& =2.59 \times 10^{-3} \mathrm{Amp}
\end{aligned}
$$

$$
\therefore \quad \beta=199
$$

