CLASS TEST
 뵤물
 뵤브를
 India's Best Institute for IES, GATE \& PSUs
 Delhi | Bhopal | Hyderabad | Jaipur | Pune | Bhubaneswar | Kolkata
 Web: www.madeeasy.in | E-mail: info@madeeasy.in
 COMPUTER ORGANIZATION
 COMPUTER SCIENCE \& IT
 Date of Test : 16/11/2023

ANSWER KEY

1. (c)
2.

(a)
13. (b)
19. (b)
25. (a)
2. (a)
8. (b)
14. (b)
20. (b)
26. (d)
3. (c)
9. (c)
15. (a)
21. (b)
27. (c)
4.
(b)
10. (b)
16. (b)
22. (a)
28. (c)
5. (b)
11. (a)
17. (d)
23. (d)
29. (a)
6.
(c)
12. (b)
18. (d)
24. (a)
30. (a)

DETAILED EXPLANATIONS

1. (c)

Address format

Number of operations $=2^{6}=64$
Number of free opcodes after 2-address $=64-2=62$
Number of 1 add instruction $=62 \times 32=1984$

$$
\text { Free opcodes }=1984-1024=960
$$

Number of 0 add instruction $=960 \times 32=30720$
2. (a)

Since, it uses horizontal micro-programmed that requires 1 bit control / signal.
For 125 control signal, we need 125 bits.
Total number of micro-operation instruction $=215 \times 6=1290$
It requires 11 bit.
3. (c)

Multiplier	Pair with $(\boldsymbol{q - 1)}$	Recorder
0	0	0
1	0	-1
1	1	0
0	1	+1
1	0	-1
0	1	+1
0	0	0
1	0	-1
0	1	+1
1	0	-1
1	1	0
0	1	+1

4. (b)

The address division will be given as:

11
Tag
Line

5. (b)

1 clock is for 1 micro operation
8 clock means 8 micro operations
150 instructions $\times 8$ micro operations $=1200$
$\Rightarrow \quad 2^{10}<1200<2^{11}$
$\Rightarrow \quad 11$ bits are required
Control address register will use 11 bits
Size of control word $(C W)=125+11=136$ bits

Control Signal	Control Word Offset
125	CW $\xrightarrow{~} \xrightarrow{2}$

6. (c)
S_{1} : Main disadvantage of direct mapping is that cache hit ratio decreases sharply if two or more frequently used blocks map on to same region.
S_{2} : Because each and every WRITE operation is done simultaneously on both cache and main memory. WRITE THROUGH results in more cache cycles than WRITE BACK.
7. (a)

Write-After-Read Hazard :
$I_{4}-I_{2}$
$I_{4}-I_{3}$
(2)
$I_{5}-I_{4}$
(3)

$$
I_{2}-I_{1}
$$

(2)

$$
I_{5}-I_{3}
$$

$I_{5}-I_{3}$
So, there are total ' 3 ' write after read hazard and ' 2 ' write after write hazard.
8. (b)

Increment value is known when the current instruction is decoded within the IR.
9. (c)

The given address space is of 32 bits. Also, it is given that "111" as the MSB in those 29 bits, refer to IO devices. That means out of 32 ' 3 '-bits are fixed, so total IO address space can be 1×2^{29}.
Similarly, since " 111 " are reserved hence rest of 7 combinations represent memory location (000 to 110). So, the total memory address space will be 7×2^{29}.
10. (b)

Memory mapped I/O uses the same address bus to address both memory and I/O devices the memory and registers of the I/O devices are mapped to address values.
So, when an address is accessed by the CPU, it can depict whether the address range belongs to some I/O device or a memory location.
11. (a)

For non-pipelined processor:
For p-instruction execution time $=\frac{(p \times 5)}{5}=p$ ns
Pipelined processor:
For p-instruction execution time $=\frac{p}{3}=0.33 p$ ns
Speed-up $=\frac{p}{0.33 p}=3.03$
12. (b)

Memory mapped I/O uses the same address bus to address both memory and I/O devices the memory and registers of the I/O devices are mapped to address values.
So, when an address is accessed by the CPU, it may refer to a portion of physical RAM, but it can also refer to memory of I/O device.
13. (b)

$$
\begin{aligned}
\mathrm{T}_{\text {avg }} & =h_{1} t_{1}+\left(1-h_{1}\right) h_{2}\left(t_{2}+t_{1}\right)+\left(1-h_{1}\right)\left(1-h_{2}\right)\left(t_{3}+t_{2}+t_{1}\right) \\
& =0.65 \times 0.02+0.35 \times 0.45 \times 0.22+0.35 \times 0.55 \times 2.22 \\
& =0.013+0.03465+0.42735 \\
& =0.475=475 \mu \mathrm{sec}
\end{aligned}
$$

14. (b)

$$
\text { Biased exponent }=18+64=82
$$

Representing 82 in binary

$$
(82)_{2}=(1010010)_{2}
$$

Representing mantissa in binary

$$
(0.625)_{10}=(0.10100000)
$$

Floating point representation is as follows:

Sign bit	Exponent	Mantissa
0	1010010	10100000
	5	2

15. (a)

The minimum number of clock cycles can be obtained by writing its assembly code. The process in obtaining the outputs Z and R from input line X or Y via the same manner, such that the codes are not much different except there is a line code to execute store command when using input line X. The code is as follows:

Instruction

I_{1} : Load ACC, R
I_{2} : Inc, R
$I_{3}:$ Mul ACC, R
I_{4} : Store R, ACC

Meaning

Constructing the table:

	1	2	3	4	5	6	7
I_{1}	F	D	E	W			
I_{2}		F	D	E	W		
I_{3}			F	D	E	W	
I_{4}				F	D	E	W

So, the minimum clock cycles required to complete one process is 7 clock cycles.
16. (b)

$$
\begin{aligned}
E T_{\text {non-pipe }} & =\text { Average } \mathrm{CPI} \times \text { Cycle time (non-pipe) } \\
& =5 \times 0.25 \mu \mathrm{sec} \\
& =1.25 \mu \mathrm{sec} \\
E T_{\text {pipe }} & =\text { Average } \mathrm{CPI} \\
& =1 \times 0.33 \mu \mathrm{sec} \\
& =0.33 \mu \mathrm{sec}
\end{aligned}
$$

$$
\begin{aligned}
\text { Speed-up } & =\frac{E T_{\text {non-pipe }}}{E T_{\text {pipe }}} \\
& =\frac{1.25}{0.33}=3.78 \approx 3.7
\end{aligned}
$$

17. (d)

Increasing the cache line size brings in more from memory when a miss occurs. If accessing a certain byte suggests that nearby bytes are likely to be accessed soon (locality), then increasing the cache line essentially prefetches those other bytes. This, in turn, forestalls a later cache miss on those other bytes. If misses occur because the cache is too small, then the designers should increase the size! Conflict misses occur when multiple memory locations are repeatedly accessed but map to the same cache location. Consequently, when they are accessed, they keep kicking one another out of the cache. Increasing the associativity implies that each chunk of the cache is effectively doubled so that more than one memory item can rest in the same cache chunk.
18. (d)

$$
\begin{aligned}
\text { Main memory size } & =32768 \text { blocks } \\
1 \text { block } & =512 \text { words } \\
& =32768 \times 512 \text { words }=2^{15} \times 2^{9}=2^{24} \text { words }
\end{aligned}
$$

Main memory takes 24 bits.
Block size $=512$ words $=2^{9}$ words
Number of bits for block size $=9$ bits.
Number of blocks in set associative = 128
Number of blocks in one set = 4
Number of sets in cache $=\frac{128}{4}=32=2^{5}$
Number of bits in set offset $=5$ bits

Number of TAG bits $=24-(9+5)=10$ bits.
19. (b)

DMA is in burst mode i.e. the DMA interface gains bus mastership prior to the start of a block transfer and maintains control of the bus until the whole block is transferred.

Actual transfer time needed $=\frac{128 \mathrm{~B}}{30 \mathrm{KBps}}$
$=4.27 \mathrm{msec}$
Added to this is the time to transfer bus control at the beginning and end of transfer, which is

$$
500+500=1000 \text { nsec }
$$

This additional time is negligible.
So, the transfer time can be considered as 4.27 msec .
20. (b)

Considering each statement :
S_{1} : Delayed control transfer, also known as delayed branching, is an attempt to cope with control hazards.
S_{2} : The branch target stores the previous target address for the current branch, other algorithms for branch prediction also exist.
S_{3} : For any given instruction set architecture implemented on a N-stage pipelined processor, N registers probably is not enough registers to completely prevent structural hazards involving a shortage of register hardware.
21. (b)
D_{1} : Number of stages, $k=5$

$$
\tau_{i}=3,2,4,2,3 \mathrm{~ns}
$$

$i=1$ to 5
$\tau=\max \left(\tau_{i}\right)+d$ here d is negligible
$\tau=4 \mathrm{~ns}$
D_{2} : Number of stages, $k=8$
$\tau_{i}=2 \mathrm{~ns}$ each
$i=1$ to 8
$\tau=\max \left(\tau_{0}\right)=2 \mathrm{nsec}$
Number of instructions, $n=100$
$D_{1}: \quad T_{k}=(n+k-1) \tau$
$=(100+5-1) \times 4$
$=104 \times 4=416 \mathrm{~ns}$
$D_{2}:$
$T_{k}=(n+k-1) \tau$
$=(100+8-1) \times 2$
$=107 \times 2=214 \mathrm{~ns}$
Total time saved $=416-214=202 \mathrm{~ns}$
22. (a)

Average Memory Access time

$$
\begin{aligned}
& =\text { Hit Time } L_{1}+\text { Miss rate } L_{1} \times\left(\text { Hit time } L_{2}+\text { Miss rate } L_{2} \times \text { Miss Penalty } L_{2}\right) \\
& =1+4 \%(10+50 \% \times 100)\left[\text { Miss rate } L_{1}=\frac{40}{1000} \times 100=4 \%\right] \\
& =1+4 \% \times 60\left[\text { Miss rate } L_{2}=\frac{20}{40} \times 100=50 \%\right] \\
& =3.4 \text { clock cycles }
\end{aligned}
$$

Alternate

$$
\begin{aligned}
T_{\text {avg }} & =\text { Hit time }_{L 1}+\left(\text { Miss rate }_{L 1} * \text { Miss penality }_{L 1}\right) \\
\text { Miss penality } & =\text { Hit time }{ }_{L 2}+\left(\text { Miss rate }{ }_{L 2} *\right. \text { Miss penality } \\
& =10 \text { cycles }+50 \text { cycles }=60 \text { cycles } \\
T_{\text {avg }} & =\left(1+\left(\frac{40}{1000} \times 60\right)\right)=3.4 \text { cycles }
\end{aligned}
$$

cs
23. (d)

	IF	ID	OF	PD \& WB
$I_{1}:$	1 m -ref	3 m -ref	2 m -ref	-
$I_{2}:$	1 m -ref	1 m -ref	1 m -ref	-
$I_{3}:$				
$I_{4}:$	1 m -ref	-	1 m -ref	2 cycles
$I_{5}:$				
$I_{6}:$	1 m -ref	-	-	2 m -ref
1 m -ref	3 m -ref	-	2 m -ref	
1 m -ref	-	-	-	

Total time $=80$ cycles $\times 0.5 \mathrm{~ns}=40 \mathrm{~ns}$
24. (a)

Number of sets $=n / k$
Let there are x words per block in main memory.

$$
\begin{array}{|c|c|c|}
\hline & \log _{2} m x & \text { word } \\
\hline \text { TAG } & \text { SET } & \text { w } \\
\hline
\end{array}
$$

$$
\begin{aligned}
\text { No. of TAG bits } & =\log _{2}(m x)-\left(\log _{2} \frac{n}{k}+\log _{2} x\right) \\
& =\log _{2}(m x)-\log \frac{n x}{k}=\log _{2} \frac{m k}{n}
\end{aligned}
$$

25. (a)

Block size $=16$ byte $=2^{4}$ byte $=4$ bits
Blocks in main memory $=2^{10}$

$$
\text { So number of sets }=\frac{2^{10}}{2^{1}}=2^{9} \Rightarrow 9 \text { bits }
$$

\# of bits in physical address $=2^{16}$ byte
$\Rightarrow 16$ bits

$\underbrace{11}_{\text {11 }} \underbrace{00000001}_{\text {SET }} \underbrace{1111}$

SET value $_{1}=000000001=$ Decimal value $=(1)_{10}$
SET value ${ }_{2}=000100000=$ Decimal value $=(32)_{10}$
Difference $=\mathrm{SET}_{2}-$ SET $_{1}$
$=32-1=(31)_{10}$
26. (d)

Initially cache was empty

0 is miss and block containing $0^{\text {th }}$ word would have been brought into cache. Again 2 is hit means $2^{\text {nd }}$ address of memory available in same block as $0^{\text {th }}$ address. But again 4 miss occurs.
$\therefore 0^{\text {th }}, 1^{\text {st }}, 2^{\text {nd }}$ words are surely in same block.
Since size to be power of ' 2 ' than $2^{2}=4$ bytes (Block size)
0 -miss $\rightarrow 128$-miss $\rightarrow \mathrm{OH} \rightarrow 128 \mathrm{H} \rightarrow 64 \mathrm{M} \rightarrow 0 \mathrm{M}$
64 -miss affected $0 \Rightarrow 64$ maps in the same set as $0 \Rightarrow 128$ maps in the same set as zero. But the miss of 128 did not affect the presence of '0'.
\Rightarrow At least 2-way set associative.
If it was more than 2-way associative then 64 would not have evicted 0.
\Rightarrow Exactly 2-way set associative.
27. (c)
-63: 11000001

28. (c)

Memory format:

Word offset = 1 block
$=64$ words
$=64 \times 16$ bits
$=64 \times 2 \mathrm{~B}$
$=128 \mathrm{~B}$
$=\log _{2} 128$
$=7$ bits
$C M$ size $=2^{13} B$
Number of lines $=\frac{2^{13}}{2^{7}}=2^{6}$
Number of sets $=\frac{2^{6}}{2^{2}}=2^{4}$
TAG $=21-(7+4)$
= 21-11
$=10$ bits
29. (a)
$T_{1}($ Effective Access Time $)=20+(0.08)(60)=24.8 \mathrm{~ns}$ If size after changing the size is 2 times

Miss rate $=0.08-0.08 \times 0.3=0.056$
Since cache size is 4 times then again miss rate reduces to
Miss rate $=0.056-0.056 \times 0.3=0.0392$
$T_{2}($ Effective Access Time $)=20+60 \times 0.0392=22.352 \mathrm{~ns}$
Expected improvement $=\frac{(24.8-22.352)}{24.8}=0.0987$
Expected improvement (\%) $=0.0987 \times 100=9.87$
30. (a)

Prog. IO : CPU time depends on IO speed.
i.e., $\quad 1 \mathrm{MB}$........ 1 sec

8 B(1 word)?

$$
E T_{\text {Prog } I O}=\frac{8 \mathrm{~B}}{1 \mathrm{MB}} \mathrm{sec}=8 \mu \mathrm{sec}
$$

INT-IO : CPU time depends on interface latency.

$$
\begin{aligned}
\mathrm{ET}_{\text {INT-IO }} & =2 \mu \mathrm{sec} \\
S & =\frac{E \mathrm{E}_{\text {Prog-IO }}}{E \mathrm{~T}_{\text {INT-IO }}}=\frac{8}{2}=4
\end{aligned}
$$

