

DETAILED EXPLANATIONS

1. (d)

The given program contain no lexical error even through it contains syntax errors. In line number " 5 ", comment started and searches for the first close comment pattern when it finds, it consider a comment. There is no start comment pattern (/*)but there is end comment at last in line 5 , hence it is not lexical error but it is syntax error.

2. (d)
$\operatorname{FIRST}(X)=\{s, e, \varepsilon\}$
FOLLOW $(X)=\{e, c, s, \$\}$

$\therefore \quad E_{1}=\{3,4\}$ and $E_{2}=\{2,4\}$
3. (b)

Total 8 states.
4. (c)

5. (c)

The drawback in quarduple representation is one extra field required to store the result.
In triple representation their is no need of extra field to store the result, So it require less space.

Both (a) and (b) are correct.
6. (b)
$S \rightarrow A A \rightarrow a A \rightarrow a a$
$S \rightarrow A A \rightarrow a A \rightarrow a b A \rightarrow a b a$
$S \rightarrow A A \rightarrow a A \rightarrow a A b \rightarrow a a b$
$S \rightarrow A A \rightarrow A a \rightarrow b A a \rightarrow b a a$
$\therefore \quad\{a a, a b a, a a b, b a a\}$ can be generated within 4 steps.
7. (c)

If grammar contain left recursion, then recursive descent parser call itself every time and not reaching to terminal which leads it to an infinite loop.
Every LR parser is always unambiguous.
8. (d)

Lexical analyser uses symbol table to identity token and storing token into table.
Syntax analyser uses symbol table to generate parse tree.
Semantic analyser uses symbol table to identify the type of identifier or meaning to perform appropriate action.
9. (d)

Control link points to the activation record of the caller.
Access link points to the activation record associated with nearest enclosing scope of the subprogram definition.

So, control link, access link and temporary variable are part of activation record.
10. (d)
$L L(1)$ is $\operatorname{CLR}(1)$.
$\operatorname{SLR}(1)$ is also $\operatorname{CLR}(1)$.
$\operatorname{CLR}(1)$ need not be $\operatorname{LL}(1)$ or $\operatorname{SLR}(1)$.

11. (d)
$\mathrm{LR}(1)$ item set is given below

$$
\begin{aligned}
& S^{\prime} \rightarrow . S, \$ \\
& S \rightarrow . X X, \$ \\
& X \rightarrow . a X, a \mid c \\
& X \rightarrow . c, a \mid c
\end{aligned}
$$

Total 10 states in CLR(1) parser.
Here, state $\left(I_{3}, I_{6}\right),\left(I_{4}, I_{7}\right)$ and $\left(I_{8}, I_{9}\right)$ have same transition item over a and c respectively which only differ in look ahead symbols. So to make LALR(1) combines ($I_{3}, I_{6}=I_{36}$), ($I_{4}, I_{7}=I_{47}$) and ($I_{8}, I_{9}=I_{89}$).
So total number of states in $\operatorname{LALR}(1)$ is 7 and reduced states is 3 .
12. (b)

13. (c)

$$
\begin{aligned}
& \text { for }(i=1 ; i \leq n ; i++) \quad i=1 \text {; } \\
& \{a=b+c ; \quad \Longrightarrow \\
& a=a * d ; \\
& \text { \} } \\
& \text { if } i \leq n \text { then } \\
& t_{1}=b+c ; \\
& a=\mathrm{t}_{1} \text {; } \\
& a=t_{1} * d ; \\
& i=i+1 \text { goto (2) } \\
& \text { else } \\
& \text { end }
\end{aligned}
$$

Intermediate code represent option (c).
14. (c)

15. (b)

The given grammar generate two derivation trees for the string 'abc'.

Hence, given grammar is ambiguous.
16. (c)

The loader performs relocation where address of data and address of instruction can be changed.
17. (a)

Regular expression is used in lexical analysis to identify the tokens.
18. (d)

```
main ()
(1) (2) \(\overline{3}\)
(4)
```



```
    \(x+{ }^{++}\);
    (2) (23) (3)
```



```
(3)
```

19. (d)

The number of states presents in $\operatorname{LALR}(1)$ parser is 11.
20. (c)

Since $A \rightarrow A \cdot, E$ and $E \rightarrow(A \cdot)$ present in I_{4} but $E \rightarrow c$. not present with $E \rightarrow(A \cdot)$ or $A \rightarrow A \cdot E$.
21. (a)

Since their is no conflict in any state in parsing table. So given grammar is $\operatorname{LR}(1)$ but when we merge I_{5} and I_{9} the resulting state will be

$$
\begin{aligned}
I_{5+9}= & A \rightarrow d \cdot, a \mid c \\
& B \rightarrow d \cdot, a \mid c \text { creates reduce-reduce conflict. }
\end{aligned}
$$

So given grammar is not $\operatorname{LALR}(1)$. Therefore given grammar is $L R(1)$ but not $\operatorname{LALR}(1)$.
22. (b)

$$
\begin{aligned}
\operatorname{FOLLOW}(S) & =\{c, \$\} \\
\operatorname{FIRST}(S) & =\operatorname{FIRST}(M N z S c)=\{a, b, z\}
\end{aligned}
$$

23. (c)

Static storage allocation does not support recursion because memory will be allocated at compile time itself and at compile time we don't know how much memory is required. So it is the drawback.
In stack allocation when one function complete it execution then it will be poped out from stack. If in near future again that function called it will be evaluated again. So it consume lots of time to evaluate same function again and again. So it is the drawback.
24. (a)

Option (b) contain two consecutive variables so not operator grammar.
Option (a) is operator grammar because it does not contain two consecutive variables and null production.
25. (a)

Consider 3 strings id +id +id, id -id -id and id $* i d * i d$.

So, '+' is left associative

So, '-' is left associative

So, ' $*$ ' is right associative
26. (c)

In static single assignment, every variable assigned only once and that variable can be used any number of times without assignment.
Expression : $a+b / 9+c-d * 4+e$
$t_{1}=b / 9$;
$t_{2}=a+b / 9$;
$t_{3}=t_{2}+c$
$t_{4}=d * 4$
$t_{5}=t_{3}-t_{4}$
$t_{6}=t_{5}+e$
$\therefore 6$ temporary variables are required.
27. (c)
$\mathrm{G}_{1}: S \rightarrow \underline{A} a$
B C a
B S a a
E S a a
Since it contain production $S \Rightarrow S$ a a in which S call itself. So left recursion present.
$\mathrm{G}_{2}: A \rightarrow \underline{B} C$
$\in \underline{C}$
AD
Here grammar contain production $A \Rightarrow A D$ i.e. A call itself so left recursion is present.
\therefore Both G_{1} and G_{2} contain left recursion.
28. (c)

For grammar $S \rightarrow$ Sa|d|Sb|e
Non-left recursive grammar is

$$
\begin{aligned}
& S \rightarrow d S^{\prime} \mid e S^{\prime} \\
& S^{\prime} \rightarrow a S^{\prime}\left|b S^{\prime}\right|_{\in}
\end{aligned}
$$

By removing null production from above non-left recursive grammar resulted grammar is

$$
\begin{aligned}
& S \rightarrow e S^{\prime}\left|d S^{\prime}\right| e \mid d \\
& S^{\prime} \rightarrow b S^{\prime}\left|a S^{\prime}\right| b \mid a
\end{aligned}
$$

So both (a) and (b) are non-left recursive for given left recursive grammar.
29. (c)

$$
\begin{aligned}
& S \rightarrow a S \mid A B \\
& A \rightarrow b A \mid B \\
& B \rightarrow c B \mid d
\end{aligned}
$$

The above grammar is $L L(1)$ because

$$
\begin{aligned}
\operatorname{FIRST}(a S) \cap \operatorname{FIRST}(A B) & =\{a\} \cap\{b, c, d\}=\phi \text { and } \\
\operatorname{FIRST}(b A) \cap \operatorname{FIRST}(B) & =\{b\} \cap\{c d\}=\phi \text { and } \\
\operatorname{FIRST}(c B) \cap \operatorname{FIRST}(d) & =\{c\} \cap\{d\}=\phi
\end{aligned}
$$

So it is $L L(1)$, also $L R(1)$ because $L L(1)$ grammar is always $L R(1)$ grammar.
30. (b)

There are 14 states in $\operatorname{LR}(1)$.

