

DETAILED EXPLANATIONS

1. (c)

$$
\begin{aligned}
& =0((0+1)(0+1))^{\star}+1(0+1)((0+1)(0+1))^{\star} \\
& =(0+1(0+1))((0+1)(0+1))^{\star}
\end{aligned}
$$

2. (d)

Consider the following automata A :

Above automata satisfies the condition as there is no transition into q_{0} and no transition out of q_{f}.

$$
L=\{a\}
$$

Modified Automata:

By adding this null transition in the automata. Now in this string 'a' can occur in a string multiple times and the automata will accept it.
Hence, it accepts L^{+}.
3. (c)

$$
\begin{aligned}
\text { R.E. } & =a^{*}\left(b b^{*} a+a\right) a^{*} \\
& =a^{*}\left(\left(b b^{*}+\varepsilon\right) a\right) a^{*} \\
& =a^{*} b^{*} a a^{*} \\
& =a^{*} b^{*} a^{*} a
\end{aligned}
$$

4. (a)
L_{2} is even palindrome on $\{a, b\}^{*}$
L_{3} is odd palindrome on $\{a, b\}^{*}$
L_{1} is any palindrome on $\{a, b\}^{*}$
Clearly, $L_{2} \subset L_{1}$ and $L_{3} \subset L_{1}$ and $L_{1}=L_{2} \cup L_{3}$
5. (c)

Converting the given transition to a state diagram, we get

From the diagram, the expression can be written as: $X_{0}=b^{*} a(a+b)^{*}$.
6. (a)

- Let

$$
\begin{aligned}
L_{1} & =\varepsilon, L_{2}=\{a b\}, L_{3}=\left\{a^{2} b^{2}\right\}, L_{4}=\left\{a^{4} b^{4}\right\} \ldots \text { so on. } \\
L & =L_{1} \cup L_{2} \cup L_{3} \ldots L_{n} \\
& =\{\varepsilon\} \cup\{a b\} \cup\left\{a^{2} b^{2}\right\} \cup \ldots \\
& =a^{n} b^{n} \text { that is CFL }
\end{aligned}
$$

- Let L be ϕ which is regular language.
$L^{*}=\phi^{*}=\varepsilon$, that is regular but finite.

7. (d)

8. (a)

When grammar is in CNF i.e., when the production are of the form $S \rightarrow A B, S \rightarrow a$.
Then, length of every derivation is $(2 n-1)$.
When grammar is in GNF i.e., when the production are of the form $S \rightarrow V T^{*}$. Then length of every derivation is n.
Hence, option (a) is correct.
9. (c)

Traversing the states of the turing machine, it can be seen that for every 'a' as the input, it is accepting 3 b's. For every ' a ' machine writes ' X ' on the tape, then take right moves till it reaches 'b'. For every 3 b's it writes symbol Y.
Hence accepting the language $L=\left\{a^{m} b^{n} \mid 3 m=n ; m, n \geq 0\right\}$.
10. (c)

- $L_{1} \cdot L_{2} \cdot L_{3}=\left\{0^{p} 1^{a} 2^{r} \mid p, q, r \geq 0\right\}=0^{*} 1^{*} 2^{*}$ is regular. Since regular, hence context-sensitive too.
- $L_{1} \cdot L_{2} \cdot L_{3} \neq\left\{0^{n} 1^{n} 2^{n} \mid n \geq 0\right\}$
- Since it is a regular language and regular languages are closed under complement, hence complement of $L_{1} \cdot L_{2} \cdot L_{3}$ is regular language.

11. (d)

- A is a DFA. So, $L(A)$ is regular. Complement of $L(A)$ is also regular since regular languages are closed under complement.
- $L(A)=\left((a+b a)(a+b)^{\star}\right)$ or can be written as $\left(a(a+b)^{*}+b a(a+b)^{*}\right)$.
- The minimal DFA will be.

- 'bba' ends with 'a' but is not accepted by the above automata.

12. (b)

13. (a)

Set of strings that contain either 'aa' or 'bb' as the substring.

So, the regular expression for the above DFA is:

$$
R=(a+b)^{\star}(a a+b b)(a+b)^{\star}
$$

14. (c)

$$
\begin{aligned}
L_{1} / L_{2} & =b b a^{*} b a a^{*} / a b^{*} \\
& =b b a^{*} b a a^{*} / a \\
& =b b a^{*} b a a^{*}
\end{aligned}
$$

15. (d)
$Q_{0} \rightarrow Q_{1}$: Pushes '0' to the stack when stack initially contain $\$$.
$Q_{1} \rightarrow Q_{1}$: Pushes all ' 0 ' of the string to the stack.
$Q_{1} \rightarrow Q_{2}$: Pushes '1' to the stack, when stack initially contains 0 .
$Q_{2} \rightarrow Q_{3}$: Pop '1' from the stack, when string has 0.
$Q_{3} \rightarrow Q_{3}$: Pop all 1's from the stack, till the string symbol is 0 .
$Q_{3} \rightarrow Q_{4}$: Pop O's from the stack, when string actually has 1 .
$Q_{4} \rightarrow Q_{4}$: Pop all the 0's from the stack, till the string symbol is 1 .
$Q_{4} \rightarrow Q_{5}$: Stack contains $\$$ and string symbol is \in, means the string is accepted.
Hence, $L=\left\{0^{m} 1^{n} 0^{n} 1^{m} \mid n, m>0\right\}$.
16. (c)

$$
L=\left\{a^{m} b^{n} b^{k} d^{l} \mid(n+k=o d d) \text { only if } m=l\right\}
$$

If, we check the condition carefully, the condition is actually logical implication.

$$
L=\left\{a^{m} b^{n} b^{k} d^{l} \mid(n+k=o d d) \rightarrow m=l\right\}
$$

Either $n+k$ will be odd or it will be even, if $(n+k)$ is odd, then it's necessary that m should be equal to l, if $(n+k)$ is even then l can be any number.

$$
\begin{aligned}
L & =\left\{a^{m} b^{2 n+1} d^{l} \text { and } l=m\right\} \text { or }\left\{a^{m} b^{2 n} d^{l}\right\} \\
& =\left\{a^{m} b^{2 n+1} d^{m}\right\} \cup\left\{a^{m} b^{2 n} d^{l}\right\} \\
\Rightarrow \quad \text { DCFL } \cup \text { regular } & =\text { DCFL. }
\end{aligned}
$$

17. (a)

- $\quad L_{1}$ is regular , since we can create DFA for given language.
- $\quad L_{2}$ is CFL, since their is a comparison between number of a and number of b in strings i.e., difference is less than equal to 10.
- $\quad L_{3}$ is regular, since by making $w=\in$ and $c=(a+b)^{*}$ we get language $(a+b)^{*}$ which contain every string belongs to $w C W W$.

18. (d)

By pumping lemma, we can never say that a language is regular or CFL. It can only be used to prove that a certain language is not regular or not CFL.
Since pumping lemma isn't satisfied for regular, hence we can say it is not regular, but since the lemma is satisfied for context-free, we can't say that the language is CFL.
19. (a)

The language $\left\{0^{0} 1^{2 p}\right\}$ is context-free language, hence it is recursive also. Since $L(M) \leq_{p} R E C$, so $L(M)$ also recursive, now given input (i.e. recursive language) to turing machine and finding it is accept or not is nontrival property so it is undecidable by Rice's theorem.
20. (d)

The given grammar G :

$$
\begin{aligned}
& E \rightarrow O X E 2 \\
& E \rightarrow O X 2 \\
& X 0 \rightarrow O X \\
& X 2 \rightarrow 12 \\
& X 1 \rightarrow 11
\end{aligned}
$$

$L(G)=\{012,001122, \ldots\}$
$E \rightarrow 0 X 2 \Rightarrow 012$
$E \rightarrow 0 X E 2 \Rightarrow 0 X 0 X 22 \Rightarrow 0 \times 0122 \Rightarrow 00 \times 122 \Rightarrow 001122$
$\therefore L=\left\{0^{n} 1^{n} 2^{n} \mid n>0\right\}$
21. (a)

The relationship between the number of leading a's and trailing d's in the language indicates that recursive rule is needed to generate them. The same is true for b's and c's. Derivations in the grammar

$$
\begin{aligned}
& S \rightarrow a S d d \mid A \\
& A \rightarrow b A c \mid b c
\end{aligned}
$$

generate strings in an outside-to-inside manner.
Option (b) does generate \in which is not present in $L(G)$.
Option (c) does generate "add" which is not present in $L(G)$.
Option (d) does not generate "abbccdd" which actually present in $L(G)$.
Option (a) contain all strings present in $L(G)$.
22. (a)

For an input whose length is less than 100 on which turing machine halt or not can be decidable by running turing machine for 100 steps. So, it is decidable language.
Whether a turing machine accept a given language is non-trival question so by Rice's theorem it is undecidable problem.
23. (d)

Considering each option once,
$\begin{array}{ccccc}\text { (a) } 0 & 0 & 0 & 1^{*} & (0+1) \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ 0 & 0 & 0 & 1 & 0,\end{array}$
$\begin{array}{llllll}0 & 0 & 0 & 1 & 0\end{array}$
(b) $0(0+1)^{\star}(0+1)$
$\begin{array}{cccccl}0 & (0+1) & (0+1) & (0+1) & (0+1) & \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ 0 & 0 & 0 & 1 & 0, & \text { hence its a member. }\end{array}$
(c) $(11+00)^{*}(0+1)^{*} 0$

$(11+00)$	$(0+1)$	$(0+1)$	0
\downarrow	\downarrow	\downarrow	\downarrow
00	0	1	$0, \quad$ hence its a member.

(d) $\left(11+(00)^{\star} 1\right)^{\star}$

In this regular expression, number of 0's will always be divisible by 2 , but the given string contains three zeros, which illustrates that, the string is not a member of the given regular expression.
24. (d)

Considering each of the options:

- ' w ' $=1$ is present in the language but can't be accepted by M.
- ' w ' 00 is present in the language but can't be accepted by M.
- ' w ' $=111$ is present in the language but can't be accepted by M.

Option (d) is correct.
25. (d)

Considering the languages:
L_{1} :This language is non-regular, since ' b ' can be any in number more than 3 , so a's should in such a way that they are less than or equal to ' b ' which needs a comparison.
Hence language is DCFL.
$L_{2}:\left\{a^{n} b^{m} \mid n \geq 1, m \geq 1\right\} \cap\left\{a^{n} b^{n} \mid n \geq 1\right\}$

$$
=\left\{a^{n} b^{n} \mid n \geq 1\right\}
$$

Which is a non regular DCFL.
Hence, both L_{1} and L_{2} are non-regular.
26. (b)
$(0+1)^{*}(00+11)(0+1)^{*}=$ (Containing 00 or 11) (atleast 2 consecutive 0's or 2 consecutive 1's)
DFA :

The number of states in minimized DFA for regular expression $(0+1)^{*}(00+11)(0+1)^{*}$ is 4 .
27. (b)

The PDA is designed, initially on every 'a' in the string 'a' is pushed in the stack, then on every 'b' in the string, a skip operation is performed. For, every 'c' in the string 'a' is popped from the stack, but string is accepted only if when input is finished and the stack still contains ' a ' which shows that number of ' a ' should be more than ' c '.
Hence,

$$
L=\left\{a^{n} b^{m} c^{p} \mid n>p ; n, m>0 ; p \geq 0\right\}
$$

28. (c)

- 'aaa' can’t be generated
- 'bbbb' can't be generated
- $\quad S \rightarrow a^{m+1} b^{m}+b^{n+1} a^{n}+a^{m} b^{m+n} a^{n}+\epsilon$

Hence, 'abba' is generated

- 'abab' can't be generated

29. (a)

$$
\begin{aligned}
L & =\left\{0^{n} 1 \mid n \geq 0\right\} \cap\left\{01^{n} \mid n \geq 0\right\} \\
& =\{1,01,001,0001, \ldots .\} \cap\{0,01,011,0111, \ldots .\} \\
& =\{01\}
\end{aligned}
$$

30. (b)

$$
\begin{aligned}
L & =\left\{\overline{w w \mid w \in\{0,1\}^{*}}\right\} \cap\{x y|x|=|y|\} \\
& =\mathrm{CFL} \cap \text { Regular } \\
& =\mathrm{CFL}
\end{aligned}
$$

