
S.No. : 02SKCS_FGHI_14122023

1. (d)

2. (d)

3. (b)

4. (c)

5. (c)

6. (b)

7. (c)

8. (d)

9. (d)

10. (d)

11. (d)

12. (b)

13. (c)

14. (c)

15. (b)

16. (c)

17. (a)

18. (d)

19. (d)

20. (c)

21. (a)

22. (b)

23. (c)

24. (a)

25. (a)

26. (c)

27. (c)

28. (c)

29. (c)

30. (b)

ANSWER KEY

COMPILER DESIGN

COMPUTER SCIENCE & IT

Date of Test : 14/12/2023

CLASS TEST

Delhi | Bhopal | Hyderabad | Jaipur | Pune | Bhubaneswar | Kolkata

Web: www.madeeasy.in | E-mail: info@madeeasy.in | Ph: 011-45124612

© Copyright :www.madeeasy.in

6 Computer Science & IT

DE TAILED EXPL ANATIONS

1 .1 .1 .1 .1 . (d)(d)(d)(d)(d)
The given program contain no lexical error even through it contains syntax errors. In line number “5”,
comment started and searches for the first close comment pattern when it finds, it consider a comment.
There is no start comment pattern (/*)but there is end comment at last in line 5, hence it is not lexical error
but it is syntax error.

/ * com / * ment2 * / end * /

Identifier OperatorComment ⇒ No lexical error

2 .2 .2 .2 .2 . (d)(d)(d)(d)(d)
FIRST (X) = {s, e, ε}
FOLLOW (X) = {e, c, s, $}

1 2

$

(3) (2)

(4) (4) (4) (4)

c s e
X sX X Yc

X X X X X
E E

→ →
→ ε → ε → ε → ε

= =

∴ E1 = {3, 4} and E2 = {2, 4}

3 .3 .3 .3 .3 . (b)(b)(b)(b)(b)

S →
S abS

acS
 c

 → ⋅
⋅
⋅

′ ⋅S

S
S

→
→

S →′ ⋅S

S a bS
a cS

 → ⋅
⋅S →

S c → ⋅

S ab S
S abS

acS
c

→ ⋅
→ ⋅

⋅
⋅

S
S

→
→

S ab → S⋅

I1
I4

I6

I5

I3

I0

I2

S

a

c

c

a
S

S ac S
abS

 acS
c

 → ⋅
⋅
⋅
⋅

S
S
S

→
→
→

S ac → S⋅

I7
b

a
c

c

S

Total 8 states.

4 .4 .4 .4 .4 . (c)(c)(c)(c)(c)

x y

5 .5 .5 .5 .5 . (c)(c)(c)(c)(c)
The drawback in quarduple representation is one extra field required to store the result.
In triple representation their is no need of extra field to store the result, So it require less space.

© Copyright : www.madeeasy.in

7• Compiler DesignCS

Both (a) and (b) are correct.

6 .6 .6 .6 .6 . (b)(b)(b)(b)(b)
S → AA → aA → aa
S → AA → aA → abA → aba
S → AA → aA → aAb → aab
S → AA → Aa → bAa → baa
∴ {aa, aba, aab, baa} can be generated within 4 steps.

7 .7 .7 .7 .7 . (c)(c)(c)(c)(c)
If grammar contain left recursion, then recursive descent parser call itself every time and not reaching to
terminal which leads it to an infinite loop.
Every LR parser is always unambiguous.

8 .8 .8 .8 .8 . (d)(d)(d)(d)(d)
Lexical analyser uses symbol table to identity token and storing token into table.
Syntax analyser uses symbol table to generate parse tree.
Semantic analyser uses symbol table to identify the type of identifier or meaning to perform appropriate
action.

9 .9 .9 .9 .9 . (d)(d)(d)(d)(d)
Control link points to the activation record of the caller.
Access link points to the activation record associated with nearest enclosing scope of the subprogram
definition.
So, control link, access link and temporary variable are part of activation record.

10.10.10.10.10. (d)(d)(d)(d)(d) CLR(1)

SLR(1)

LL(1)
LL(1) is CLR(1).
SLR(1) is also CLR(1).
CLR(1) need not be LL(1) or SLR(1).

11.11.11.11.11. (d)(d)(d)(d)(d)
LR(1) item set is given below

S′ → .S, $
S → .X X, $
X → .aX, a c
X → .c, ac

S →
S XX
X aX a c
X c a c

 , $
 , |
 , |

→ ⋅
→ ⋅
→ ⋅

′ ⋅S, $

I0
S →′ ⋅S , $

S X X
X aX
X c

 , $
 , $
 , $

→ ⋅
→ ⋅
→ ⋅

S XX , $→ ⋅

X a X
X aX
X c

 , $
 , $
 , $

→ ⋅
→ ⋅
→ ⋅

X c , $→ ⋅

I1

I2

I5

S

X

X a X a c
X aX a c
X c a c

 , |
 , |
 , |

→ ⋅
→ ⋅
→ ⋅

X , |→ ⋅aX a cI4

I6

a
I3

X

a

c

X , $→ ⋅aX

X , |→ ⋅c a c

c

c I7

I8

I9

X

a

ca

X

Total 10 states in CLR(1) parser.
Here, state (I3, I6), (I4, I7) and (I8, I9) have same transition item over a and c respectively which only differ
in look ahead symbols. So to make LALR(1) combines (I3, I6 = I36), (I4, I7 = I47) and (I8, I9 = I89).
So total number of states in LALR(1) is 7 and reduced states is 3.

© Copyright :www.madeeasy.in

8 Computer Science & IT

12.12.12.12.12. (b)(b)(b)(b)(b)

T →
T W
T aTc
W
W bW

→ ⋅
→ ⋅
→ ⋅
→ ⋅

′ ⋅T

d

I0

T T′ → ⋅

I1

T

a

b

T c

T W → ⋅

I2

W b W
W d
W bW

→ ⋅
→ ⋅
→ ⋅

I4

T aT c → ⋅

I6

W bW → ⋅

I7

T aTc → ⋅

I8

W
W d → ⋅ I5

T a →
T W
T aTc
W
W bW

→ ⋅
→ ⋅
→ ⋅
→ ⋅

⋅Tc

d

W

a

bd

d

I3

d

W

13.13.13.13.13. (c)(c)(c)(c)(c)
 = 1;

if then
= + ;
 = t ;
 = ;

 = + 1 goto (2)
else

end

i
i

i i

 n
t b c
a
a t d

≤

∗

1

1

1

for (= 1; ; ++)
{
 = + ;
 = ;
}

i i i ≤

∗

n

a b c
a a d

Intermediate code represent option (c).
14.14.14.14.14. (c)(c)(c)(c)(c)

T

FT ∗

L

E

F

()E

va
l=3

TE

digit

digit

T

F

val
=3

va
l=3

va
l=3

F

val=4
val=4

val=4

()E

va
l=5

TE

digit

digit

T

F

val
=5

val
=5

val
=5

F

val=6
val=6

val=6

val=42

val=42

val=42

val=12

val=12

val=30

val=30

+

+

15.15.15.15.15. (b)(b)(b)(b)(b)
The given grammar generate two derivation trees for the string ‘abc’.

S

X Y

a b c

1 derivation tree
st

S

W V

b ca

2 derivation treend

Hence, given grammar is ambiguous.

© Copyright : www.madeeasy.in

9• Compiler DesignCS

16.16.16.16.16. (c)(c)(c)(c)(c)
The loader performs relocation where address of data and address of instruction can be changed.

17.17.17.17.17. (a)(a)(a)(a)(a)
Regular expression is used in lexical analysis to identify the tokens.

18.18.18.18.18. (d)(d)(d)(d)(d)
main ()

{

char ch = ‘A’ ;

int , ;x y

x = = 20 ;y

x ++ ;

1 2 3

4

5 6 7 8 9

10 11 141312

15 16 17 18 19 20

21 23

printf (“%d%d” , ,) ;x y

}
24 25 26 27

22

28 32313029

33

19.19.19.19.19. (d)(d)(d)(d)(d)

S →
S Aa

bAc
dc
bda

A d a

 , $
, $

, $
, $

 ,

→ ⋅
⋅
⋅
⋅

→ ⋅

′ ⋅S, $

S
S
S

→
→
→

I0

S →′ ⋅S , $

S A a , $→ ⋅

b da
A d c

⋅
→ ⋅

, $
 ,

S b Ac , $→ ⋅
S →

S
A d a , → ⋅

 , $→ ⋅d c

S Aa , $→ ⋅

S bA c , $→ ⋅

S
A d c , → ⋅

 , $→ ⋅bd a

S → bAc⋅, $

S bda , $→ ⋅

S dc , $→ ⋅

I1

I2

I3

I4

I5

I6

I7

I8

I9

I10

S

A

b

d

a

A

d

c

c

a

The number of states presents in LALR(1) parser is 11.

20.20.20.20.20. (c)(c)(c)(c)(c)

E E →′ ⋅
→ ⋅
→ ⋅

E A
E c

 ()

E E →′ ⋅

E A ()→ ⋅
→ ⋅
→ ⋅
→ ⋅
→ ⋅

A A E
A E
E A
E c

 ,

 ()

E c → ⋅

E A ()→ ⋅
→ ⋅A A E ,

A E → ⋅

A A E , → ⋅
→ ⋅
→ ⋅

E A
E c

 ()

E A ()→ ⋅

A A E , → ⋅

I1
I4

I6

I8

I7

I5

I3

I0

I2

E

(

c
(

(

E

A
)

,
E

cc

Since A → A⋅, E and E → (A⋅) present in I4 but E → c⋅ not present with E → (A⋅) or A → A⋅, E.

© Copyright :www.madeeasy.in

10 Computer Science & IT

21.21.21.21.21. (a)(a)(a)(a)(a)

S →
S Aa
S bAc
S Bc
S bBa
A d a
B d c

 , $
 , $
 , $
 , $
 ,
 ,

→ ⋅
→ ⋅
→ ⋅
→ ⋅
→ ⋅
→ ⋅

′ ⋅S $,

I0

S →′ ⋅S , $

S A a , $→ ⋅

S b Ac
S b Ba
A d
B d

 , $
 , $
 , c
 , a

→ ⋅
→ ⋅
→ ⋅
→ ⋅

S , → ⋅B c $

S Aa , $→ ⋅

S bA c , $→ ⋅

A
B d a , → ⋅

 , → ⋅d c

S → bAc⋅, $

S bBa , $→ ⋅

I1

I2

I3

I6

I8

I9

I10

I11

I12

S

A

b

B

a

A

d

c

c

a

A d a
B d c

 ,
 ,
→ ⋅
→ ⋅

S , → ⋅Bc $

S bB a , $→ ⋅

I4

I5

I7

d

B

Since their is no conflict in any state in parsing table. So given grammar is LR(1) but when we merge I5 and
I9 the resulting state will be

I5+9 = A → d ⋅ ,ac
B → d ⋅ ,ac creates reduce-reduce conflict.

So given grammar is not LALR(1). Therefore given grammar is LR(1) but not LALR(1).
22.22.22.22.22. (b)(b)(b)(b)(b)

FOLLOW (S) = {c, $}
FIRST (S) = FIRST (M N z S c) = {a, b, z}

23.23.23.23.23. (c)(c)(c)(c)(c)
Static storage allocation does not support recursion because memory will be allocated at compile time
itself and at compile time we don’t know how much memory is required. So it is the drawback.
In stack allocation when one function complete it execution then it will be poped out from stack. If in near
future again that function called it will be evaluated again. So it consume lots of time to evaluate same
function again and again. So it is the drawback.

24.24.24.24.24. (a)(a)(a)(a)(a)
Option (b) contain two consecutive variables so not operator grammar.
Option (a) is operator grammar because it does not contain two consecutive variables and null production.

25.25.25.25.25. (a)(a)(a)(a)(a)
Consider 3 strings id + id + id, id – id – id and id ∗ id ∗ id.

S

A

S A

S

A B

B C

C id

id

B

C

id

+

+

So, ‘+’ is left associative

B

C

B C

B

C

id

id

id

–

–

S

A

So, ‘–’ is left associative

A

A

C B

B

id C

id

id

A

B

C

∗

∗

S

So, ‘ ’ is right associative∗

© Copyright : www.madeeasy.in

11• Compiler DesignCS

26.26.26.26.26. (c)(c)(c)(c)(c)
In static single assignment, every variable assigned only once and that variable can be used any number
of times without assignment.
Expression : Expression : Expression : Expression : Expression : a + b/9 + c – d ∗ 4 + e
t1 = b/9 ;
t2 = a + b/9 ;
t3 = t2 + c
t4 = d ∗ 4
t5 = t3 – t4
t6 = t5 + e
∴ 6 temporary variables are required.

27.27.27.27.27. (c)(c)(c)(c)(c)
GGGGG1 1 1 1 1 ::::: S → A a

B C a
B S a a
∈ S a a

Since it contain production S ⇒ S a a in which S call itself. So left recursion present.
GGGGG2 2 2 2 2 ::::: A → B C

∈ C
A D

Here grammar contain production A ⇒ AD i.e. A call itself so left recursion is present.
∴ Both G1 and G2 contain left recursion.

28.28.28.28.28. (c)(c)(c)(c)(c)
For grammar S → Sa d Sb e
Non-left recursive grammar is

S → dS′ eS′
S′ → aS′ bS′ ∈

By removing null production from above non-left recursive grammar resulted grammar is
S → eS′ dS′ e d
S′ → bS′ aS′ b a

So both (a) and (b) are non-left recursive for given left recursive grammar.

29.29.29.29.29. (c)(c)(c)(c)(c)
S → aS AB
A → bA B
B → cB d

The above grammar is LL(1) because

FIRST (aS) ∩ FIRST (AB) = {a} ∩ {b, c, d} = φ and

FIRST (bA) ∩ FIRST (B) = {b} ∩ {cd} = φ and

FIRST (cB) ∩ FIRST(d) = {c} ∩ {d} = φ
So it is LL(1), also LR(1) because LL(1) grammar is always LR(1) grammar.

© Copyright :www.madeeasy.in

12 Computer Science & IT

30.30.30.30.30. (b)(b)(b)(b)(b)

S →
S aAd

bBd
aBe
bAe

 , $
, $
, $
, $

→ ⋅
⋅
⋅
⋅

′ ⋅S, $

S
S
S

→
→
→

I0

S →′ ⋅S , $

S a Ad
a Be

A c d
B c e

 , $
, $

 ,
 ,

→ ⋅
⋅

→ ⋅
→ ⋅

S →

S aA d , $→ ⋅

S aB e , $→ ⋅

S bA e , $→ ⋅

S → aAd⋅, $

S aBe , $→ ⋅

I1

I2

I4 I10

I11

S

a

d

e

S b Bd
b Ae

A c e
B c d

 , $
, $

 ,
 ,

→ ⋅
⋅

→ ⋅
→ ⋅

S →
S , $→ ⋅bB d

A c d
B c e

 ,
 ,
→ ⋅
→ ⋅

I5

b

A c e
B c d

 ,
 ,
→ ⋅
→ ⋅

S → bAe⋅, $

S bBd , $→ ⋅

I3

I6

I7

I8

I9

I12

I13d

e

A

B

c

A

B

c

There are 14 states in LR(1).

