

Duration : 1:00 hr.
Maximum Marks: 50

Read the following instructions carefully

1. This question paper contains 30 objective questions. Q.1-10 carry one mark each and Q.11-30 carry two marks each.
2. Answer all the questions.
3. Questions must be answered on Objective Response Sheet (ORS) by darkening the appropriate bubble (marked A, B, C, D) using HB pencil against the question number. Each question has only one correct answer. In case you wish to change an answer, erase the old answer completely using a good soft eraser.
4. There will be NEGATIVE marking. For each wrong answer $1 / 3$ rd of the full marks of the question will be deducted. More than one answer marked against a question will be deemed as an incorrect response and will be negatively marked.
5. Write your name \& Roll No. at the specified locations on the right half of the ORS.
6. No charts or tables will be provided in the examination hall.
7. Choose the Closest numerical answer among the choices given.
8. If a candidate gives more than one answer, it will be treated as a wrong answer even if one of the given answers happens to be correct and there will be same penalty as above to that questions.
9. If a question is left blank, i.e., no answer is given by the candidate, there will be no penalty for that question.

Q.No. 1 to Q.No. 10 carry 1 mark each

Q. 1 A power electronic configuration has 30 SCRs connected in parallel combination for a circuit to bear a load current of 960 A. If the rating of each SCR is $400 \mathrm{~V}, 40 \mathrm{~A}$ then how many SCR's should be excluded from parallel path such that derating factor decreases by 50%.
(a) 5
(b) 6
(c) 3
(d) 2
Q. 2 A single phase fully controlled bridge is supplied with 120 V , rms sinusoidal supply of 50 Hz . If the load current is continous and individual thyristor voltage drop is 1.5 V. The value of peak voltage across each thyristor and mean load voltage for a firing angle of 45° will be respectively.
(a) $169.71 \mathrm{~V}, 42.66 \mathrm{~V}$
(b) $169.71,73.39 \mathrm{~V}$
(c) $196.42 \mathrm{~V}, 73.39 \mathrm{~V}$
(d) $196.42 \mathrm{~V}, 42.66 \mathrm{~V}$
Q. 3 A single phase full wave bridge converter has input voltage given by $V_{\text {in }}=200 \sin 100 t$. If the load connected on dc side of converter is $R=40 \Omega, L=10 \mathrm{mH}$ and $E=100 \mathrm{~V}$, then thyristor in the converter can be fired when condition which hold true is
(a) $100 t>10^{\circ}$
(b) $100 t>30^{\circ}$
(c) $100 t>23.58^{\circ}$
(d) $100 t>5.71^{\circ}$
Q. 4 Consider the snubber configuration across a thyristor operating at 400 V (peak) supply such that the repetitive peak current, I_{p} is 250 A . If the value of $\left(\frac{d i}{d t}\right)_{\max }=60 \mathrm{~A} / \mu \mathrm{sec}$ and $\left(\frac{d V}{d t}\right)_{\max }=200 \mathrm{~V} / \mu \mathrm{sec}$ as shown below, then value R_{s} will be considering safety factor 2 will be
(a) 6.67Ω
(b) 1.5Ω
(c) 4.5Ω
(d) 3.33Ω
Q. 5 In a three phase diode bridge rectifier when working on resistive load, the peak inverse voltage appearing on a diode is
(a) $\sqrt{3} V_{m l}$
(b) $\sqrt{3} V_{m p}$
(c) $1.5 V_{m l}$
(d) $1.5 V_{m p}$
Q. 6 In a $3-\phi, 180^{\circ}$ mode of operation of a bridge inverter, the lowest order harmonics in output phase voltage will be (fundamental frequency of output is 50 Hz)
(a) 120 Hz
(b) 300 Hz
(c) 180 Hz
(d) 250 Hz
Q. 7 A dc series motor is controlled by the circuit shown below.

The armature and field resistance are 0.06 Ω and 0.04Ω respectively. The average armature current is 200 A and chopper frequency is 500 Hz . If the back emf is 200 V , then the pulse width would be equal to
(a) 0.5 ms
(b) 1 ms
(c) 1.5 ms
(d) 2 ms
Q. 8 A type A chopper has input dc voltage of 200 V and a load of $R=10 \Omega$ in series with $L=80 \mathrm{mH}$. If the load current varies linearly between 12 A and 16 A , the time ratio $T_{\text {on }} /$ $T_{\text {off }}$ for this chopper is
(a) 1.50
(b) 1.66
(c) 2.50
(d) 2.33
Q. 9 In a single pulse modulation of PWM inverters the pulse width is 60°. For an input voltage of 300 V , the rms value of output voltage will be
(a) 173.20 V
(b) 141.20 V
(c) 57.70 V
(d) 231.40 V
Q. 10 In a single phase VSI bridge inverter the load current $I_{0}=50 \sin \left(\omega t-30^{\circ}\right) \mathrm{A}$. If the supply voltage is 200 V , then the power drawn from the supply is
(a) 11.02 kW
(b) 5.51 kW
(c) 12.24 kW
(d) 17.30 kW

Q. No. 11 to Q. No. 30 carry 2 marks each

Q. 11 A three phase, $440 \mathrm{~V}, 50 \mathrm{~Hz}$ supply is feeding a $440 \mathrm{~V}, 15 \mathrm{~kW}, 1500 \mathrm{rpm}$ seperately excited dc motor with ripple free continous current through a thyristor bridge. Neglecting all the losses, the power factor of the ac mains at half the rated speed is
(a) 0.353
(b) 0.372
(c) 0.90
(d) 0.955
Q. 12 A three phase fully controlled bridge converter with 415 V supply, 0.04Ω resistance per phase and 0.25Ω reactance per phase is operating in the inverting mode at a firing advance angle of 35°. The mean generator voltage when the current is level at 80 A is
(Thyristor voltage drop is 1.5 V)
(a) 481.2 V
(b) 487.6 V
(c) 459.02 V
(d) 462.1 V
Q. 13 A single phase full converter supplies power to a highly inductive load. The load consists of $R=10 \Omega$ and $L=10 \mathrm{mH}$, if the supply is $230 \mathrm{~V}, 50 \mathrm{~Hz}$, average output voltage is 146.42 V and the reactive power drawn by load is 2.143 kVAR then firing angle of converter will be
(a) 30°
(b) 40°
(c) 45°
(d) 60°
Q. 14 The forward characteristics of a power diode can be represented by $V_{f}=0.80+$ $0.015 i_{f}$. The average power loss and rms current for a constant current of 50 A for $\frac{2}{3}$ of a cycle is
(a) $50.22 \mathrm{~W}, 20.12 \mathrm{~A}$
(b) $51.67 \mathrm{~W}, 40.82 \mathrm{~A}$
(c) $50.22 \mathrm{~W}, 18.26 \mathrm{~A}$
(d) $51.67 \mathrm{~W}, 26.21 \mathrm{~A}$
Q. 15 A Buck-boost converter has the following parameters:

$$
\begin{array}{lll}
V_{S}=24 \mathrm{~V} & D=0.4 & R=5 \Omega \\
L=20 \mu \mathrm{H} & C=80 \mu \mathrm{~F} & f=100 \mathrm{kHz}
\end{array}
$$

The ratio of maximum inductor current, $I_{L, \max }$ to minimum inductor current $I_{L,}$ ${ }_{\min }$ for above converter considering continous inductor current will be
(a) 1.50
(b) 2.63
(c) 1.24
(d) 3.50
Q. 16 In a current commutated chopper, peak commutating current is twice the maximum possible load current. The source voltage is 230 V dc and main SCR turn off time is 30 $\mu \mathrm{s}$. If maximum load current is 200 A , then the peak capacitor voltage is
(a) 230 V
(b) 274 V
(c) 345 V
(d) 180 V
Q. 17 A buck regulator has an input voltage of $V_{s}=12 \mathrm{~V}$. The required average output voltage is $V_{0}=5 \mathrm{~V}$ at $R=500 \Omega$ and the peak to peak output ripple voltage is 20 mV and the switching frequency is 25 kHz . The peak to peak ripple current of inductor is limited to 0.8 A . The value of filter capacitor is
(a) $50.13 \mu \mathrm{~F}$
(b) $148.60 \mu \mathrm{~F}$
(c) $201.06 \mu \mathrm{~F}$
(d) $127.66 \mu \mathrm{~F}$
Q. 18 The output of a buck-boost converter is 80 V with input 100 V . If the frequency of switch is 10 kHz , then the turn off time of the switch will be
(a) $90 \mu \mathrm{sec}$
(b) $112 \mu \mathrm{sec}$
(c) $45 \mu \mathrm{sec}$
(d) $56 \mu \mathrm{sec}$
Q. 19 For the Snubber configuration shown below the maximum rate of change of current with respect to time through the SCR will be

(a) $16.26 \mathrm{~A} / \mu \mathrm{sec}$
(b) $5.28 \mathrm{~A} / \mu \mathrm{sec}$
(c) $7.78 \mathrm{~A} / \mu \mathrm{sec}$
(d) $12.26 \mathrm{~A} / \mu \mathrm{sec}$
Q. 20 In the circuit shown below, the maximum value of current which passes through inductor will be

(a) 3.20 A
(b) 5.42 A
(c) 12.40 A
(d) 18.31 A
Q. 21 In class B commutation (resonant pulse commutation) with $L=5 \mu \mathrm{H}$ and $\mathrm{C}=20 \mu \mathrm{~F}$ are used. If the initital voltage across the capacitor is $V_{S}=230 \mathrm{~V}$, then the value of conduction time for auxiliary thyristor used and peak current, I_{p} will be
(a) $2 \pi \mu \mathrm{sec}, 320 \mathrm{~A}$
(b) $10 \pi \mu \mathrm{sec}, 460 \mathrm{~A}$
(c) $6 \pi \mu \mathrm{sec}, 240 \mathrm{~A}$
(d) $5 \pi \mu \mathrm{sec}, 150 \mathrm{~A}$
Q. 22 A boost converter feeds an average current of 10 A to a load. The value of duty cycle and chopping frequency were 0.40 and 50 kHz respectively. Filter inductance and capacitance are of 10 mH and $120 \mu \mathrm{~F}$. The peak to peak ripple voltage will be
(a) 0.33 V
(b) 0.75 V
(c) 0.66 V
(d) 1.82 V
Q. 23 A single phase inverter is operated in PWM mode generating a single pulse of width ' $2 d^{\prime}$ in the centre of each half cycle as given below,

If the pulse width is 140° then the ratio of maximum value of third harmonic output voltage to maximum value of fundamental output voltage will be
(a) 0.10
(b) 0.18
(c) 0.24
(d) 0.36
Q. 24 A single phase diode bridge rectifier is connected by a transformer to ac supply of $230 \mathrm{~V}, 50 \mathrm{~Hz}$ and it feeds a $R-L$ load of $I_{0}=$ 10 A. Average power delivered to load will be \qquad .
(Take transformer turn ratio $=1$)
(a) 2070.72 W
(b) 1035.36 W
(c) 1542.36 W
(d) 1170.50 W
Q. 25 If V_{s} is the input dc voltage in single PWM inverter, then the pulse width required for eliminating third harmonic and corresponding rms value of fundamental component of output voltage are
(a) $120^{\circ}, \frac{2 \sqrt{2}}{\pi} V_{s}$
(b) $60^{\circ}, \frac{\sqrt{6}}{\pi} V_{s}$
(c) $60^{\circ}, \frac{2 \sqrt{2}}{\pi} V_{s}$
(d) $120^{\circ}, \frac{\sqrt{6}}{\pi} V_{s}$
Q. 26 A ZCS resonant converter is shown in figure has peak current of $I_{0}+V_{s} \sqrt{\frac{C}{L}}$ in the switch S. For natural turn off which of the following is true?

(a) $V_{s} \sqrt{\frac{C}{L}}>0$
(b) $V_{s} \sqrt{\frac{C}{L}}>I_{0}$
(c) $V_{s} \sqrt{\frac{C}{L}}<I_{0}$
(d) $V_{s} \sqrt{\frac{C}{L}} \leq I_{0}$
Q. 27 In a step down chopper, duty ratio is $1 / 3$ and the input voltage is V_{s}. What is the maximum value of fundamental output voltage?
(a) $\frac{2 \sqrt{3} V_{s}}{\pi} \mathrm{~V}$
(b) $\frac{2 V_{s}}{\pi} \mathrm{~V}$
(c) $\frac{\sqrt{3} V_{s}}{\pi} \mathrm{~V}$
(d) 0
Q. 28 The full bridge inverter is used to produce a $60-\mathrm{Hz}$ voltage across a series RL load using bipolar PWM. The dc input is 100 V , amplitude modulation ratio m_{a} is 0.8 and the frequency modulation ratio m_{f} is 21 . What is the amplitude of the 60 Hz component of the output voltage?
(a) 1680 V
(b) $1680 \sqrt{2} \mathrm{~V}$
(c) $80 \sqrt{2} \mathrm{~V}$
(d) 80 V
Q. 29 A 3- ϕ bridge rectifier charges a 240 V battery using $3-\phi, 230 \mathrm{~V}, 50 \mathrm{~Hz}$ input supply. Current limiting resistance in series with battery is 8Ω is used and inductor is kept to make current ripple free. The current distortion factor will be
(a) 0.866
(b) 0.955
(c) 0.500
(d) 0.414
Q. 30 A full bridge inverter has bi-directional switches employed in a manner that their switching sequence produces a square wave voltage across a series $R-L$ load. If the switching frequency is 50 Hz , dc supply voltage, $V_{d c}=100 \mathrm{~V}, R=10 \Omega$ and $L=25$ mH , then power absorbed by the load and rms value of current will be respectively
(a) $543.62 \mathrm{~W}, 5.41 \mathrm{~A}$
(b) $337.97 \mathrm{~W}, 4.23 \mathrm{~A}$
(c) $516.96 \mathrm{~W}, 7.19 \mathrm{~A}$
(d) $243.62 \mathrm{~W}, 3.43 \mathrm{~A}$

CLASS TEST

India's Best Institute for IES, GATE \& PSUs

Delhi | Bhopal | Hyderabad | Jaipur | Pune | Bhubaneswar | Kolkata
Web: www.madeeasy.in | E-mail: info@madeeasy.in | Ph: 011-45124612

POWER ELECTRONICS

ELECTRICAL ENGINEERING

Date of Test : 14/10/2023

ANSWER KEY

| 1. | (c) | 7. | (b) | 13. | (c) | 19. | (c) | 25. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | (d)

DETAILED EXPLANATIONS

1. (c)

We know,

$$
\text { String efficiency, } \eta=\frac{\text { Current rating of configuration }}{\text { Current rating of } 1 \text { SCR } \times \text { Number of SCR's in string }}
$$

$$
\begin{aligned}
\eta & =\frac{960}{40 \times 30}=\frac{24}{30}=0.80 \\
\text { Derating factor } & =1-\text { string efficiency } \\
& =1-0.8=0.2
\end{aligned}
$$

For 50% decrease in rating factor

$$
\begin{aligned}
& \text { New derating factor }=\frac{0.2 \times 50}{100}=0.1 \\
& \therefore \quad \text { New efficiency }=0.9 \\
& \text { Using equation (i), we get }
\end{aligned}
$$

$$
\begin{aligned}
0.9 & =\frac{960}{40 \times n} \\
\Rightarrow \quad n & =\frac{960}{40 \times 0.9}=26.66 \approx 27 \\
& \text { Decrease in no. of parallel SCR }
\end{aligned}=30-27=3
$$

2. (b)

For a single phase fully controlled bridge circuit

Where, V_{m} is peak sinusoidal value, α is firing angle and V_{T} is thyristor voltage drop
For

$$
\begin{aligned}
V_{m} & =120 \sqrt{2} \mathrm{~V}, \\
\alpha & =45^{\circ} \\
V_{\text {mean }} & =\frac{2}{\pi} \times 120 \sqrt{2} \cos 45^{\circ}-2 \times(1.5) \\
& =\frac{2}{\pi} \times 120 \sqrt{2} \times \frac{1}{\sqrt{2}}-3=73.39 \mathrm{~V}
\end{aligned}
$$

Peak value of voltage across each thyristor $=V_{\max }$

$$
=120 \sqrt{2}=169.71 \mathrm{~V}
$$

3. (b)

For 1- ϕ full bridge converter, boundary condition

$$
\begin{aligned}
V_{m} \sin \omega t & =E \\
\sin \omega t & =\frac{E}{V_{m}}
\end{aligned}
$$

or

$$
\omega t=\sin ^{-1}\left(\frac{E}{V_{m}}\right)=\sin ^{-1}\left(\frac{100}{200}\right)=30^{\circ}
$$

In above case ωt is given as $100 t$
\therefore When $100 t>30^{\circ}$ then thyristors are forward biased and can be triggered.
4. (d)

$$
\text { If factor of safety }=2
$$

Allowable values:

$$
\begin{aligned}
I_{P} & =\frac{250}{2}=125 \mathrm{~A} \\
\left(\frac{d i}{d t}\right)_{\max } & =\frac{60}{2}=30 \mathrm{~A} / \mu \mathrm{s} \\
\left(\frac{d v}{d t}\right)_{\max } & =\frac{200}{2}=100 \mathrm{~V} / \mu \mathrm{s}
\end{aligned}
$$

Also know,

$$
V_{S}=L_{S}\left(\frac{d i}{d t}\right)
$$

$$
400=L_{S}\left(\frac{60}{2}\right)
$$

$$
L_{S}=\frac{800}{60}=13.33 \mu \mathrm{H}
$$

We know,

$$
V_{S}=\frac{L_{S}}{R_{S}}\left(\frac{d V}{d t}\right)
$$

So,

$$
R_{S}=\frac{800}{60 \times 400} \times \frac{200}{2}=3.33 \Omega
$$

5. (b)

PIV of a diode in 3-phase bridge rectifier is $V_{m l}$ or $\sqrt{3} V_{m p}$.

6. (d)

In the output phase voltage the even, third and multiples of $3^{\text {rd }}$ harmonics are absent. So, lowest order harmonics are $5^{\text {th }}$ harmonics,

$$
\text { Fourier series, } V_{R}=\sum_{n=6 k \pm 1} \frac{2 V_{s}}{n \pi} \sin n \omega t
$$

So, frequency of $5^{\text {th }}$ harmonis $=5 \times$ fundamental frequency $=5 \times 50=250 \mathrm{~Hz}$
7. (b)

The given chopper is a step down chopper,

$$
\begin{aligned}
V_{0} & =\alpha V_{s} \\
V_{0} & =I_{0}\left(R_{a}+R_{s e}\right)+E_{b}=\alpha V_{s} \\
& =200(0.06+0.04)+200=\alpha \cdot 440 \\
\alpha & =\frac{220}{440} \\
\alpha & =0.5 \\
T_{\text {on }} & =\alpha \cdot T \\
& =0.5 \times \frac{1}{500}=1 \mathrm{~ms}
\end{aligned}
$$

8. (d)

$$
\begin{aligned}
\text { Average load current } & =\frac{12+16}{2}=14 \mathrm{~A} \\
\text { Average load voltage } & =V_{0}=I_{0} R=14 \times 10=140 \mathrm{~V} \\
V_{0} & =\alpha V_{s}
\end{aligned}
$$

Since the chopper is step down or type-A,

$$
\begin{aligned}
140 & =\alpha 200 \\
\alpha & =\frac{140}{200}=0.7 \\
\frac{T_{\text {on }}}{T_{\text {on }}+T_{\text {off }}} & =0.7 \\
0.3 T_{\text {on }} & =0.7 T_{\text {off }} \\
\frac{T_{\text {on }}}{T_{\text {off }}} & =2.33
\end{aligned}
$$

9. (a)

$$
V_{\text {or }}=V_{s} \sqrt{\frac{2 d}{\pi}}
$$

$$
V_{0 \mathrm{rms}}=300 \sqrt{\frac{60^{\circ}}{180^{\circ}}}=173.20 \mathrm{~V}
$$

10. (b)

$$
I_{0}=50 \sin \left(\omega t-30^{\circ}\right) \mathrm{A}
$$

The given current have only fundamental component so only fundamental voltage component will be responsible for power.

$$
\begin{aligned}
V_{01} & =\frac{4 V_{s}}{\sqrt{2} \pi}=\frac{4 \times 200}{\sqrt{2} \pi} \\
& =180.06 \mathrm{~V}
\end{aligned}
$$

Taking voltage as reference,
11. (a)

Hence it is mentioned in the given data that there is no losses.

Since, back emf

$$
V_{0}=\frac{3 V_{m L}}{\pi} \cos \alpha=E
$$

$$
E \propto N
$$

$$
\frac{E_{1}}{E_{2}}=\frac{N_{1}}{N_{2}}
$$

$$
E_{1}=2 E_{2}
$$

$$
\left(\therefore N_{2}=\frac{1}{2} N_{1}\right)
$$

So,

$$
\begin{aligned}
E_{2} & =\frac{E_{1}}{2}=\frac{V_{0}}{2}=220 \mathrm{~V} \\
\frac{3 \times \sqrt{2} \times 440}{\pi} \cos \alpha & =220 \\
\cos \alpha & =\frac{220 \times \pi}{3 \times \sqrt{2} \times 440}=0.3702
\end{aligned}
$$

Input power factor of the supply

$$
=\frac{3}{\pi} \cos \alpha=\frac{3}{\pi} \times 0.3702=0.353
$$

$$
\begin{aligned}
& \phi=30^{\circ} \\
& \text { Active power, } P=V_{01} I_{01} \cos \phi \\
& =\frac{180.06 \times 50}{\sqrt{2}} \times \cos 30^{\circ}=5513.19 \mathrm{~W} \approx 5.51 \mathrm{~kW} \\
& P=5.51 \mathrm{~kW}
\end{aligned}
$$

12. (b)
13. (c)

Given, for single phase full converter,

$$
\begin{aligned}
V_{0} & =146.42 \mathrm{~V} \\
I_{0} & =\frac{V_{0}}{R}=\frac{146.42}{10}=14.64 \mathrm{~A}
\end{aligned}
$$

Reactive power $Q=V_{0} I_{0} \tan \alpha$

$$
\begin{aligned}
2.143 \times 10^{3} & =146.42 \times 14.64 \tan \alpha \\
\tan \alpha & =0.9997 \\
\alpha & =45^{\circ}
\end{aligned}
$$

14. (b)

With T as the time of a cycle,
The average power loss $=\frac{1}{T} \int_{0}^{2 T / 3} V_{f} \cdot I_{f} d t$
and

$$
\begin{aligned}
P & =\frac{2}{3} \cdot V_{f} \cdot I_{f} \\
V_{f} & =0.80+(0.015 \times 50) \\
V_{f} & =1.55 \mathrm{~V} \\
P & =\frac{2}{3} \times 1.55 \times 50=51.6 \\
I_{\mathrm{rms}} & =\sqrt{\frac{1}{T} \int_{0}^{\frac{2 T}{3}}(50)^{2} d t} \\
I_{\mathrm{rms}} & =50 \sqrt{\frac{2}{3}}=40.82 \mathrm{~A}
\end{aligned}
$$

$$
\therefore \quad P=\frac{2}{3} \times 1.55 \times 50=51.67 \mathrm{~W}
$$

$$
\begin{aligned}
& V_{0 x}=\frac{3 V_{m L}}{\pi} \cos \alpha-2 I_{0} R_{s}-2 V_{T}-\frac{3 \omega L_{s} I_{0}}{\pi} \\
& =\frac{3 \times \sqrt{2} \times 415}{\pi} \cos 145^{\circ}-(2 \times 80 \times 0.04)-(2 \times 1.5)-\left(\frac{3 \times 0.25 \times 80}{\pi}\right) \\
& =-487.5898=-E \\
& \therefore \quad E=487.5898 \approx 487.6 \mathrm{~V}
\end{aligned}
$$

15. (b)

Output voltage Buck-boost converter,

$$
\begin{aligned}
& V_{0}=-\frac{D}{1-D} V_{S} \\
& V_{0}=\frac{-0.4}{1-0.4} \times 24=-16 \mathrm{~V}
\end{aligned}
$$

Average current through inductor,

$$
\begin{aligned}
I_{L} & =\frac{V_{S} D}{R(1-D)^{2}}=\frac{24 \times 0.4}{5(1-0.4)^{2}} \\
I_{L} & =5.33 \mathrm{~A} \\
\Delta i_{L} & =\frac{V_{S} D T}{L}=\frac{24 \times 0.4}{20 \times 10^{-6} \times 100 \times 10^{3}}=4.8 \mathrm{~A} \\
I_{L, \max } & =I_{L}+\frac{\Delta i_{L}}{2}=5.33+\frac{4.8}{2}=7.73 \mathrm{~A} \\
I_{L, \min } & =I_{L}-\frac{\Delta i_{L}}{2}=5.33-\frac{4.8}{2}=2.93 \mathrm{~A}
\end{aligned}
$$

The ratio of inductor currents,

$$
\frac{I_{L, \max }}{I_{L, \min }}=\frac{7.73}{2.93}=2.63
$$

16. (c)

Given, source voltage, $V_{s}=230 \mathrm{~V}$

$$
\text { Peak current, } \begin{aligned}
I_{p} & =2 I_{0} \text { (load current) } \\
& =2(200)=400 \mathrm{~A}
\end{aligned}
$$

and

$$
I_{p}=V_{s} \sqrt{\frac{C}{L}}
$$

$$
\sqrt{\frac{C}{L}}=\frac{I_{p}}{V_{s}}=\frac{400}{230}
$$

$$
\begin{equation*}
\text { or, } \quad \sqrt{\frac{L}{C}}=\frac{230}{400} \tag{i}
\end{equation*}
$$

Peak capacitor voltage, $\quad V_{c p}=V_{s}+I_{0} \sqrt{\frac{L}{C}}$

From equation (i), we get
Peak capacitor voltage, $V_{c p}=V_{s}+I_{0} \sqrt{\frac{L}{C}}$

$$
\begin{aligned}
V_{c p} & =230+200\left(\frac{230}{400}\right) \\
& =230+115=345 \mathrm{~V}
\end{aligned}
$$

17. (c)

Output voltage,

$$
\begin{aligned}
V_{0} & =D V_{s} \\
5 & =D \times 12 \\
D & =0.416
\end{aligned}
$$

Peak to peak ripple current, $\Delta I=\frac{V_{S} D(1-D)}{L f}$

$$
\begin{aligned}
0.8 & =\frac{12 \times 0.416(1-0.416)}{25 \times 10^{3} \times L} \\
L & =0.145 \times 10^{-3} \mathrm{H}
\end{aligned}
$$

We know that
Peak to peak ripple voltage, $\Delta V=\frac{V_{s} D(1-D)}{8 L C f^{2}}$

$$
\begin{aligned}
C & =\frac{V_{s} D(1-D)}{8 L f^{2} \times \Delta V} \\
& =\frac{12 \times 0.416(1-0.416)}{0.145 \times 10^{-3} \times\left(25 \times 10^{3}\right)^{2} \times 20 \times 10^{-3} \times 8}=201.06 \mu \mathrm{~F}
\end{aligned}
$$

18. (d)

$$
\begin{aligned}
V_{0} & =80 \mathrm{~V} \\
V_{\mathrm{in}} & =100 \mathrm{~V}
\end{aligned}
$$

for buck boost converter,
or

$$
\begin{aligned}
\mathrm{V}_{0} & =\frac{V_{\text {in }} D}{1-D} \\
80 & =\frac{100 D}{1-D} \\
D & =0.44 \\
\frac{T_{\text {on }}}{T} & =0.44 \\
T & =\frac{1}{f}=\frac{1}{10 \times 10^{3}}=100 \mu \mathrm{~s} \\
T_{\text {on }} & =0.44 \times 100=44 \mu \mathrm{~s} \\
T_{\text {off }} & =T-T_{\text {on }} \\
T_{\text {off }} & =100-44=56 \mu \mathrm{~s}
\end{aligned}
$$

or
19. (c)

We know in case of Snubber circuit,

$$
\begin{aligned}
&\left(\frac{d i}{d t}\right)_{\max } \\
&=\frac{V_{m}}{L} \quad \text { Where, } V_{m}=220 \sqrt{2} \mathrm{~V} \\
& \therefore \quad\left(\frac{d i}{d t}\right)_{\max }=\frac{220 \sqrt{2}}{40 \times 10^{-6}}=7.78 \mathrm{~A} / \mu \mathrm{sec}
\end{aligned}
$$

20. (d)

Diode $\rightarrow \mathrm{ON}$ at,

$$
\omega t=\frac{-\pi}{2}
$$

By applying KVL in circuit,

$$
\begin{aligned}
230 \cos \omega t & =L \frac{d i(t)}{d t} \\
\frac{d i(t)}{d t} & =\frac{230}{L} \cos \omega t \\
d i(t) & =\frac{230}{L} \cos \omega t d t \\
\int d i(t) & =\int \frac{230}{L} \cos \omega t d t \\
i(t) & =\frac{230}{\omega L} \sin \omega t+K
\end{aligned}
$$

at $\omega t=\frac{-\pi}{2}, i(t)=0$,

$$
\begin{aligned}
0 & =\frac{V_{m}}{\omega L} \sin \left(\frac{-\pi}{2}\right)+K \\
K & =\frac{V_{m}}{\omega L} \\
i & =\frac{V_{m}}{\omega L} \sin \omega t+\frac{V_{m}}{\omega L} \\
\therefore \quad i_{\text {peak }} \text { at } \frac{\pi}{2} & =\frac{2 V_{m}}{\omega L}=\frac{2 \times 230}{314 \times 80 \times 10^{-3}}=18.31 \mathrm{~A}
\end{aligned}
$$

21. (b)

In class B commutation

Peak current through capacitor,

$$
I_{P}=V_{S} \sqrt{\frac{C}{L}}=230 \sqrt{\frac{20}{5}}=460 \mathrm{~A}
$$

The conduction time of auxiliary thyristor,

$$
T_{A}=\frac{t}{\omega_{r}}
$$

The resonant frequency,

EE - Power Electronics

$$
\begin{aligned}
\omega_{r} & =\frac{1}{\sqrt{L C}}=\frac{1}{\sqrt{5 \times 10^{-6} \times 20 \times 10^{-6}}} \\
& =\frac{1}{10 \times 10^{-6}}=0.1 \times 10^{6} \mathrm{rad} / \mathrm{s} \\
\therefore \quad T_{A} & =\frac{\pi}{\omega}=\frac{\pi}{0.1 \times 10^{6}}=10 \pi \mu \mathrm{sec}
\end{aligned}
$$

22. (c)

For boost converter peak to peak ripple voltage,

$$
\Delta V_{0}=\frac{\alpha I_{0}}{f C}=\frac{0.40 \times 10}{50 \times 10^{3} \times 120 \times 10^{-6}}=0.66 \mathrm{~V}
$$

23. (b)

For single phase PWM inverter pulse width,

$$
\begin{aligned}
2 d & =140^{\circ} \\
d & =70^{\circ} \\
\text { Ratio } & =\frac{\text { Maximum value of third harmonics output voltage }}{\text { Maximum value of fundamental output voltage }} \\
& =\frac{\frac{4 V_{s}}{3 \pi} \sin \left(3 \times 70^{\circ}\right) \sin \left(\frac{3 \pi}{2}\right)}{\frac{4 V_{s}}{\pi} \sin \left(\frac{\pi}{2}\right) \sin \left(70^{\circ}\right)}=\frac{1}{3} \frac{(-0.5) \times(-1)}{1 \times 0.9397}=0.177 \approx 0.18 \\
\text { Ratio } & =0.18
\end{aligned}
$$

24. (a)

Input voltage is sinusoidal voltage,
Output load current, $I_{0}=10 \mathrm{~A}$
Average output voltage,

$$
V_{0}=\frac{2 V_{m}}{\pi}=\frac{2 \sqrt{2} \times 230}{\pi}=207.072 \mathrm{~V}
$$

Power delivered to load $=V_{0} I_{0}=2070.72 \mathrm{~W}$
25. (d)

$$
\begin{aligned}
V_{0 n, \mathrm{rms}} & =\frac{4 V_{s}}{n \pi \sqrt{2}} \sin n d \cdot \sin \frac{n \pi}{2} \\
n d & =\pi
\end{aligned}
$$

For eliminating third harmonic

$$
\begin{aligned}
3 d & =\pi \\
d & =\frac{\pi}{3}=60^{\circ}
\end{aligned}
$$

\therefore pulse width

$$
2 d=120^{\circ}
$$

$$
V_{01, \mathrm{rms}}=\frac{2 \sqrt{2} V_{s}}{\pi} \times \sin 60^{\circ}=\frac{\sqrt{6} V_{s}}{\pi} \mathrm{~V}
$$

26. (b)

For natural turn-off, peak resonant current $\left(\frac{V_{s}}{Z_{0}}\right.$ or $\left.V_{s} \sqrt{\frac{C}{L}}\right)$ must be greater than load current I_{0}.
27. (c)

Peak value of output voltage is :

$$
\text { Fundamental, } \begin{aligned}
V_{0 n} & =\frac{2 V_{s}}{n \pi} \sin n \pi \alpha \\
V_{01} & =\frac{2 V_{s}}{\pi} \sin \frac{\pi}{3} \\
V_{01} & =\frac{\sqrt{3} V_{s}}{\pi} \mathrm{~V}
\end{aligned}
$$

28. (d)

Amplitude of the 60 Hz fundamental frequency component of the output voltage is

$$
V_{1}=m_{a} V_{d c}=0.8 \times 100=80 \mathrm{~V}
$$

29. (b)

Maximum value of line voltage,

$$
V_{m l}=\sqrt{2} V_{l}=230 \sqrt{2} \mathrm{~V}
$$

Average output voltage,

$$
\begin{aligned}
V_{0} & =\frac{3 V_{m l}}{\pi}=310.60 \mathrm{~V} \\
V_{0} & =E+I_{0} R \\
\frac{V_{0}-E}{R} & =I_{0}=\frac{310.60-240}{8}=8.82 \mathrm{~A}
\end{aligned}
$$

As current is ripple free,

$$
I_{0 r}=I_{0}=8.82 \mathrm{~A}
$$

RMS value of fundamental component of source current,

$$
I_{s 1}=\frac{2 \sqrt{3}}{\pi} \times \frac{I_{0}}{\sqrt{2}}
$$

RMS value of source current,

$$
I_{s}=\left[\frac{I_{0}^{2} \times 2 \pi}{\pi \times 3}\right]^{1 / 2}=\sqrt{\frac{2}{3}} I_{0}
$$

Current distortion factor,

$$
C D F=\frac{I_{s 1}}{I_{s}}=\frac{2 \sqrt{3} I_{0}}{\sqrt{2} \pi} \times \frac{\sqrt{3}}{\sqrt{2} I_{0}}=\frac{3}{\pi}=0.955
$$

EE - Power Electronics
30. (c)

At $t=0$,
S_{1}, S_{2} : switches are closed
S_{3}, S_{4} : switches are open

Output power,

$$
\begin{aligned}
& P=I_{o r}^{2} R \\
& V_{0}=\sum_{n=1,3,5 \ldots \ldots}^{\infty} \frac{4 V_{s}}{n \pi} \sin n \omega t \\
& V_{\text {on-rms }}=\frac{2 \sqrt{2}}{n \pi} V_{s} \\
& Z_{n}=\sqrt{R^{2}+(n \omega L)^{2}} \\
& I_{\text {on-rms }}=\frac{V_{o n}}{\left|Z_{n}\right|} \\
& \\
& I_{0 r}=\sqrt{I_{o 1}^{2}+I_{o 3}^{2}+I_{o 5}^{2}+I_{o 7}^{2}}=7.19 \mathrm{~A} \\
& P=(7.19)^{2} \times 10=516.96 \mathrm{~W}
\end{aligned}
$$

