	LASS	ST —			S.N	o. : 03	_SK_CE_S+G_240622			
Debi - Rhendel - Hunderster - Dune - Rhubenessen - Kelleste - Detec										
Web: www.madeeasy.in E-mail: info@madeeasy.in Ph: 011-45124612										
HIGHWAY ENGINEERING										
CIVIL ENGINEERING										
			Date o	ofTe	st:24/	06/202	22			
AN	ANSWER KEY >									
1.	(c)	7.	(a)	13.	(b)	19.	(c)	25. (d)		
2.	(a)	8.	(a)	14.	(d)	20.	(c)	26. (d)		
3.	(c)	9.	(c)	15.	(a)	21.	(a)	27. (d)		
4.	(b)	10.	(d)	16.	(a)	22.	(c)	28. (a)		
5.	(c)	11.	(a)	17.	(c)	23.	(c)	29. (a)		
6.	(a)	12.	(a)	18.	(c)	24.	(b)	30. (a)		

India's Bast Institute for IES GATE & PSIJa

CT-2022-23 CE • Highway Engineering

DETAILED EXPLANATIONS

1. (c)
Given:
$$V = 120$$
 kmph, $e = 0.07$ and $f = 0.15$
We know that, $e + f = \frac{V^2}{127R}$
 $\Rightarrow 0.07 + 0.15 = \frac{120^2}{127R_{min}}$
 $R_{min} = 515.40 \text{ m} \simeq 516 \text{ m}$
2. (a)
We know, $\frac{\Delta}{2} = L\alpha\Delta T$
 $\Rightarrow \frac{2.5}{100 \times 2} = L \times 10 \times 10^{-6} \times 30$
 $L = 41.67 \text{ m}$
3. (c)
Hourly expansion factor $= \frac{25000}{5000} = 5$
4. (b)
Rulling gradient $= 5\%$
Grade compensation $= \frac{30 + R}{R} = \frac{30 + 50}{50} = 1.6\%$
Maximum limit of grade compensation $= \frac{75}{R} = \frac{75}{50} = 1.5\%$
Compensated gradient $= 5 - 1.5 = 3.5\%$
but it should not be less than 4%
So, provided gradient $= 4\%$

Psychological widening is given by

$$= \frac{V}{9.5\sqrt{R}} = \frac{80}{9.5\sqrt{250}} = 0.532 \,\mathrm{m}$$

7. (a)

Crossing conflicts are only 16 out of 24 conflict points.

8. (a)

$$q_{\max} = \frac{k_j V_f}{4}$$

$$\therefore$$
 q_{\max} will be at $\frac{k_j}{2}$ and $\frac{V_f}{2}$

11. (a)

With increase in bitumen content void content decreases.

12. (a)

$$V = 60 \text{ kmph} = 16.66 \text{ m/s}$$

We know that, SSD = 260 m

$$SSD = Vt + \frac{V^2}{2g(\eta_b \times f - n\%)}$$

$$\Rightarrow$$

...

 $260 = 16.66 \times 2.5 + \frac{16.66^2}{2 \times 9.81 \times (\eta_b \times 0.4 - n)}$

\Rightarrow	218.35 =	$\frac{16.66^2}{2 \times 9.81 \times (0.8 \times 0.4 - n)}$
\Rightarrow	0.32 - n =	0.064
\Rightarrow	n =	0.256
	n% =	25.6%

13. (b)

 $V_1 = 90 \text{ kmph} = 25 \text{ m/s}$ $V_2 = 60 \text{ kmph} = 16.66 \text{ m/s}$ $f = 0.40, t = 2.5 \text{ sec}, \eta_b = 50\%$

$$SSD = vt + \frac{V^2}{2gf \cdot \eta_b}$$

$$SSD_{1} = 25 \times 2.5 + \frac{25^{2}}{2 \times 9.81 \times 0.4 \times 0.5} = 221.77 \text{ m}$$
$$SSD_{2} = 16.66 \times 2.5 + \frac{(16.66)^{2}}{2 \times 9.81 \times 0.4 \times 0.5} = 112.38 \text{ m}$$

Total distance required = 221.77 + 112.38 = 334.15 m

14. (d)

Normal flow on road A, $q_a = 500$ PCU/hr Normal flow on road B, $q_b = 300$ PCU/hr Saturation flow on road A, $S_a = 1500$ PCU/hr Saturation flow on road B, $S_b = 1000$ PCU/hr All red time, R = 16 sec Number of phases, n = 2 $y_a = \frac{q_a}{S_a} = \frac{500}{1500} = 0.33$ $y_b = \frac{q_b}{S_b} = \frac{300}{1000} = 0.3$ $Y = y_a + y_b = 0.33 + 0.3 = 0.63$ Total lost time, $L = 2n + R = 2 \times 2 + 16 = 20$ sec. Optimum cycle time, $C_o = \frac{1.5L+5}{1-Y} = \frac{1.5 \times 20 + 5}{1-0.63} = 94.59 \simeq 95$ sec.

$$N = \frac{365 \times 2100 \times \left[\left(1 + 0.08 \right)^{16} - 1 \right]}{0.08} \times 3 \times 0.75$$

 $N = 522.98 \times 10^5$ standard axles

.:.

VDF = vehicle damage factor

$$N = \frac{365 \times 2100 \times \left[(1+0.08)^{16} - 1 \right]}{300} \times 3 \times 0.75$$

$$N = \frac{365 \times A\left[(1+r)^n - 1\right]}{r} \times LDF \times VDF$$

$$A = \text{traffic in year of completion of construction in terms of CVD}$$

$$r = \text{annual growth rate}$$

n = design life in years LDF = lane distribution factor

where,

Design traffic is given by,

$$w = 15 \text{ m}, p = 0.6, L = 75 \text{ m}, e = 5 \text{ m}$$

 $280 \times 15 \times \left(1 + \frac{5}{15}\right) \left(1 - \frac{0.60}{3}\right)$

 \Rightarrow

(c)

17.

Length of transition curve
$$(L_t) = \left(\frac{(w + w_e)eN}{2}\right)$$
 $w_e = 0$ as R > 300 m
= $\frac{(7 \times 0.07 \times 150)}{2} = 36.75$ m

 $e = \frac{V^2}{225R} = \frac{100^2}{225 \times 400} = 0.11$

 $V = 100 \, \text{kmph},$

 $R = 400 \, \text{m},$ N = 150

 $e \le 0.07$

e = 0.07

Since R > 300 m, extra widening is not required

16. (a)

15.

(a)

 \Rightarrow

Given:

(a)
The capacity of rotary,
$$Q_p = \frac{280w\left(1+\frac{e}{w}\right)\left(1-\frac{p}{3}\right)}{\left(1+\frac{w}{L}\right)}$$

 $w = 15 \text{ m}, p = 0.6, L = 75 \text{ m}, e = 5 \text{ m}$

$$280w\left(1+\frac{e}{m}\right)\left(1-\frac{p}{2}\right)$$

$$= \frac{(7 \times 0.07 \times 150)}{2} = 36.75 \text{ m}$$

$$\frac{280w\left(1 + \frac{e}{w}\right)\left(1 - \frac{p}{3}\right)}{2}$$

$$Q_p = \frac{250 \times 101 \times (1115) (113)}{\left(1 + \frac{15}{75}\right)} = 3733.33 \simeq 3733 \text{ PCU/hr}$$

Required superelevation,

Hence provide,

for plain and rolling

18. (c)

Mean rate of arrival per unit time,

$$\lambda = \frac{100}{3600} = \frac{1}{36} \text{ veh/second}$$

Mean rate of service,
$$\mu = \frac{150}{3600} = \frac{1}{24} \text{ veh/hour}$$

Traffic intensity,
$$\rho = \frac{\lambda}{\mu} = \frac{\left(\frac{1}{36}\right)}{\left(\frac{1}{24}\right)} = \frac{24}{36} = \frac{2}{3}$$

Average time spent by the vehicle in the system,

$$\overline{d} = \frac{1}{\mu(1-\rho)} = \frac{1}{\frac{1}{24} \times \left(1-\frac{2}{3}\right)} = 72 \text{ seconds}$$

Average time spent by the vehicle in the queue,

$$\overline{w} = \frac{\rho}{\mu(1-\rho)} = \frac{\left(\frac{2}{3}\right)}{\frac{1}{24}\left(1-\frac{2}{3}\right)} = \frac{2}{3} \times 72 = 48 \text{ seconds}$$

Total time spent in the system and in queue = 72 + 48 = 120 seconds.

19. (c)

$$s = 0.2 V_b + 6 = 0.2 \times 60 + 6 = 18$$

en:
$$t_R = 2 \sec; a = 3 \text{ kmph/sec} = 3 \times \frac{5}{18} = 0.833 \text{ m/s}^2$$

 $d_1 = 0.278 \ V_b \times t_R = 0.278 \times 60 \times 2 = 33.36 \text{ m}$...(i)
 $T = \sqrt{\frac{4s}{a}} = \sqrt{\frac{4 \times 18}{0.833}} = 9.297 \text{ seconds}$
 $d_2 = 0.278 \ V_b \times T + \frac{1}{2} a T^2$
 $= 0.278 \times 60 \times 9.297 + \frac{1}{2} \times 0.833 \times 9.297^2 = 191.073 \text{ m}$...(ii)
 $d_3 = 0.278 \ V_c \times T$

$$a_3 = 0.278 V_c \times T$$

= 0.278 × 80 × 9.297 = 206.76 m ...(iii)

Therefore, OSD on two–way traffic road is summation of (i), (ii) and (iii) $= d_1 + d_2 + d_3 = 33.36 + 191.073 + 206.76 \approx 431.20 \text{ m}$

21. (a)

Theoretical specific gravity of mix,

$$G_t = \frac{100}{\frac{55}{2.62} + \frac{35.2}{2.72} + \frac{4.8}{2.70} + \frac{5}{1.02}} = 2.46$$

22. (c)

$$s = 0.278 Vt + L = 0.278 \times 40 \times 0.8 + 6$$

= 14.90 m

Theoretical capacity,
$$C = \frac{1000 V}{s} = \frac{1000 \times 40}{14.90}$$

= 2684 vehicles/hour/lane

23. (c)

$$p = \frac{1400}{\pi \times \frac{35^2}{4}} = 1.455 \text{ kg/cm}^2$$

 k_{35} for 35 cm diameter plate = $\frac{p}{\Delta}$

$$k_{35} = \frac{1.455}{0.125} = 11.64 \text{ kg/cm}^3$$

 k_{75} for standard plate of diameter 75 cm

$$k_{75} = k_{35} \times \frac{35}{75} = 5.43 \text{ kg/cm}^3$$

24. (b)

 \Rightarrow

For

For

The points joining the line are

$$\left(\log P, \log \frac{d}{2}\right)$$
 and $\left(\log 2P, \log 2S\right)$
Given, $P = 2044$ kg, $d = 11$ cm, $S = 27$ cm

 $\log(\text{ESWL}) = m \log t + C$

The equation of line is

$$m = \frac{\log 2P - \log P}{\log 2S - \log\left(\frac{d}{2}\right)} = 0.303$$

From point $[\log P, \log(d/2)],$

$$log(2044) = 0.303 log\left(\frac{11}{2}\right) + C$$

$$C = 3.086$$

$$log(ESWL) = 0.303 log t + 3.086$$

$$t = 15 \text{ cm},$$

$$log(ESWL) = 0.303 log 15 + 3.086$$

$$ESWL = 2770 \text{ kg}$$

$$t = 20 \text{ cm},$$

log(ESWL) = 0.303 log 20 + 3.086 ESWL = 3020 kg

25. (d)

If superelevation is not available than take camber as superelevation. e = 4.0% = 0.04

:.

$$R_{\rm min} = \frac{V^2}{127e} = \frac{(75)^2}{127 \times 0.04} = 625 \,\mathrm{m}$$

30. (a)

Capacity =
$$\frac{1000V}{S}$$

 $S = 0.2V + L = 0.2 \times 60 + 6 = 18 \text{ m}$
Capacity = $\frac{1000 \times 60}{18} \times 2 = 6666.7 \simeq 6700$

The closest answer is 6800.