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CHAPTER

Thermodynamic Relations

8.1

forms:

Mathematical Theorems
Let three variables are represented by x, yand z. Their functional relationship may be expressed in the

fix,y,z) = 0
x = x(y2)
y =yl 2
z=2zkxyY)
Let x is a function of two independent variables yand zi.e.
x =x(y, 2

Then the differential of the dependent variable x is given by

ox ox
o= ()0 (5) =

Where dx is called the exact differential

o
Let (—xj - Mand (i) =N
), 9z),
then dx = Mdy + Ndz
Partial differential of M and N with respect to zand y, respectively gives
wm _ P
0z  dydz
and l\/ = it
oy  0zdy
o (M) _ (w)
oz), \oy),
This is the condition of exact or perfect differential
Similarly if, y =yx 2andz=2z(x,y)

then from these two relations we have
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ay ay
ay = | Y 9y
y (ax)zdx+(az)xdz

0z 0z
(8_) e (ayl &

([ )]
G625
(3 ) 5) oo

So we can conclude that the coefficient of dx should be zero in order to have above equation true

oy ay\ (0z B
(axl+ az)x ax)y =0

2 (5), - %)
dz ) \ox), ox ),

o a_y) a_z) _
ay),\oz) \ox), ~—

Interms P, vand T, the following relation holds good
(57),(55).57), =~
ov J-\oP ), \oT )p
NOTE Chain rule: If fis a function of x, y and z then
o)) )
é ay ox

8.2 The Maxwell Relations

The equations that relate the partial derivatives of properties P, v, T and s of a simple compressible
system to each other are called the Maxwell relations. They are obtained from the four Gibbs equations by
exploiting the exactness of the differential of thermodynamic properties.

Two of the gibbs relations we have already seen

du = Tds- Pdv .. ()

and dh = Tds + vadP . (i

The other two Gibbs relations are based on two new combination properties the Helmholtz function fand
the gibbs function g, defined as

and az

or it can be written for dy as

dy a—y) dx +
ox /),

f
and g

u-1Ts
h-Ts

@ Theory with Solved Examples MADE ERASYH www.madeeasypublications.org )




MRDE ERSY Postal Study Package FXiPX] Thermodynamics | 255

NOTE e For any natural process the value of Gibbs function and Helmholtz function decreases
and attains a minimum value.
e The rate of chemical reactions and their degree of completion is determined using the
second law of thermodynamics
Differentiating the two new functions, we get
df = du- Tds—-sdT
dg = dh- Tds-sdT

the above relations are simplified with the help of first two Gibbs relations, to obtain the other two Gibbs
relations for simple compressible systems as

df = -sdT - Padv . (i

dg = -sdT + vdP . (iv)
A careful examination of the four gibbs relations [(i) to (iv)] reveals that they are of the form

ax = Mdy + Nadz

. oM oN
with (a_z)y = (W)z %)

Since u, h, fand g are properties and thus have exact differentials. Applying equation (v) to each of

them, we obtain
) - (%)
s ds ),
) - (%)
P ) 9s )p
(57)
aT ),
(55), = 57)
oP); aT )p
The above four relations are called the Maxwell relations. They are extremely valuable in thermodynamics

because they provide a means of determining the change in entropy, which cannot be measured directly, by
simply measuring the changes in properties P, vand T.

Q|
<|»
N—
3
Il

8.3 Tds Partial Differential Equations

Since entropy may be expressed as a function of any other two properties, e.g. Temperature T and
specific volume v,

Hence writing S (T, v)

ds ds
Pl ar+| 2| o
(ar)v +(av)T Y
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0s 0s
= Tl=—=|dr+7|—]| d [
or Tds T(BT)V + (av)T v ()

But for a reversible constant volume change

dq = ¢ /(dT),=T(ds),
0s
or c, = T|=—=
Y (ar)v
But (E) = (aP) (From Maxwell equations)
ll av - - aT , q

Hence, substituting in equation (i), we get

()
Tds = ¢, dT+ T{ 37 Vdv

This is known as the first form of entropy equation, or the First Tds equation.

Similarly writing,

s = f(T,P)
ds ds
= |=—=| dT +|=| dP
i.e ds = (E)T)P +(8P)T
ds ds
= T|—| dT+T|=—| dP (i
or Tds (BT)P + (BP)T (ii)

But for a reversible constant pressure change

dg = Cp(dnp= T(dS)P
ds
or c, = T|—
2= 1(57)
Also, (g—;)T = —(g—;/_)P (From Maxwell relations)
Substituting in equation (ii), we get,
Tds = ¢, dT- T(a—v) arP
SP oT Jp

This is known as the second form of entropy equation or the Second Tds equation

8.4 Specific Heats c,andc,

Equating the first and second Tds equations, we get

oV

oP
TdS deT_T(ﬁ)P dP: CvdT‘f—T(ﬁ) dV
v

oP av
c.—c)dT T|l—| av+T|—| dP
(Cp=c) (ar)v v (ar)P
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T oP av
= av + aP I (
ar Cp—C, |:(8T) Y (BT) ] (1)
Now temperature may be expressed as a function of any other two properties
so let T = f(Pv)
oT oT .
aT = dP + d
(377 +(50) o "

Comparing equations (i) and (ii), we get
T (av) oT T (aP) (aT)
= |—| and =355
Cp—C, oT (ap)v Cp—Cy oT Vv )p
Both there equation give
JaP av
- = T7|=11=
v (arMar)P

() (50 ()
But, 3P o ) \a7), = -1 (as T= (P, v))

- We get,
o))
P ov ) |\aT ),

This relation can be expressed in terms of two other thermodynamic properties called the volume
expansivity (B) and isothermal compressibility (K,), which are defined as

-5

0
and Ky = ——(a/\;)

Substituting these two relations, we obtain another relation for ¢,—C,as:

9]
|
(9]
|

It is called Mayer’s relation.
Conclusions which can be drawn from the above equation are:

(i) Theisothermal compressibility K. is a positive quantity for all substances in all phases. The volume
expansivity B could be negative for some substance (such as liquid water below 4°C), but its square
is always positive or zero. The temperature T in this relation is thermodynamic temperature which is
also positive. Therefore we conclude that the constant pressure specific heat is always greater than
or equal to the constant volume specific heat i.e.

c 2 C

() v
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(i) The difference between c, and ¢ approaches zero as the absolute temperature approaches zero.

(iii) The difference between the two specific heats is very small and is usually disregarded for substances
that are nearly incompressible, such as liquids and solids.

Example 8.1 Show that C,—C, = AR for an ideal gas

Solution :
We know for any gas

e -1(2) (&) ]

The ideal gas equation of state gives us

Pv = RTor P= ?

(B_P) - ChAT_-P
T

ov % v

and also, v = AT
P
), - 7
oT)p — P
2
ituti -P R T 1
Substituting, c.—c, = -T|——|x|[Z] =— = xR (as Pv = RT)
° o= TT(E) ~m A o

- C,—Cy = R
Hence proved
For a perfect gas, shown that

Ol 8 (ol G|

where B is the coefficient of cubical/volume expansion.

Solution :
The first law of thermodynamics applied to a closed system undergoing a reversible process states
as follows:
8Q = du+ Pav
and as per second law
ds = (@)
T rev
Combining above two equation we have
Tds = du+ Padv
also we know, h=u+Pv
adh = du+ Pdv + vdP

@ Theory with Solved Examples MADE ERASYH www.madeeasypublications.org )




MRDE ERSYH

Postal Study Package PIPX]

The change of temperature of a fluid during a throttling process is described by the
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Joule-Thomson coefficient defined as . = (3—;)
h

0%

il T(—J — v | for any substance
Co oT Jp

The Clapeyron equation enables us to determine the enthalpy change associated with a
phase change from a knowledge of P, v and T data alone. It is expressed as
T,

(). - =
ar sat - satvfg

9

It can be further expressed as Clausius Clapeyron equation as

( @) - (hg)Fa

AT e~ R(Toy)?

The deviation from ideal gas behaviour can be properly accounted for by using the

compressibility factor Z, defined as
%

actual _
%

and also U =

(Assuming Vg >> 2

Pv,

ideal RT

The Zfactor is approximately the same for all gases at the same reduced temperature
and reduced pressure, which are defined as

s and P = L
Tc Fe
Where T,and P, are critical temperature and pressure respectively.
The approximate behaviour of real gases was taken into consideration by Van der Waal

in his equation of state for a gas given as

7 =

7;:

(P+i2)(v—b) = AT

v
2
Where 27/:')27_0 and b = Rlc
g_ Objective Brain Teasers
Q.1 For a given volume of dry saturated steam, h —h
L aP g f
Clapeyron’s equation is given by (© Vg—Vf=——X
dls Ts
ar, T,
(@ v,-v,=—2x—2
g f dP hg_hf (d) \/g—\/f _ dP % TS
dly  hy —h
_dls hg 1y
(b) Vg-Vi= aP X T, Q.2 To get the cooling effect for a refrigerant, it has

to be precooled at least below the

<www.madeeasypublications.org
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" Q.3 Forasubstance with volume expansivity, > 0,

STUDENT'S ASSIGNMENTS show that at every point of a single phase region

(vapour region) on a Mollier diagram, the slope

of constant pressure line is greater than the slope

of constant temperature line but less than that of
constant volume line.

Q.1 Using Maxwell’s relations, show that for a pure
substance
Tds = cpdT— TvBdP
Q.4 Show that for a Van der Waal's gas

B
Kc,dP A
A Y v —b
B Bv (b) (s,—8y)7= Fi’ln( 2 J

where B is the coefficient of cubical expansion,
Kis the coefficient of isothermal compressibility

° (©) T(v-b)"% - Constant for an isentropic
and Cy G, are specific heats at constant pressure

and constant volume respectively. process
R
Q.2 Derive expressions for Au, Ah and As for a gas d c,-c, = ooty b7
that obeys the Van der Waal’s equation of state 1- o

for an isothermal process.
y

1
(e) (hz_h1)7—: (P2V2_P1V1) + a(E_Z]
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