
1. (a)

2. (d)

3. (d)

4. (d)

5. (b)

6. (b)

7. (c)

8. (b)

9. (b)

10. (d)

11. (c)

12. (b)

13. (c)

14. (d)

15. (d)

16. (d)

17. (b)

18. (d)

19. (c)

20. (c)

21. (c)

22. (c)

23. (d)

24. (d)

25. (b)

26. (d)

27. (a)

28. (c)

29. (b)

30. (a)

ANSWER KEY

COMPUTER NETWORK

COMPUTER SCIENCE & IT

Date of Test : 23/10/2023

Delhi | Bhopal | Hyderabad | Jaipur | Pune | Bhubaneswar | Kolkata

Web: www.madeeasy.in | E-mail: info@madeeasy.in | Ph: 011-45124612

CLASS TEST S.No.:01SKCS_CDFGHI_30112023



© Copyright :www.madeeasy.in

10 Computer Science & ITComputer Science & ITComputer Science & ITComputer Science & ITComputer Science & IT

DE TAILED EXPL ANATIONS

1 .1 .1 .1 .1 . (a)(a)(a)(a)(a)

Process At Bt Priority
A
B
C
D
E

0
5
7
10
12

13
10
5
9
1

4
2
1
5
3

Preparing the Gantt Chart,

A B C B E A D
0 5 7 12 20 21 29 38

C B E A D
So, there are total 6 number of context switches.

2 .2 .2 .2 .2 . (d)(d)(d)(d)(d)
(a) Round robin works on time quantum, after certain period of time every process gets the CPU unit for

its completion, hence it’s most suitable.
(b) Since OS is multiuser and multiprocessing, hence security is the primary concern so that user processes

and Kernel processes can be isolated.
Hence two modes are required.

(c) When CPU temperature is too high, the BIOS initiate an interrupt. OS given top priority to this interrupt.
(d) Address translation table need to be changed when switching context from process A to process B.

3 .3 .3 .3 .3 . (d)(d)(d)(d)(d)
1. Since, each process has its own address space, it needs to involve the Kernel when dealing with other

process address space.
2. A software interrupt is required to switch between the two modes.
3. In both synchronous and asynchronous I/O an ISR is invoked after completion of the I/O.
4. Statement is correct.

4 .4 .4 .4 .4 . (d)(d)(d)(d)(d)
• Switching between two user level threads only require procedure calls not context switching.
• All Kernal threads operations are implemented in Kernal, and OS schedules all threads in the system.
• Since user level threads are transport to Kernal, hence are not scheduled independently and hence

are not given independent time slice.
• Threads do share the code segment.

5 .5 .5 .5 .5 . (b)(b)(b)(b)(b)
Calculating the need matrix

A B C D
P
P
P
P

0

1

2

3

0
0
1
0

1
2
0
0

0
1
3
1

0
0
0
1

E
2
0
0
1

Since, available = 00123, hence only P3 can be satisfied.
Remaining = (00123) – (00111) = (00012) + (11221) = (11233)
Now P0 can be executed,
Remaining = (11233) – (01002) = (10231) + (11213) = (21444)



© Copyright : www.madeeasy.in

11• Operating SystemOperating SystemOperating SystemOperating SystemOperating SystemCS

Now P2 can be executed,
Remaining = (21444) – (10300) = (11144) + (21310) = (32454)
Now P1 can be executed.

6 .6 .6 .6 .6 . (b)(b)(b)(b)(b)

1

2

1

2

1

H H

3

4

2

3

4

1 H

2

1

4

2

3

4

2

3

1

2

4

1

H H

2

4

3

2

1

3

3

1 2 3 2 3 4 1 4 2 3 2 1 4 2 3 1LRU :

Total page faults = 11

1

2

1

2

1

H H

3

4

2

3

4

1 H

2

1

4

2

1

3

H

2

4

3

H H

1

4

3

3

1 2 3 2 3 4 1 4 2 3 2 1 4 2 3 1FIFO :

H

Total page faults = 9

1

2

1

2

1

H H

4

1

2 H 2

3

1

3

2

4

H H

3

1

4

3

1 2 3 2 3 4 1 4 2 3 2 1 4 2 3 1Optimal :

H H

Total page faults = 7

HH

7 .7 .7 .7 .7 . (c)(c)(c)(c)(c)
1. CPU senses interrupt request line after every instruction.
2. Nearest cylinder next disk scheduling strategy gives the best throughput but the only problem is it

can lead to starvation.
3. Using large file block size in a fixed block size file system leads to better disk throughput but poor

disk space utilization.

8 .8 .8 .8 .8 . (b)(b)(b)(b)(b)

212 kB

112 kB

417 kB

100 kB

500 kB

200 kB

300 kB

600 kB

112 kB

417 kB

212 kB

212 kB

426 kB

417 kB

112 kB

83 kB

88 B

88 kB

174 kB

100 kB

500 kB

200 kB

300 kB

600 kB

188 kB

388 kB

83 kB

100 kB

500 kB

200 kB

300 kB

600 kB

188 kB

88 kB

183 kB

First fit
Unallocated partition = 2
{1 process left for placed}

Best fit
Unallocated partition = 1

{all process placed}

Worst fit
Unallocated partition = 2
{1 process left for placed}



© Copyright :www.madeeasy.in

12 Computer Science & ITComputer Science & ITComputer Science & ITComputer Science & ITComputer Science & IT

9 .9 .9 .9 .9 . (b)(b)(b)(b)(b)
To enter the critical section, process Pi first sets flag [i] to be true set S1 = S2, thereby asserting that if the
other process wishes to enter the critical section it can do so. If both processes try to enter at the same
time. The S1 will be set S2 or S2 +1 at roughly the same time. Only, one of these assignment will last; the
other will occur, but will be overwritten immediately.

10.10.10.10.10. (d)(d)(d)(d)(d)
Since 4 distinct page numbers are only to be accessed. Hence the best condition i.e., the condition with
minimum number of page faults will be accessing all those elements repeatedly that are in the frame
already, which will give maximum 4 page faults.
If, considered the worst case, it will be on every iteration, we are accessing the same element that has
been removed from the frame, which will give 52 page faults.

11.11.11.11.11. (c)(c)(c)(c)(c)
1. As files are allocated and deleted, the free disk space is broken into little pieces, hence can lead to

external fragmentation.
2. Linked-allocation can be used effectively only for sequential access file. To find the ith block of a file.

We must start at the beginning of that file and follow the pointers until we get the ith block.
3. Statement is correct.

12.12.12.12.12. (b)(b)(b)(b)(b)
In order to ensure a deadlock free system,
Sum of resource needs < [Number of resources + Number of processes] < [7 + 10] < 17
Maximum value that can be used is 16.

13.13.13.13.13. (c)(c)(c)(c)(c)
1. Computer ( ) → p (mutex) → mutex = 0

p (Q) → Q = 0
2. Science ( ) → p (Q) → process sleep
3. Computer ( ) → p (R) → R = 0

v(Q) → Q = 1, science ( ) awake
4. Science → p(Q); Q = 0; p(R) → process sleep
5. Computer → v(mutex) → mutex = 1

p(Q) → process sleep
Hence a deadlock.

14.14.14.14.14. (d)(d)(d)(d)(d)
1. The policy is a deadlock prevention policy, but can lead to starvation.
2. In deadlock prevention, one of the four condition for deadlock must not be satisfied. So, state even

being safe can’t led to successful request.
3. It will help in violating circular wait condition for deadlock.
4. Under deadlock avoidance, just the safe state need to be checked and hence is less restrictive

deadlock prevention scheme.

15.15.15.15.15. (d)(d)(d)(d)(d)

X Y Z W
P
P
P
P
P

0

1

2

3

4

2
3
0
2
2

2
2
3
5
0

2
0
2
0
0

2
0
4
2
1



© Copyright : www.madeeasy.in

13• Operating SystemOperating SystemOperating SystemOperating SystemOperating SystemCS

Since available is a 0 0 b, let’s suppose a takes value 2 and b takes the value 1.
Available = 2 0 0 1
P4 → Complete → Avail = (0000 + 6214) = 6214
P1 → Complete → Avail = (6214) – (3200) = (3014) + (3512) = (6526)
P0 → Complete → Avail = (6526) – (2222) = (4304) + (3242) = (7546)
P2 → Complete → Avail = (7546) – (0324) = (7222) + (2775) = (9, 9, 9, 7)
P3 → Complete → Avail = (9997) – (2502) = 7495
Hence, the system is in a safe state will value of a as 2 and value of b as 1.

16.16.16.16.16. (d)(d)(d)(d)(d)
Direct block addressing = 16 ∗ 256 ⇒ 4 KB

Single indirect block addressing = 
256

256B
8

  ∗  
= 25 ∗ 28 B
= 213 B ⇒ 8 KB

1 doubly indirect block addressing ⇒ 
2256 256B

8
  ∗  

⇒ (25)2 ∗ 28 B
⇒ 210 ∗ 28 B
⇒ 256 KB

1 triple indirect block addressing ⇒ 
3256 256B

8
  ∗  

⇒ (25)3 ∗ 28 B
⇒ 215 ∗ 28 B
⇒ 223 B
⇒ 8 MB

17.17.17.17.17. (b)(b)(b)(b)(b)
Page Size = 8 K
Offset bits = 13

Virtual Address = 64 bits
Remaining bits = 64 – 13 = 51 bits

Number of sets =
256

4
 = 64 = 6 bits

Tag bits = 51 – 6 = 45 bits

18.18.18.18.18. (d)(d)(d)(d)(d)
• The total size of address space in a virtual memory system is limited by the available secondary

storage.
• Best fit technique can also suffer from fragmentation.
• Locality of reference implies that the page reference being made by a process is likely to be the page

used in the previous page reference.
• In a system with virtual memory context switch includes extra overhead in switching of address

space.



© Copyright :www.madeeasy.in

14 Computer Science & ITComputer Science & ITComputer Science & ITComputer Science & ITComputer Science & IT

19.19.19.19.19. (c)(c)(c)(c)(c)
• FCFSFCFSFCFSFCFSFCFS

1 3 5 6 9 14 18 19 33 50 72 1990

24 54
71 12

30
47

8
13

14

3

Total time = 47+30+27+12+54+71+13+8+14 = 276 msec

20.20.20.20.20. (c)(c)(c)(c)(c)

File size Bytes needed 
for Book keeping

Block for 
Information

100 B
block

4992
5172
11052

50
52
111

100
104
222

1
2
3

Total 213 6

100 B

Space = 213 × 100 + 6 100 = 21300 + 600 = 21900 B× 

File size Bytes needed 
for Book keeping

Block for 
Information

200 B
block

4992
5172
11052

25
26
56

50
52
112

1
1
1

Total 107 3

200 B

Space = 107 × 200 + 3 200 = 22000 B× 

21.21.21.21.21. (c)(c)(c)(c)(c)
Let 2P be the page size.
Since page table entries are 4 bytes in size.

1st Page table size = Page table entry × Page table entry size

=
32

22
2

P
×

= 234 – P

2nd Page table size = Page table entry × PTE size

=
34 P

22
2

2P

−
×

= 236 – P – P

Last level page table must be fit into page size
So,

2P = 236 – P – P

P = 36 – P – P
3 P = 36

P = 12
So page size will be 212 bytes.



© Copyright : www.madeeasy.in

15• Operating SystemOperating SystemOperating SystemOperating SystemOperating SystemCS

22.22.22.22.22. (c)(c)(c)(c)(c)
Given function compare and swap is like test and set. Or, we can say that test and set is just a special
case of compare and swap, which maintain mutual exclusion and is deadlock free.

23.23.23.23.23. (d)(d)(d)(d)(d)
1. Statement is correct.
2. A page which was referenced last may also get replaced; although there is high possibility that the

same page may be needed again since it ignores locality of reference.
3. The essential content in each entry of a page table are page frame number.
4. It is not feasible because of the large memory overhead in maintaining the page tables.

24.24.24.24.24. (d)(d)(d)(d)(d)
• Rotational latency ⇒ 6000 rotation → 60 sec

1 rotation ⇒ 1/100 sec

Rotational latency ⇒ 1 1
2 100

×  = 
1

sec 0.005sec
200

=

Transfer time = 64 KB ⇒
1

sec
100

1 KB ⇒
1

sec
6400

= 0.000156 sec

Data transfer rate ⇒
1

sec 64 KB
100

→

1 sec → 64 KB × 100
→ 6400 KBPs

• Time required to read 800 random sectors
Total time required = [Seek time + RL + TT (1 sector)] × 800

= (0.005 + 0.005 + 0.000156) × 800
= 8.12 sec

• Total time = Seek time + Rotational latency + Transfer time
= 5 msec + 0.005 sec + 0.1248 sec
= 134.8 msec

25.25.25.25.25. (b)(b)(b)(b)(b)
If, we remove the lock while acquiring the fork. It may lead to deadlock, if all process execute (i) statement
before any philosopher has execute (ii) statement.
Removal of (iii) and (iv) will not affect the code, since no conflict can occur doing the  V operation on
forks.

26.26.26.26.26. (d)(d)(d)(d)(d)
The output is ‘TGE’. So, to print ‘T’, we must give a value of 1 to semaphore b and should block rest three
processes.
Now, process 3, after printing T, will give signal to semaphore a, which will wake up process 1 and will print
‘G’ and given signal to semaphore ‘b’ and ‘c’. On giving signal to semaphore ‘c’, process ‘2’ will get
awake. But ‘a’ should not be printed in the output hence ‘c’ should be given value ‘–1’.
Process 4 will also awake after process 3 on signal ‘a’, but it will again be blocked by wait (b).



© Copyright :www.madeeasy.in

16 Computer Science & ITComputer Science & ITComputer Science & ITComputer Science & ITComputer Science & IT

27.27.27.27.27. (a)(a)(a)(a)(a)
Calculating the need matrix

Process
Need

P0
P
P
P
P

1

2

3

4

7
1
6
0
4

4
2
0
1
3

3
2
0
1
1

X Y Z

Since, the available resources are 〈3, 3, 2〉.
Hence the request can only be satisfied for P1 or P3 at initial stage.
Considering P3 first,
Available after P3 → 〈3, 3, 2〉 – 〈0, 1, 1〉 = 〈3, 2, 1〉 + 〈2, 2, 2 〉 = 〈5, 4, 3〉
After P3 only, P1 or P4 can be executed.
Considering P1 first, rest all three processes can be scheduled in any way hence 6 possible ways.
After P3, consider P4, Next P1 can only be scheduled, then P0 and P2 can be scheduled in any way hence
2 possible ways.
Considering PConsidering PConsidering PConsidering PConsidering P11111 now: now: now: now: now: Need after P1 → 〈3, 3, 2〉 – 〈1, 2, 2〉 = 〈2, 1, 0〉 + 〈3, 2, 2〉 = 〈5, 3, 2〉
Now, condition can be satisfied either for P3 or P4.
Considering P3 first, any possible combination on P0, P4 and P2 possible hence 6 sequence.
Considering P4 first, followed by P3, then any combination of P0 and P1 hence sequence.

Total = 16 sequences.

28.28.28.28.28. (c)(c)(c)(c)(c)
Let’s first analyze the wait and signal code;
Wait code:Wait code:Wait code:Wait code:Wait code: Initially value of C is 7, S1 = 1, S2 = 0

wait (S1) → S1 = 0
C - -; → C = 6

If (value of C is less than 0, the thread is blocked by applying wait (S2).
Hence, it can be seen that, it is the code for counting semaphore wait operation, implemented with the
help of binary semaphore.
Similarly, for signal code

S = 7 – 5 = 2 + 3 = 5

29.29.29.29.29. (b)(b)(b)(b)(b)

Process Burst Time CPU I/O CPU CT TAT
P0
P
P
P

1

2

3

20
10
10
20

4
2
2
4

12
6
6
12

4
2
2
4

20
26
28
24

20
26
28
24

Average TAT = 98/4 = 24.5

Gantt ChartGantt ChartGantt ChartGantt ChartGantt Chart

P0 P3 P3 P3 P3 P1 P1 P2 P2 P0 P0 P0 P0

0 4 5 6 7 8 9 10 11 12 16 17 18 19 20 24 26 28

P3 P1 P2

P0
(I/O)

P0
(I/O)

P0
(I/O)

P0
(I/O)

P0
P3

(I/O)

P0
P3

(I/O)

P0
P
P

3

2
(I/O)

P0
P
P

3

1
(I/O)

P2
P3

(I/O)

P2
P3

(I/O)

P3
(I/O)

P3
(I/O)



© Copyright : www.madeeasy.in

17• Operating SystemOperating SystemOperating SystemOperating SystemOperating SystemCS

30.30.30.30.30. (a)(a)(a)(a)(a)
Case-1:Case-1:Case-1:Case-1:Case-1: System accesses 200 distinct pages. So, all these 200 pages are the page fault, next these
pages are accessed again, at that time page number 1, 2, 3 and 200 are in the frame. Now, when 4 will be
accessed, it will be replaced by 1. Next when 5 will be accessed, it will also be replaced by 2 and so on
till 199. So, total page faults = 200 + 196 = 396
Case-2:Case-2:Case-2:Case-2:Case-2: Again after the first access is over 197, 198, 199 and 200 are in the page frame. From 196 to 1
will be fault. So, total page faults = 200 + 196 = 396
Difference = 396 – 396 = 0


